帳號:guest(13.59.79.176)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂文忠
作者(外文):Lu, Wen-Chung
論文名稱(中文):銅氧化物/金/氧化鋅奈米線複合材料應用於二氧化氮氣體感測
論文名稱(外文):Application of Copper Oxide/Gold/Zinc Oxide Nanowire Composites in Nitrogen Dioxide Gas Sensing
指導教授(中文):林鶴南
指導教授(外文):Lin, Heh-Nan
口試委員(中文):廖建能
甘炯耀
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031593
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:氧化鋅奈米線複合材料二氧化氮氣體感測
外文關鍵詞:Zinc oxide nanowirecomposite materialNitrogen dioxide gas sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  本實驗製作銅氧化物/金/氧化鋅奈米線複合材料,並應用於二氧化氮氣體感測。首先利用黃光微影與電子束蒸鍍技術,形成鈦金屬電極於矽晶圓上,然後以低溫水熱法成長氧化鋅奈米線於矽晶圓基板,並對氧化鋅奈米線進行高溫退火,再藉由簡單方便的光還原法,添加銅氧化物與金顆粒至氧化鋅奈米線,形成一具有貴金屬、金屬氧化物與氧化鋅基材的三元複合材料。以此複合材料進行二氧化氮氣體感測,當氣體分子化學吸附於複合材料表面會搶奪電子,造成電阻增加,因此可由電阻變化率得知氣體濃度。
  藉由掃描式電子顯微鏡觀察材料的表面形貌,以硫酸銅水溶液光還原製作的銅氧化物氧化鋅,在奈米線的頂端或側壁會出現表面平滑的立方狀顆粒物,尺寸約為數百奈米;而以四氯金酸水溶液光還原製作的金/氧化鋅則具有表面粗糙的球狀顆粒物。若依序進行上述兩種光還原法,金/銅氧化物/氧化鋅複合材料可發現金披覆銅氧化物的顆粒物;而銅氧化物/金/氧化鋅複合材料則呈現細小顆粒物均勻散布的現象。
  以紫外光激活模式對材料進行NO2氣體感測,對於100 ppb的NO2,氧化鋅奈米線具有22%的平均響應。銅氧化物/氧化鋅複合材料的平均響應提高至211%,推測是因p-型銅氧化物與n-型氧化鋅接合形成p-n 接面,在氧化鋅內部形成空乏區而使響應增加;另一方面,金/氧化鋅複合材料平均響應也提高到239%,推論是由於金為吸附觸媒,可增加NO2的吸附量而使響應增加。
  對於三元複合材料,對100 ppb NO2,金/銅氧化物/氧化鋅複合材料的平均響應降至81%,這樣的原因推論為金與銅氧化物間的接觸並不如金與氧化鋅,使得氣體從銅氧化物搶奪電子的過程受到阻礙而形成響應減低的現象;而銅氧化物/金/氧化鋅複合材料則具有最高的283%平均響應,推論因其細小的添加物與氣體分子之間具有較大的接觸面積,使添加物的效果達到最大。
  綜合以上,銅氧化物/金/氧化鋅的結構可以具有最高響應,並且本實驗製作之三元複合材料具有比單一基材高上12.8倍的二氧化氮氣體感測響應,應對於低濃度二氧化氮的感測能力極具潛力。
  In this work, we produced copper oxide/gold/zinc oxide nanowire composites and applied to NO2 gas sensing. First of all, we formed titanium electrodes on silicon wafers by photolithography and e-beam evaporation techniques. Second, zinc oxide nanowires were grown by low-temperature hydrothermal method and were annealed. Further, a simple and convenient photoreduction method was utilized to add copper oxide and gold particles on the nanowires. Then, ternary composites which contained a noble metal, a metal oxide and the zinc oxide matrix were made. Lastly, the composites were experimented in NO2 gas sensing. When NO2 chemically adsorbed on the composite surface, NO2 will trap the electrons and result in resistance increase. Based on the change in resistance, we can infer the gas concentration.
  We used scanning electron microscopy to observe the morphologies of materials. CuXO/ZnO produced by Copper Sulfate (CuSO4) photoreduction showed some smooth, cubic particles with a diameter of hundreds of nanometers on the nanowire surface, and Au/ZnO produced by Chloroauric acid (HAuCl4) photoreduction appeared rough, spherical particles with non-uniform sizes. If successively proceeded the two photoreductions mentioned above, some particles with an Au-covered CuXO structure were discovered on Au/CuXO/ZnO composite. However, many fine and smooth particles were dispersed uniformly on the surface of CuXO/Au/ZnO composite.
  We realized the NO2 gas sensing experiment under UV-activation mode for all materials mentioned. For 100 ppb NO2, the ZnO nanowires excited a 22% of average response. Comparatively, the CuXO/ZnO composite had an enhanced average response, of 211%. The reason might be the formation of depletion layer in the ZnO resulted from p-n junction between CuXO and ZnO. On the other hand, the Au/ZnO composite also showed an average response of 239%. It was inferred that gold can catalyze adsorption and enhance the number of adsorbed NO2 molecules.
  Regarding ternary composites, for 100 ppb NO2, the average response of Au/CuXO/ZnO composite decreased to 81%. One potential reason might be that the contact between Au and CuXO wasn’t as good as the one between Au and ZnO and would interfere electron transfer. On the contrary, the CuXO/Au/ZnO composite revealed the highest 283% average response. It might be attributed to the large contact area between additives and NO2 gas provided by those finer additives.
  In conclusion, CuXO/Au/ZnO structure can maximize the NO2 response. Also, this ternary composite showed a 12.8 times higher NO2 response than single material. This indicates it has potential applicaiton for low concentration NO2 gas sensing.
中文摘要 II
Abstract  III
致謝   IV
總目錄  V
圖目錄  VIII
表目錄  X
Chapter 1緒論 1
1.1 前言 2
1.2 研究動機 3
Chapter 2文獻回顧 4
2.1 氧化鋅概論 5
2.1.1 氧化鋅晶體結構 5
2.1.2 氧空缺本質摻雜 5
2.1.3 氧化鋅光學性質 7
2.1.4 奈米線合成方法與機制 8
2.2 氣體感測原理 11
2.2.1 金屬氧化物之氣體感測機制 11
2.2.2 二氧化氮與氧化鋅的吸附反應 12
2.2.3 紫外光激活之回復特性 12
2.3 金屬氧化物複合材料之氣體感測應用 15
2.4 光還原法 17
Chapter 3實驗流程與儀器 20
3.1 材料製作流程 21
3.1.1 電極製作 21
3.1.2 氧化鋅奈米線成長 22
3.1.3 退火處理 23
3.1.4 添加物的生成 23
3.2 材料分析儀器 24
3.2.1 掃描式電子顯微鏡 24
3.3.2 能量色散X射線光譜 25
3.3.3 X-射線繞射分析儀 25
3.2.4 螢光光譜儀 25
3.3 氣體感測實驗 25
3.3.1 氣體感測系統 25
3.3.2 二氧化氮濃度計算 26
3.3.3 氣體感測操作流程 27
Chapter 4實驗結果與討論 28
4.1 材料分析 29
4.1.1 表面形貌 29
4.1.2 晶體結構與元素組成 35
4.1.3 光致放光性質 38
4.2 二氧化氮氣體感測結果 40
4.2.1 大氣退火處理對氣體感測的影響 40
4.2.2 銅氧化物/氧化鋅二元複合材料的感測結果 42
4.2.3 金/氧化鋅二元複合材料的感測結果 45
4.2.4 三元複合材料的感測結果 46
4.2.5 無退火之三元複合材料的感測結果 48
Chapter 5 53
參考文獻 56
1. C. Li, et al., In2O3 nanowires as chemical sensors. Applied Physics Letters, 2003. 82(10): p. 1613-1615.
2. J. Zhang, et al., NO2 sensing performance of SnO2 hollow-sphere sensor. Sensors and Actuators B: Chemical, 2009. 135(2): p. 610-617.
3. D. Meng, et al., Preparation of WO3 nanoparticles and application to NO2 sensor. Applied Surface Science, 2009. 256(4): p. 1050-1053.
4. B.P.J. de Lacy Costello, et al., A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide. Sensors and Actuators B: Chemical, 1999. 61(1): p. 199-207.
5. A. Umar, et al., Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 2009. 11(1): p. 118-121.
6. J.X. Wang, et al., Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters, 2006. 88(23): p. 233106.
7. R.K. Joshi, et al., Au Decorated Zinc Oxide Nanowires for CO Sensing. The Journal of Physical Chemistry C, 2009. 113(36): p. 16199-16202.
8. Q. Xiang, et al., Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing. The Journal of Physical Chemistry C, 2010. 114(5): p. 2049-2055.
9. H. Xia, et al., Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sensors and Actuators B: Chemical, 2008. 134(1): p. 133-139.
10. O.V. Safonova, et al., CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh. Materials Science and Engineering: C, 2002. 21(1): p. 105-111.
11. H. Steffes, et al., Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sensors and Actuators B: Chemical, 2001. 78(1): p. 106-112.
12. S.J. Chang, et al., Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 2008. 19(17): p. 175502.
13. C.-M. Chang, et al., Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms. RSC Advances, 2012. 2(6): p. 2469.
14. N.M. Shaalan, et al., NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots. Sensors and Actuators B: Chemical, 2012. 166-167: p. 671-677.
15. C.M. Chang, et al., Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl Mater Interfaces, 2013. 5(1): p. 135-43.
16. D.V. Ponnuvelu, et al., Rapid synthesis and characterization of hybrid ZnO@Au core–shell nanorods for high performance, low temperature NO 2 gas sensor applications. Applied Surface Science, 2015. 355: p. 726-735.
17. P. Rai, et al., The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sensors and Actuators B: Chemical, 2012. 165(1): p. 133-142.
18. J. Mizsei, et al., Structural studies of sputtered noble metal catalysts on oxide surfaces. Sensors and Actuators B: Chemical, 1998. 47(1): p. 139-144.
19. D.H. Yoon, et al., CO gas sensing properties of ZnO–CuO composite. Sensors and Actuators B: Chemical, 1998. 46(1): p. 15-23.
20. Q. Kuang, et al., Enhancing the Photon- and Gas-Sensing Properties of a Single SnO 2 Nanowire Based Nanodevice by Nanoparticle Surface Functionalization. The Journal of Physical Chemistry C, 2008. 112(30): p. 11539-11544.
21. S. Somacescu, et al., Hydrothermal synthesis of ZnO–Eu2O3 binary oxide with straight strips morphology and sensitivity to NO2 gas. Materials Letters, 2012. 89: p. 219-222.
22. L.-Y. Hong, et al., Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires. Materials Letters, 2016. 185: p. 243-246.
23. H. Tian, et al., NiO/ZnO p–n heterostructures and their gas sensing properties for reduced operating temperature. RSC Advances, 2016. 6(110): p. 109091-109098.
24. S. Deng, et al., Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc, 2012. 134(10): p. 4905-17.
25. C.L. Zhu, et al., Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sensors and Actuators B: Chemical, 2009. 140(1): p. 185-189.
26. Y. Zhang, et al., Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012. 2012: p. 1-22.
27. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 2004. 16(25): p. R829-R858.
28. L. Schmidt-Mende, et al., ZnO – nanostructures, defects, and devices. Materials Today, 2007. 10(5): p. 40-48.
29. C.H. Ahn, et al., A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics, 2009. 105(1): p. 013502.
30. K. Vanheusden, et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Applied Physics Letters, 1996. 68(3): p. 403-405.
31. A.B. Djurišić, et al., Defect emissions in ZnO nanostructures. Nanotechnology, 2007. 18(9): p. 095702.
32. K.H. Tam, et al., Defects in ZnO Nanorods Prepared by a Hydrothermal Method. The Journal of Physical Chemistry B, 2006. 110(42): p. 20865-20871.
33. W.I. Park, et al., Excitonic emissions observed in ZnO single crystal nanorods. Applied Physics Letters, 2003. 82(6): p. 964-966.
34. B. Lin, et al., Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 2001. 79(7): p. 943-945.
35. A. Janotti, et al., Oxygen vacancies in ZnO. Applied Physics Letters, 2005. 87(12): p. 122102.
36. S.-T. Ho, et al., Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires. Chemical Physics Letters, 2008. 463(1-3): p. 141-144.
37. S.-T. Ho, et al., Catalyst-Free Surface-Roughness-Assisted Growth of Large-Scale Vertically Aligned Zinc Oxide Nanowires by Thermal Evaporation. Chemistry of Materials, 2007. 19(16): p. 4083-4086.
38. M.D. Barankin, et al., Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells, 2007. 91(10): p. 924-930.
39. T.M. Barnes, et al., Room temperature chemical vapor deposition of c-axis ZnO. Journal of Crystal Growth, 2005. 274(3-4): p. 412-417.
40. Y. Wu, et al., Direct Observation of Vapor−Liquid−Solid Nanowire Growth. Journal of the American Chemical Society, 2001. 123(13): p. 3165-3166.
41. L. Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey. Journal of Sol-Gel Science and Technology, 2006. 39(1): p. 7-24.
42. M. Guo, et al., Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 2005. 178(6): p. 1864-1873.
43. S. Baruah, et al., Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater, 2009. 10(1): p. 013001.
44. M.W. Ahn, et al., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied Physics Letters, 2008. 93(26): p. 263103.
45. C. Wang, et al., Metal oxide gas sensors: sensitivity and influencing factors. Sensors (Basel), 2010. 10(3): p. 2088-106.
46. L. Liao, et al., Size Dependence of Gas Sensitivity of ZnO Nanorods. The Journal of Physical Chemistry C, 2007. 111(5): p. 1900-1903.
47. N. Barsan, et al., Conduction Model of Metal Oxide Gas Sensors. Vol. 7. 2001. 143-167.
48. R.D. Bhusari, et al. Development of NO2 sensor based on Ti modified ZnO nanowires. in 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). 2017.
49. M. Ivanovskaya, et al., Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors. Sensors and Actuators B: Chemical, 2001. 77(1): p. 264-267.
50. M. Chen, et al., Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing. The Journal of Physical Chemistry C, 2011. 115(26): p. 12763-12773.
51. S.-W. Fan, et al., UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters, 2009. 95(14): p. 142106.
52. C. Soci, et al., ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters, 2007. 7(4): p. 1003-1009.
53. J. Haeng Yu, et al., Electrical and CO gas sensing properties of ZnO–SnO2 composites. Sensors and Actuators B: Chemical, 1998. 52(3): p. 251-256.
54. Y.-H. Chang, et al., Enhanced visible light photocatalysis of cuprous oxide nanoparticle modified zinc oxide nanowires. Materials Letters, 2015. 138: p. 85-88.
55. M. Grätzel, Photoelectrochemical cells. Nature, 2001. 414: p. 338.
56. T. Wang, et al., Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale, 2015. 7(1): p. 77-81.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *