帳號:guest(18.116.40.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖述民
作者(外文):Liao, Shu-Ming
論文名稱(中文):濺鍍氧化鋅鎂窗口層應用於銅銦鎵硒硫太陽能電池之研究
論文名稱(外文):Study of Zinc Magnesium Oxide Window Layer Fabricated by Sputtering for Cu(In,Ga)(S,Se)2 Solar Cell Application
指導教授(中文):賴志煌
指導教授(外文):Lai, Chi-Huang
口試委員(中文):王致喨
謝東坡
口試委員(外文):Wang, Chi-Liang
Hsieh, Dung-Po
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031578
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:46
中文關鍵詞:氧化鋅鎂窗口層銅銦镓硒硫太陽能電池
外文關鍵詞:Zinc magnesium oxideWindow layerCu(In,Ga)(S,Se)2Solar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:979
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
今銅銦鎵硒硫薄膜太陽能電池因其高轉換效率而備受關注,為了更進一步提升元件表現及穩定性,許多團隊使用氧化鋅鎂取代氧化鋅做為高阻值窗口層以增加短波長的載子收集與達到更好的能帶匹配,而最普遍鍍製氧化鋅鎂窗口層的方式以濺鍍與原子層沉積為主。
本碩士論文第一部分討論以不同製程條件單靶濺鍍鍍製氧化鋅鎂窗口層對元件表現的影響。由於我們使用的試片上為硫氧化鋅的緩衝層,相較於傳統的硫化鎘緩衝層較不耐電漿轟擊,我們藉由改動holder位置以增加靶材與基板的距離來降低濺鍍損傷對元件表現的影響
第二部分探討後退火對元件表現與光浸潤行為的影響,發現低溫退火對元件表現無明顯幫助,但因能有效降低Zn(O,S)緩衝層內的Zn(OH)2,能有效提升元件穩定性,降低光浸潤效應對元件表現的影響。
第三部分將探討窗口層與緩衝層的能帶匹配對元件表現的影響,我們透過使用不同成分的Zn(O,S)緩衝層與氧化鋅鎂窗口層做搭配, 藉XPS縱深分析發現當Zn(O,S)緩衝層中的S/(S+O)落在一最佳區間時,搭配我們的氧化鋅鎂窗口層因更好的能帶匹配而能更進一步提升元件轉換效率。最後,我們能在銅銦鎵硒硫薄膜太陽能電池上無須抗反射層便能達到轉換效率達16.97%。
Cu(In,Ga)(S,Se)2 (CIGS)-based thin film solar cells have much drawn more attention than before in solar cell fields recently. In order to enhance its power conversion efficiency and device stability, ZnMgO window layer instead of i-ZnO with Zn-based buffer has been adopted into their processes by many groups in view of short wavelength absorption and favorable band alignment. At the present, the common ways to deposit ZnMgO are sputtering and atomic layer deposition.
In the first part of my master thesis, due to samples with Zn-based buffer less resistant to plasma damage compared to traditional CdS buffer layer, we use the single target to deposit ZnMgO window layer in a soft way like increasing the distance between the gun and the holder.
In the second part of the thesis, we reduce the light soaking behavior on my samples by vacuum annealing. Annealed ones show less device stability due to the reduction of zinc hydroxide in Zn(O,S) buffer layer.
In the third part of the thesis, we discuss about the band alignment between buffer and window layer by depositing ZnMgO window layer on samples with different buffer composition. There is the optimum S/(S+O) ratio in Zn(O,S) verified by XPS depth profile combined with ZnMgO window layer to achieve high conversion efficiency. Finally, we can achieved 16.95% conversion efficiency on Cu(In,Ga)(S,Se)2 solar cell with Zn(O,S) buffer without anti-reflection coating.
第1章、引言 1
第2章、文獻回顧 2
2-1、太陽能電池原理 2
2-1-1、工作原理 2
2-1-2、電壓-電流分析 3
2-2、銅銦鎵硒(CIGS)太陽能電池介紹 4
2-3、高阻值窗口層(Highly Resistive and Transparent Layer,HRT-Layer)介紹 6
2-4、ZnMgO窗口層發展 6
2-5、光浸潤(Light soaking)效應 9
2-5-1、硒銅雙空孔(VSe-VCu)模型 9
2-5-2、Zn(OH)2模型 10
2-5-3、氧硫比模型 10
第 2 章 儀器介紹與實驗流程 12
3-1、儀器介紹 12
3-1-1、製程機台 12
3-1-2、加熱機台 13
3-1-3、量測機台與分析儀器 14
3-2、試片製備與實驗流程 18
第 3 章 、結果與討論 19
4-1、單靶濺鍍Zn0.74Mg0.26O對銅銦鎵硒太陽能電池的影響 19
4-1-1、不同偏心位置對薄膜性質的影響 20
4-1-2、不同偏心位置對元件表現的影響 21
4-2、退火效應及其對光浸潤行為的影響 24
4-2-1、退火對元件表現與光浸潤行為影響 25
4-2-2、XPS成分縱深分析 28
4-3、製作高效率銅銦鎵硒硫(Cu,In,Ga(S,Se)2)太陽能電池的關鍵因素—緩衝層與窗口層的能帶匹配 30
4-3-1、Cu(In,Ga)(S,Se)2吸收層對元件表現之影響 32
4-3-2、Zn(O,S)緩衝層對元件表現之影響 36
4-3-3、以SCAPS 模擬介面能帶匹配 39
第5章、結論 43
參考文獻(Reference) 44
[1] https://en.wikipedia.org/wiki/P%E2%80%93n_junction
[2] http://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-v-characteristic.html
[3] Thomas Feurer,Patrick Reinhard,Enrico Avancini,Benjamin Bissig,Johannes Löckinger,Peter Fuchs,Romain Carron,Thomas Paul Weiss,Julian Perrenoud,Stephan Stutterheim,Stephan Buecheler,Ayodhya N. Tiwari,“Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications,” Prog. Photovolt: Res. Appl. 2017,vol.25,pp.645–667
[4] S. Ishizukaa, K. Sakuraia , A. Yamadaa , K. Matsubaraa , P. Fonsa , K. Iwataa , S. Nakamurab , Y. Kimurab , T. Babab , H. Nakanishib , T. Kojimaa , S. Nikia,
” Fabrication of wide-gap Cu(In1xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness.” Solar Energy Materials & Solar Cells, vol.87,2005,pp 541-548.
[5] Benjamin L. Williams, Valerio Zardetto, Bas Kniknie, Marcel A. Verheijen, Wilhelmus M.M. Kessels , Mariadriana Creatore.
“The competing roles of i-ZnO in Cu(In,Ga)Se2 solar cells.” Solar Energy Materials & Solar Cells, vol.157,2016,pp 798-807.
[6] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma,”MgxZn1-xO as a II–VI widegap semiconductor alloy,”Appl. Phys. Lett. vol.72,1998, pp 2466-2468
[7] Takashi Minemoto, Yasuhiro Hashimoto, Takuya Satoh, Takayuki Negami, Hideyuki Takakura, and Yoshihiro Hamakawa ,“Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers,” Journal of Applied Physics vol 89, 2001,pp 8327-8330
[8] Kong Fai Tai, Rui Kamada, Takeshi Yagioka, Takuya Kato*, and Hiroki Sugimoto ,“From 20.9 to 22.3% Cu(In,Ga)(S,Se)2 solar cell: Reduced recombination rate at the heterojunction and the depletion region due to K-treatment,” Jpn. J. Appl. Phys. Vol.56, 08MC03
[9] Ajay Kaushal, Davinder Kaur”Effect of Mg content on structural, electrical and optical properties of Zn1-xMgxO nanocomposite thin film,”Solar Energy Materials & Solar Cells,vol.93,2009,pp193–198
[10]Wolfram Witte,Romain Carron,Dimitrios Hariskos,Fan Fu,Richard Menner,Stephan Buecheler,”IZO or IOH Window Layers Combined with Zn(O,S) andCdS Buffers for Cu(In,Ga)Se2 Solar Cells,”Phys. Status Solidi A,vol 214,2017,pp1-6
[11] Jakapan Chantana, Takuya Kato, Hiroki Sugimoto and Takashi Minemoto”Thin-film Cu(In,Ga)(Se,S)2-based solar cell with (Cd,Zn)S buffer layer and Zn1-xMgxO window layer,”Prog. Photovolt: Res. Appl.,vol.215,2017,pp431–440
[12] Stephan Lany, and Alex Zunger,” Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex,” Journal of Applied Physics,vol.100,2006,113725
[13] Katsumi Kushiya and Osamu Yamase,” Stabilization of PN Heterojunction between Cu(InGa)Se2 Thin-Film Absorber and ZnO Window with Zn(O, S, OH)x Buffer” Jpn. J. Appl. Phys.,vol.39,2000,pp.2577–2582
[11] T. Kobayashi, H. Yamaguchi and T. Nakada,” Effects of combined heat and light soaking on device
performance of Cu(In,Ga)Se
2
solar cells with ZnS(O,OH)
buffer layer
[11] Taizo Kobayashi
*
, Hiroshi Yamaguchi and Tokio Nakada
Taizo Kobayashi
*
, Hiroshi Yamaguchi and Tokio Nakada
[11] Taizo Kobayashi
*
, Hiroshi Yamaguchi and Tokio Nakada
[14] Taizo Kobayashi,Hiroshi Yamaguchi,Tokio Nakada, “Effects of combined heat and light soaking on device performance of Cu(In,Ga)Se2 solar cells with ZnS(O,OH) buffer layer,”Prog. Photovolt: Res. Appl.vol.22,2014 pp.115– 121
[15] D. Hariskos,y, B. Fuchs, R. Menner, N. Naghavi, C. Hubert, D. Lincot and M. Powalla,” The Zn(S,O,OH)/ZnMgO Buffer in Thin-Film Cu(In,Ga)(Se,S)2-Based
Solar Cells Part II: Magnetron Sputtering of the ZnMgO Buffer Layer for In-Line Co-Evaporated Cu(In,Ga)Se2 Solar Cells,” Prog. Photovolt: Res. Appl.vol.17,2009,pp.479-488
[16] Jakapan Chantana ,Takuya Kato,Hiroki Sugimoto,Takashi Minemoto,” Heterointerface recombination of Cu(In,Ga)(S,Se)2‐based solar cells with different buffer layers,” Prog. Photovolt: Res. Appl.vol.26,2018,pp.127-134
[17] Tokio Nakada and Masayuki Mizutan,” Improved efficiency of Cu(In,Ga)Se2 thin film solar cells with chemically deposited ZnS buffer layers by air-annealing-formation of homojunction by solid phase diffusion,” Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000
[18] Samaneh Sharbati,James R. Sites “Impact of the Band Offset for n-Zn(O,S)/p-Cu(In,Ga)Se2 Solar Cells,” IEEE J. of Photovotaics, vol. 4, no. 2, 2014
[19] Jae-Hyung Wi, Tae Gun Kim, Jeong Won Kim, Woo-Jung Lee, Dae-Hyung Cho, Won Seok Han, Yong-Duck Chung, “Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-
Temperature Annealing,” ACS Appl. Mater. Interfaces 2015, 7, pp.17425−17432
[20] T. Minemoto et al., “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance ofCIS solar cells using device simulation,” Sol. Energy Mater. Sol. Cells, vol. 67, pp. 83–88, 2001
[21] M. Saadat,M. Moradi,M. Zahedifar,“Optimization of Zn(O,S)/(Zn,Mg)O buffer layer in Cu(In,Ga)Se2 based photovoltaic cells,” J Mater Sci: Mater Electron (2016) 27:pp.1130–1133
[22] I. L. Repins,y , B. J. Stanbery , D. L. Young , S. S. Li, W. K. Metzger, C. L. Perkins, W. N. Shafarman, M. E. Beck, L. Chen, V. K. Kapur , D. Tarrant , M. D. Gonzalez , D. G. Jensen1, T. J. Anderson, X. Wang, L. L. Kerr , B. Keyes, S. Asher, A. Delahoy and B. Von Roedern, “Comparison of Device Performance and Measured Transport Parameters in Widely-Varying Cu(In,Ga) (Se,S) Solar Cells” Prog. Photovolt: Res. Appl. 2006; 14:25–43
[23] Giovanna Sozzi , Fabrizio Troni, Roberto Menozzi,” On the combined effects of window/buffer and buffer/absorber conduction-band offsets, buffer thickness and doping on thin-film solar cell performance,” Solar Energy Materials & Solar Cells ,wol.121 ,2014,pp126–136
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *