帳號:guest(18.226.93.114)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林佳慶
作者(外文):Lin, Chia-Ching
論文名稱(中文):以多金屬氧酸鹽負極與鈉鎳錳鐵氧正極 應用於鈉離子電池之研究
論文名稱(外文):Investigation of Na7[H2PV14O42] Anode and KxNa0.67-xNi0.23Mn0.63Fe0.13O2 Cathode for Na-ion Battery Applications
指導教授(中文):陳翰儀
指導教授(外文):Chen, Han-Yi
口試委員(中文):呂承璋
陳馨怡
口試委員(外文):Lu, Cheng-Zhang
Chen, Hsin-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031576
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:鈉離子電池多金屬氧酸鹽層狀結構過渡金屬氧化物負極材料正極材料
外文關鍵詞:Sodium-ion batteriesPolyoxometalatesLayered structure transition metal oxideNegative electrodePositive electrode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:414
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗使用簡易溶液法合成釩基多金屬氧酸鹽(vanadium-based polyoxometalate,Na7[H2PV14O42])並作為鈉離子電池負極材料,其在25 mA g-1的充放電電流密度下可逆電容量達到322 mA h g-1,且經過120圈循環後仍可保有87 %的電容量,顯示此材料作為鈉電池負極材料具有優良電化學性質。為了進一步研究Na7[H2PV14O42]在充放電時的電荷轉移機制,利用X光光電子能譜儀和臨場(in situ)同步輻射X光吸收光譜來進行觀測,可觀察到部分釩的氧化態可還原至V3+。而透過臨場X光繞射分析,可觀察到在循環過程中,Na7[H2PV14O42]的晶格結構逐漸轉為非晶,得知其反應與晶格結構無關。推測其儲存鈉離子機制主要涉及鈉離子嵌入/嵌出陰離子團伴隨著釩的氧化還原反應,和鈉離子吸附/脫附在陰離子團的表面。
本研究第二部分以共沉澱法合成層狀結構鈉鎳錳鐵氧,Na0.67Ni0.23Mn0.63Fe0.13O2,作為鈉離子電池正極材料,並以鉀離子摻雜之K0.02Na0.65Ni0.23Mn0.63Fe0.13O2成功改善其循環壽命,在15 mA g-1的電流密度下,此兩種材料電容量分別可達到130 mA h g-1及150 mA h g-1,在20圈循環後的電容量保持率分別為86%及72%。
本研究第三部分以Na7[H2PV14O42]作為負極,並以K0.02Na0.65[Ni0.23Fe0.13Mn0.63]O2作為正極組成鈉離子全電池,其在15 mA g-1的電流密度、電壓範圍0 V–4 V下擁有150 mA h g-1的電容量,在90圈循環後,電容量保持率為64 %。
In this work, a vanadium-based polyoxometalate, Na7[H2PV14O42]·nH2O (n=6-24) was synthesized through a simple solution process, and proposed as a anode material for sodium ion batteries (NIBs). Na7[H2PV14O42] as anode in NIBs exhibits high reversible capacity of 322 mA h g-1 at 25 mA g-1 with high cycling stability (with capacity retention of 87 % after 120 cycles). To investigate the mechanism of charge storage in Na7[H2PV14O42] during charge/discharge, ex situ XPS and in situ synchrotron X-ray absorption near edge structure studies were implemented. It indicates that partial vanadium atoms were reduced to V3+ during discharge process. The crystal structure changes to amorphous during charge/discharge processes can be observed by in situ synchrotron X-ray diffraction, exhibiting that the reaction is independent of the crystal structure. Therefore, the charge storage mechanism of Na7[H2PV14O42] anodes can be proposed that it mainly involves redox reactions of V accompanied by the insertion/extraction of Na ions between the polyanions and adsorption/desorption of Na ions on the surface of the polyanions.
The synthesis of Na0.67Ni0.23Mn0.63Fe0.13O2 and its potassium ion doping materials as cathode for NIBs was reported. Na0.67Ni0.23Mn0.63Fe0.13O2 exhibits reversible capacity of 130 mA h g-1 at 15 mA g-1 with capacity retention of 72 % after 20 cycles. However, K0.02Na0.65Ni0.23Mn0.63Fe0.13O2 exhibits reversible capacity of 150 mA h g-1 at 15 mA g-1 with capacity retention of 87 % after 20 cycles. It indicates that the potassium ion doping could be a promising strategy to enhance the cycling stability of layered cathode for sodium ion battery.
A Na-ion Full Cell Comprising Na7[H2PV14O42] Anode and K0.02Na0.5Ni0.23Mn0.63Fe0.13O2 Cathode was reported. It exhibits reversible capacity of 150 mA h g-1 at 15 mA g-1 in the range from 0.01 V to 4 V vs. Na/Na+ with capacity retention of 64 % after 90 cycles.
摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xii
表目錄 xv
第1章 研究目的 1
1.1 研究背景 1
1.2 研究動機 3
1.2.1 開發高性能鈉離子電池負極材料 3
1.2.2 開發高性能鈉離子電池正極材料 4
第2章 文獻回顧與原理簡介 6
2.1 鈉離子電池發展 6
2.2 鈉離子電池簡介 7
2.3 鈉離子電池電極材料 10
2.3.1 鈉離子電池負極材料 10
2.3.2 鈉離子電池正極材料 14
第3章 實驗方法 18
3.1 實驗架構 18
3.2 實驗藥品 19
3.3 活性物質(Active material)合成 20
3.3.1 合成Na7[H2PV14O42]·nH2O (n=6-24) 20
3.3.2 合成KxNa0.67-x[Ni0.23Fe0.13Mn0.63]O2 (x = 0, 2) 20
3.4 電池組裝流程 21
3.4.1 極片製備 21
3.4.2 鈕扣電池組裝 22
3.5 材料特性量測方法 23
3.5.1 X光繞射儀 (X-ray Diffraction, XRD)[87] 23
3.5.2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM)[88] 23
3.5.3 熱重分析 (Thermogravimetric Analysis, TGA) 24
3.5.4 傅立葉轉換紅外光譜儀 (Fourier-transform Infrared Spectroscopy, FTIR)[89] 24
3.5.5 核磁共振光譜法 (Nuclear Magnetic Resonance Spectroscopy, NMR)[90] 25
3.5.6 感應耦合電漿質譜法(Inductively Coupled Plasma Mass Spectrometry, ICP-MS)[91] 25
3.5.7 循環伏安法測試 (Cyclic Voltammetry, CV) 25
3.5.8 恆電流充放電測試 (Galvanostatic Charge/Discharge Test, GCD) 26
3.5.9 X射線光電子能譜 (X-ray photoelectron spectrometer, XPS)[92] 26
3.5.10 X射線吸收光譜 (X-ray absorption spectroscopy, XAS)[93, 94] 27
3.5.11 臨場X光繞射儀 (In situ X-ray Diffraction) 28
第4章 結果與討論 30
4.1 Na7[H2PV14O42]作為鈉離子電池負極儲存鈉離子機制之研究 30
4.1.1 材料分析與鑑定 30
4.1.1.1 X射線繞射分析 31
4.1.1.2 場發射掃描式電子顯微鏡分析 32
4.1.1.3 熱重分析 33
4.1.1.4 紅外光譜分析 33
4.1.1.5 核磁共振光譜法分析 34
4.1.2 電化學性質分析 35
4.1.2.1 循環伏安法測試分析 35
4.1.2.2 恆電流充放電測試分析 36
4.1.2.3 不同掃描速率下之循環伏安法測試及分析 38
4.1.2.4 X射線光電子能譜分析 40
4.1.2.5 X射線吸收光譜分析 42
4.1.2.6 非臨場X射線繞射分析 45
4.1.2.7 臨場X射線繞射分析 46
4.1.2.8 非臨場傅立葉轉換紅外光譜分析 47
4.1.2.9 橫截面場發射掃描式電子顯微鏡分析 49
4.2 鉀摻雜對Na0.67[Ni0.23Fe0.13Mn0.63]O2電化學性質影響之研究 50
4.2.1 材料分析與鑑定 50
4.2.1.1 X射線繞射分析 50
4.2.1.2 場發射掃描式電子顯微鏡分析 52
4.2.2 電化學性質分析 53
4.2.2.1 恆電流充放電測試分析 53
4.3 以金屬氧酸鹽負極與鈉鎳錳鐵氧正極應用於鈉離子全電池之研究 55
4.3.1 恆電流充放電測試分析 55
第5章 結論 57
第6章 未來展望 59
參考文獻 60
本研究相關之發表 68

1. Ibrahim, H., A. Ilinca, and J. Perron, Energy storage systems—Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 2008. 12(5): p. 1221-1250.
2. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
3. Bommier, C. and X. Ji, Recent Development on Anodes for Na-Ion Batteries. Israel Journal of Chemistry, 2015. 55(5): p. 486-507.
4. Deng, J., et al., Sodium‐Ion Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 2018. 8(4): p. 1701428.
5. Yabuuchi, N., et al., Research Development on Sodium-Ion Batteries. Chemical Reviews, 2014. 114(23): p. 11636-11682.
6. Wang, L.P., et al., Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015. 3(18): p. 9353-9378.
7. Cao, Y., et al., Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters, 2012. 12(7): p. 3783-3787.
8. Nobuhara, K., et al., First-principles study of alkali metal-graphite intercalation compounds. Journal of Power Sources, 2013. 243: p. 585-587.
9. Du, D.-Y., et al., Chiral polyoxometalate-based materials: From design syntheses to functional applications. Coordination Chemistry Reviews, 2013. 257(3): p. 702-717.
10. Katsoulis, D.E., A Survey of Applications of Polyoxometalates. Chemical Reviews, 1998. 98(1): p. 30.
11. Kawasaki, N., et al., Nanohybridization of Polyoxometalate Clusters and Single-Wall Carbon Nanotubes: Applications in Molecular Cluster Batteries. Angewandte Chemie International Edition, 2011. 50(15): p. 3471-3474.
12. Sonoyama, N., et al., Lithium intercalation reaction into the Keggin type polyoxomolybdates. Journal of Power Sources, 2011. 196(16): p. 6822-6827.
13. Uematsu, S., et al., Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. Journal of Power Sources, 2012. 217(Supplement C): p. 13-20.
14. Ma, D., et al., Covalently Tethered Polyoxometalate–Pyrene Hybrids for Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes as High-Performance Anode Material. Advanced Functional Materials, 2013. 23(48): p. 6100-6105.
15. Chen, W., et al., Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. Physical Chemistry Chemical Physics, 2014. 16(36): p. 19668-19673.
16. Nasim Khan, R.N., et al., Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. RSC Advances, 2014. 4(15): p. 7374-7379.
17. Huang, L., et al., Pyrene-Anderson-Modified CNTs as Anode Materials for Lithium-Ion Batteries. Chemistry – A European Journal, 2015. 21(51): p. 18799-18804.
18. Ji, Y., et al., Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy & Environmental Science, 2015. 8(3): p. 776-789.
19. Yue, Y., et al., A POM-organic framework anode for Li-ion battery. Journal of Materials Chemistry A, 2015. 3(45): p. 22989-22995.
20. Xie, J., et al., High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano, 2016. 10(5): p. 5304-5313.
21. Huang, Q., et al., A highly stable polyoxometalate-based metal-organic framework with [small pi]-[small pi] stacking for enhancing lithium ion battery performance. Journal of Materials Chemistry A, 2017. 5(18): p. 8477-8483.
22. Hu, J., et al., Dawson-Type Polyoxomolybdate Anions (P2Mo18O626−) Captured by Ionic Liquid on Graphene Oxide as High-Capacity Anode Material for Lithium-Ion Batteries. Chemistry – A European Journal, 2017. 23(36): p. 8729-8735.
23. Zhu, Y., et al., Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries. Accounts of Chemical Research, 2017. 50(4): p. 1022-1031.
24. Li, M., et al., Self-organization towards complex multi-fold meso-helices in the structures of Wells-Dawson polyoxometalate-based hybrid materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017. 5(7): p. 3371-3376.
25. Yang, X.-Y., et al., Polyoxometalate-Incorporated Metallapillararene/Metallacalixarene Metal-Organic Frameworks as Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2017. 56(14): p. 8311-8318.
26. Wei, T., et al., POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017. 34: p. 205-214.
27. Hu, J., F. Jia, and Y.-F. Song, Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chemical Engineering Journal, 2017. 326(Supplement C): p. 273-280.
28. Shen, F.-C., et al., Self-assembly of polyoxometalate/reduced graphene oxide composites induced by ionic liquids as a high-rate cathode for batteries: "killing two birds with one stone". Journal of Materials Chemistry A, 2018. 6(4): p. 1743-1750.
29. Wang, G., et al., High‐Performance Supercapacitor Afforded by a High‐Connected Keggin‐Based 3D Coordination Polymer. European Journal of Inorganic Chemistry, 2017. 2017(45): p. 5350-5355.
30. Li, R., et al., Polyoxometalate-enabled photoreduction of graphene oxide to bioinspired nacre-like composite films for supercapacitor electrodes. Composites Part B: Engineering, 2017. 121: p. 75-82.
31. Dubal, D.P., et al., Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes. ChemSusChem, 2017. 10(13): p. 2742-2750.
32. Genovese, M. and K. Lian, Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes. Journal of Materials Chemistry A, 2017. 5(8): p. 3939-3947.
33. Ni, E., et al., Improved electrochemical property of nanoparticle polyoxovanadate K7NiV13O38 as cathode material for lithium battery. Journal of Nanoparticle Research, 2013. 15(6): p. 1732.
34. Masthead: (Adv. Energy Mater. 8/2018). Advanced Energy Materials, 2018. 8(8): p. 1870035.
35. Liu, J., et al., “Electron/Ion Sponge”-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017. 11(7): p. 6911-6920.
36. Hartung, S., et al., Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. Journal of Power Sources, 2015. 288: p. 270-277.
37. Delmas, C., et al., Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics, 1981. 3-4: p. 165-169.
38. Huang, F.T., et al., X-ray and electron diffraction studies of superlattices and long-range three-dimensional Na ordering in $\ensuremath{\gamma}{\text{-Na}}_{x}{\text{CoO}}_{2}$ ($x=0.71$ and 0.84). Physical Review B, 2009. 79(1): p. 014413.
39. Hasa, I., et al., High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries. Advanced Energy Materials, 2014. 4(15): p. 1400083-n/a.
40. Wang, K., et al., P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries. Electrochimica Acta, 2016. 216: p. 51-57.
41. Li, Q., et al., K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: A Novel Cathode Material with an Enhanced Cycling Stability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014. 6(13): p. 10330-10341.
42. Liu, Z., et al., The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12 as anode material for lithium ion battery. Solid State Sciences, 2015. 44: p. 39-44.
43. Abraham, K.M., Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics, 1982. 7(3): p. 199-212.
44. Ge, P. and M. Fouletier, Electrochemical intercalation of sodium in graphite. Solid State Ionics, 1988. 28-30: p. 1172-1175.
45. Stevens, D.A. and J.R. Dahn, High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries. Journal of The Electrochemical Society, 2000. 147(4): p. 1271-1273.
46. Lu, Z. and J.R. Dahn, Intercalation of Water in P2, T2 and O2 Structure Az[CoxNi1/3-xMn2/3]O2. Chemistry of Materials, 2001. 13(4): p. 1252-1257.
47. Delmas, C., Sodium and Sodium‐Ion Batteries: 50 Years of Research. Advanced Energy Materials. 0(0): p. 1703137.
48. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist's perspective. Chem. Soc. Rev., 2009. 38(9): p. 2565-2575.
49. Kim, H., et al., Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems. Advanced Functional Materials, 2015. 25(4): p. 534-541.
50. Luo, W., et al., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2013. 1(36): p. 10662-10666.
51. Okamoto, H., Desk Handbook of Phase Diagrams for Binary Alloys. ASM International, 2000.
52. Xu, Y., et al., Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chemical Communications, 2013. 49(79): p. 8973-8975.
53. Lee, J.-W., et al., Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction. Nanoscale Research Letters, 2016. 11(1): p. 45.
54. Shaohong, L., et al., Ultrafine Fe3O4 Quantum Dots on Hybrid Carbon Nanosheets for Long-Life, High-Rate Alkali-Metal Storage. ChemElectroChem, 2016. 3(1): p. 38-44.
55. Farbod, B., et al., Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys. ACS Nano, 2014. 8(5): p. 4415-4429.
56. Schwegler, M.A., et al., Activated carbon as a support for heteropolyanion catalysis. Applied Catalysis a-General, 1992. 80(1): p. 41-57.
57. Yamada, A. and J.B. Goodenough, Keggin-type heteropolyacids as electrode materials for electrochemical supercapacitors. Journal of the Electrochemical Society, 1998. 145(3): p. 737-743.
58. Park, S., K. Lian, and Y. Gogotsi, Pseudocapacitive Behavior of Carbon Nanoparticles Modified by Phosphomolybdic Acid. Journal of the Electrochemical Society, 2009. 156(11): p. A921-A926.
59. Kawasaki, N., et al., Nanohybridization of Polyoxometalate Clusters and Single-Wall Carbon Nanotubes: Applications in Molecular Cluster Batteries. Angewandte Chemie-International Edition, 2011. 50(15): p. 3471-3474.
60. Hartung, S., et al., Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. Journal of Power Sources, 2015. 288: p. 270-277.
61. Delmas, C., C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+C, 1980. 99(1): p. 81-85.
62. Delmas, C., et al., Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics, 1981. 3: p. 165-169.
63. Braconnier, J.J., C. Delmas, and P. Hagenmuller, Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2. Materials Research Bulletin, 1982. 17(8): p. 993-1000.
64. Miyazaki, S., S. Kikkawa, and M. Koizumi, Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M = Cr, Co) and NaM′O2 (M′ Cr, Fe, Co, Ni). Synth. Met., 1983. 6: p. 211-217.
65. Maazaz, A., C. Delmas, and P. Hagenmuller, A study of the Na x TiO2 system by electrochemical deintercalation. Journal of inclusion phenomena, 1983. 1(1): p. 45-51.
66. Kikkawa, S., S. Miyazaki, and M. Koizumi, Sodium deintercalation from α-NaFeO2. Materials Research Bulletin, 1985. 20(4): p. 373-377.
67. Mendiboure, A., C. Delmas, and P. Hagenmuller, Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J. Solid State Chem., 1985. 57(3): p. 323-331.
68. Molenda, J., A. Stokłosa, and D. Than, Relation between ionic and electronic defects of Na0.7MnO2 bronze and its electrochemical properties. Solid State Ionics, 1987. 24(1): p. 33-38.
69. Shacklette, L.W., T.R. Jow, and L. Townsend, Rechargeable Electrodes from Sodium Cobalt Bronzes. Journal of The Electrochemical Society, 1988. 135(11): p. 2669-2674.
70. Xia, X. and J.R. Dahn, NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes. Electrochem. Solid-State Lett., 2011. 15(1): p. A1-A4.
71. Ma, X., H. Chen, and G. Ceder, Electrochemical Properties of Monoclinic NaMnO2. Journal of The Electrochemical Society, 2011. 158(12): p. A1307-A1312.
72. Hwang, J.-Y., S.-T. Myung, and Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev., 2017. 46(12): p. 3529-3614.
73. Vassilaras, P., et al., Electrochemical Properties of Monoclinic NaNiO2. Journal of The Electrochemical Society, 2013. 160(2): p. A207-A211.
74. Zhao, J., et al., Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries. Journal of The Electrochemical Society, 2013. 160(5): p. A3077-A3081.
75. Komaba, S., et al., Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Transactions, 2009. 16(42): p. 43-55.
76. Yu, H., et al., Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chemical Communications, 2014. 50(4): p. 457-459.
77. Hwang, J.-Y., et al., Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. Journal of Power Sources, 2016. 324: p. 106-112.
78. Yoshida, H., N. Yabuuchi, and S. Komaba, NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochemistry Communications, 2013. 34: p. 60-63.
79. Li, X., et al., O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries. Electrochemistry Communications, 2014. 49: p. 51-54.
80. Yabuuchi, N., et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials, 2012. 11: p. 512.
81. Yuan, D., et al., P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery. Electrochimica Acta, 2014. 116: p. 300-305.
82. Xingguo, Q., et al., Sodium-Deficient O3-Na0.9[Ni0.4Mn xTi0.6−x]O2 Layered-Oxide Cathode Materials for Sodium-Ion Batteries. Particle & Particle Systems Characterization, 2016. 33(8): p. 538-544.
83. Wang, H., et al., An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries. Journal of Power Sources, 2016. 327: p. 653-657.
84. Han, M.H., et al., High-Performance P2-Phase Na2/3Mn0.8Fe0.1Ti0.1O2 Cathode Material for Ambient-Temperature Sodium-Ion Batteries. Chemistry of Materials, 2016. 28(1): p. 106-116.
85. Yue, J.-L., et al., A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries. Chemical Communications, 2015. 51(86): p. 15712-15715.
86. Nomiya, K., K. Kato, and M. Miwa, Preparation and spectrochemical properties of soluble vanadophosphate polyanions with bicapped-Keggin structure. Polyhedron, 1986. 5(3): p. 811-813.
87. XRD. http://www.excellence.fju.edu.tw/plan/2.1.1.c/content05/html/41.htm.
88. SEM. https://en.wikipedia.org/wiki/Scanning_electron_microscope.
89. FTIR. https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy.
90. NMR. http://www.excellence.fju.edu.tw/plan/2.1.1.c/content05/html/50.htm.
91. ICP-MS. https://en.wikipedia.org/wiki/Inductively_coupled_plasma_mass_spectrometry.
92. XPS. https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy.
93. Hu, C.-W., et al., Real-time investigation on the influences of vanadium additives to the structural and chemical state evolutions of LiFePO4 for enhancing the electrochemical performance of lithium-ion battery. Journal of Power Sources, 2014. 270: p. 449-456.
94. Yadav, A.K., et al., Local structure studies of Ni doped ZnO/PVDF composite free-standing flexible thin films using XPS and EXAFS studies. Journal of Polymer Research, 2016. 23(12): p. 265.
95. Kato, R., A. Kobayashi, and Y. Sasaki, The heteropolyvanadate of phosphorus. Crystallographic and NMR studies. Inorganic Chemistry, 1982. 21(1): p. 240-246.
96. Domaille, P.J., The 1- and 2-dimensional tungsten-183 and vanadium-51 NMR characterization of isopolymetalates and heteropolymetalates. Journal of the American Chemical Society, 1984. 106(25): p. 7677-7687.
97. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials, 2018. 4(1): p. 15.
98. Liu, T.C., et al., Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors: Comparison with Ruthenium Oxide. Journal of The Electrochemical Society, 1998. 145(6): p. 1882-1888.
99. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614.
100. Wang, H.-Y., et al., Modulation of Crystal Surface and Lattice by Doping: Achieving Ultrafast Metal-Ion Insertion in Anatase TiO2. ACS Applied Materials & Interfaces, 2016. 8(42): p. 29186-29193.
101. Kasperkiewicz, J., J.A. Kovacich, and D. Lichtman, XPS studies of vanadium and vanadium oxides. Journal of Electron Spectroscopy and Related Phenomena, 1983. 32(2): p. 123-132.
102. Slink, W.E. and P.B. DeGroot, Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid. Journal of Catalysis, 1981. 68(2): p. 423-432.
103. Colton, R.J., A.M. Guzman, and J.W. Rabalais, Electrochromism in some thin‐film transition‐metal oxides characterized by x‐ray electron spectroscopy. Journal of Applied Physics, 1978. 49(1): p. 409-416.
104. Silversmit, G., et al., Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004. 135(2): p. 167-175.
105. McNulty, D., D.N. Buckley, and C. O'Dwyer, Optimizing the structure and yield of vanadium oxide nanotubes by periodic 2D layer scrolling. RSC Advances, 2016. 6(47): p. 40932-40944.
106. Lim, H., et al., High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-MWCNT core-shell nanowires and Na0.44MnO2 nanorods. Appl. Surf. Sci., 2018. 446: p. 131-138.
107. Yu, D.Y.W., et al., High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun, 2013. 4.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *