帳號:guest(3.138.36.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李明曜
作者(外文):Li, Ming-Yao
論文名稱(中文):多壁奈米碳管膜/[多壁奈米碳管+釹鐵硼磁鐵/環氧樹脂]多層複合材料之製備及其電磁波屏蔽性質分析
論文名稱(外文):Investigation on the Electromagnetic Interference Shielding Effectiveness of MWCNT Film/ [MWCNTs + NdFeB/ Epoxy]Hybrid Layered Nanocomposites
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):嚴大任
黃繼遠
口試委員(外文):Yen, Ta-Jen
Huang, Chi-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031574
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:79
中文關鍵詞:電磁波電磁波屏蔽奈米碳管環氧樹脂複合材料
外文關鍵詞:EMISEMWCNTEpoxyComposite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:240
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究開發了一個具有獨特層狀結構的電磁波屏蔽材料,此特別的結構可以吸收電子元件內部其自身所產生的電磁波,以及阻絕外部電磁波的干擾。這個結構由兩層複合材組成,內層為含有多壁奈米碳管以及釹鐵硼磁鐵(NdFeB magnet)之環氧樹脂複合材,此層的作用為電磁波吸收層;外層則是由多壁奈米碳管塗布於不織布之複合膜,此層的作用為電磁波的反射層。當內部所產生的電磁波雜訊接觸到內層環氧樹脂複合材吸收層時,電磁波能量會被做初次的吸收,接著當電磁波進一步接觸到外層多壁碳管膜反射層時,由於多壁碳管膜的高導電性,此時電磁波會幾乎被反射,將再次經過環氧樹脂複合材做二次的吸收。當外來電磁波雜訊接觸到試片時,外部的反射層將直接予以反射。
此層狀的結構設計確保了電子元件不被外部的電磁波所干擾,同時,有確保此元件不會被本身所產生的電磁波雜訊干擾。此多壁奈米碳管膜/環氧樹脂複合材相當薄,厚度約1 mm,且製程簡單,因環氧樹脂及奈米碳管複合材具有一定的機械強度,因此可以直接作為被屏蔽元件的外殼。
This work develops a unique layered structural composite to prevent the device from internal electromagnetic (EM) waves’ self-disturbance and external EM wave interference. The composite is composed of two layers, the inner layer is a hybrid composite, using MWCNTs and NdFeB powders as fillers and epoxy as matrix, which is designed as absorbent layer, and the outer is MWCNT-coated non-woven fabric, which is treated as reflection layer. The inner layer containing MWCNTs and magnetic powder of NdFeB can firstly absorb parts of EM waves generating from inside devices, and when the rest EM waves transmit through the inner layer and impinge to the outer layer, almost all of the waves will be reflected back. The reflected waves will go through the inner layer and be absorbed again. In the meanwhile, as the external EM waves impinge to the outer layer, they will be reflected immediately. The optimal combination of this study is able to achieve over 92% absorption and leave least than 8% reflection of internal EM waves, and over 99.99% reflection of external EM waves.
摘要 I
Abstract II
致謝 III
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 5
2.1 電磁波干擾理論 5
2.2 電磁波屏蔽機制 7
2.2.1反射機制 10
2.2.2吸收機制 11
2.2.3多重反射機制 11
2.3 以吸收機制為主之屏蔽材料 12
2.3.1 介電損耗型 12
2.3.2 電阻損耗型 14
2.3.3 磁損耗型 15
2.3.4 干涉損耗型 15
2.4 奈米碳管簡介 16
2.4.1 奈米碳管結構 17
2.4.2 奈米碳管電性 18
2.5 釹鐵硼磁鐵簡介 19
第三章 實驗分析及方法 32
3.1 製程設備與材料分析儀器 32
3.1.1 超聲波震盪機 32
3.1.2 四方刮刀 32
3.1.3 三軸滾輪機 33
3.1.4 熱壓機 33
3.1.5 場發射掃描式電子顯微鏡 33
3.1.6 X光繞射分析儀 34
3.1.7 拉曼光譜儀 35
3.1.8 超導量子干涉儀 35
3.1.9 四點探針 36
3.1.10 向量網路分析儀 37
3.2 實驗步驟及方法 38
3.2.1 藥品準備 38
3.2.2 多壁奈米碳管膜之塗布 38
3.2.3 釹鐵硼磁粉/ 多壁奈米碳管/ 環氧樹脂複合物之混合 39
3.2.4 熱壓疊合試片之製備 39
第四章 結果與討論 45
4.1 材料分析 45
4.1.1 場發射掃描式電子顯微鏡之形貌觀察 45
4.1.2 拉曼光譜儀分析 46
4.1.3 磁性質分析 48
4.1.4 X光繞射光譜分析 49
4.2 片電阻分析 50
4.3 電磁波屏蔽效率分析 51
4.3.1 介電係數以及磁導率量測 51
4.3.2 電磁波屏蔽效率量測及分析 53
第五章 結論 70
參考文獻 71

1. 劉順華, 劉軍民以及董星龍, 電磁波遮罩及吸波材料. 2006: 北京化學工業出版社.
2. Saha, H.N., A. Mandal, and A. Sinha, Recent Trends in the Internet of Things, in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). 2017, IEEE: Las Vegas, USA.
3. 李奐松, 電子相容性測試. 電子月刊, 1999. 5(8): p. 77-86.
4. 郭怡廷, 以石墨烯製備可撓式透明導電膜及探討其電磁波屏蔽性質, 材料科學與工程學系. 2015, 國立清華大學.
5. Paul, C.R., Introduction to Electromagnetic Compatibility. 1992: John Wiley & Sons Inc.
6. Cheng, D.K., Field and wave electromagnetics. 1989.
7. Vinoy, K.J. and R.M. Jha, Radar absorbing materials: From Theory to Design and Characterization. 1996: Springer US.
8. Kaiser, K.L., Electromagnetic Shielding. 2005: CRC Pr I Llc.
9. Chen, Y., et al., Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Composites Science and Technology, 2013. 80: p. 80-86.
10. Chen, T., et al., Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. Journal of Materials Chemistry, 2012. 22(30): p. 15190.
11. Che, R.C., et al., Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes. Advanced Materials, 2004. 16(5): p. 401-405.
12. Wang, C., et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Applied Physics Letters, 2011. 98(7): p. 072906.
13. Song, W.-L., et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon, 2014. 66: p. 67-76.
14. Ott, H.W., Electromagnetic Compatibility Engineering. 2009: John Wiley & Sons, Inc.
15. 陳亞群, 多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究, 材料科學工程學系. 2007, 國立清華大學.
16. Al-Saleh, M.H. and U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 2009. 47(7): p. 1738-1746.
17. White, D., A Handbook on Electromagnetic Shielding Materials and Performance. 1980: Consultants, Inc.
18. Chen, L.F., et al., Microwave Electronics: Measurement and Materials Characterization. 2005: John Wiley & Sons, Ltd.
19. Liu, H.-T., et al., Microwave Absorption Properties of Polyester Composites Incorporated with Heterostructure Nanofillers with Carbon Nanotubes as Carriers. Chinese Physics Letters, 2015. 32(4): p. 044102.
20. William D. Callister, J., Materials Science and Engineering: An Introduction. 1985: John Wiley & Sons, Inc.
21. Agarwal, P.R., et al., Three-dimensional and highly ordered porous carbon–MnO2 composite foam for excellent electromagnetic interference shielding efficiency. RSC Advances, 2016. 6(103): p. 100713-100722.
22. Zhang, H., et al., Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz. Journal of Applied Physics, 2009. 105(5): p. 054314.
23. Yuchang, Q., et al., Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. Journal of Materials Chemistry C, 2016. 4(2): p. 371-375.
24. Hao, X., et al., Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4–PyC Composite Ceramics. Journal of Materials Science & Technology, 2013. 29(3): p. 249-254.
25. Tellakula, R.A., et al., Carbon fiber and nanotube based composites with polypyrrole fabric as electromagnetic absorbers. Smart Materials and Structures, 2004. 13(5): p. 1040-1044.
26. Hayashida, K. and Y. Matsuoka, Electromagnetic interference shielding properties of polymer-grafted carbon nanotube composites with high electrical resistance. Carbon, 2015. 85: p. 363-371.
27. Fan, Z., et al., Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering: B, 2006. 132(1-2): p. 85-89.
28. Kim, H.M., et al., Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Applied Physics Letters, 2004. 84(4): p. 589-591.
29. Huang, C.Y. and C.C. Wu, The EMI shielding e€ectiveness of PC/ABS/nickel-coatedcarbon-composites. European Polymer Journal, 2000. 36: p. 2729-2737.
30. Yim, Y.-J., K.Y. Rhee, and S.-J. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Composites Part B: Engineering, 2016. 98: p. 120-125.
31. Verma, M., et al., Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys Chem Chem Phys, 2015. 17(3): p. 1610-8.
32. Wang, Y., et al., Preparation and electromagnetic properties of Polyaniline(polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposites. Applied Surface Science, 2012. 259: p. 486-493.
33. Wang, B., et al., Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. Journal of Magnetism and Magnetic Materials, 2011. 323(8): p. 1101-1103.
34. Tong, G., et al., Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18GHz ranges. Journal of Alloys and Compounds, 2011. 509(2): p. 451-456.
35. 吳志勇, 羰基鐵粉之吸波特性研究, 國防大學理工學院. 2012, 國防大學.
36. Kroto, H.W., et al., C60: Buckminsterfullerene. Nature, 1985. 318(162).
37. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(56).
38. Thess, A., et al., Crystalline ropes of metallic carbon nanotubes. Science, 1996. 273(5274): p. 483-487.
39. Hone, J., et al., Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics A: Materials Science & Processing, 2002. 74(3): p. 339-343.
40. Heer, W.A.d., Nanotubes and the Pursuit of Applications. MRS Bulletin, 2004. 29: p. 281-285.
41. Nikolaev, P., et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters 1999. 313(1-2): p. 91-97.
42. Jou, W.S., H.Z. Cheng, and C.F. Hsu, A Carbon Nanotube Polymer-Based Composite with High Electromagnetic Shielding. Journal of Electronic Materials, 2006. 35(3): p. 462–470.
43. Baughman, R.H., A.A. Zakhidov, and W.A.d. Heer, Carbon nanotubes-the route toward applications. Science, 2002. 297: p. 787-792.
44. Pirio, G., Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode. Nanotechnology, 2002. 13(1).
45. 謝立宜以及盧成基, 超微細單壁奈米碳管, 工業材料雜誌. 2002. 頁124-127.
46. Ebbesen, T.W., H.J. Lezec, and H. Hiura, Electrical conductivity of individual carbon nanotubes. Nature, 1996. 382: p. 54-56.
47. Odom, T.W., et al., Structure and Electronic Properties of Carbon Nanotubes. journal of Physical Chemistry B, 2000. 104: p. 2794-2809.
48. 韋進全, 張先鋒以及王坤林, 奈米碳管巨觀體:物理化學特性與應用. 2009.
49. Dresselhaus, M.S., G. Dresselhaus, and P. Avouris, Carbon Nanotubes-Synthesis, Structure, Properties, and Applications. 2001: Springer.
50. Saito, R., et al., Electronic structure of chiral graphene tubules. Applied Physics Letters, 1992. 60(18): p. 2204-2206.
51. Saito, R., G. Dresselhaus, and M.S. Dresselhaus, Physical properties of carbon nanotubes. 1998: World scientific.
52. Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. 1996: Academic press.
53. Jun, L., L. Ying, and M. Yilong, Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/α-Fe nanocomposites. Journal of Magnetism and Magnetic Materials, 2012. 324(14): p. 2292-2297.
54. Mishra, R.K., T.Y. Chu, and L.K. Rabenberg, The development of the microstructure of die-upset Nd-Fe-B magnets. Journal of Magnetism and Magnetic Materials, 1990. 84(1-2): p. 88-94.
55. Lin, P.H., et al., Microwave Absorbing Properties of NdFeB. Journal of the Chinese Rare-Earth Society, 2010. 28(5): p. 639-642.
56. 康青, 新型微波吸收材料. 2006: 科学出版社.
57. Dresselhaus, M.S., G. Dresselhaus, and A. Jorio, Unusual Properties and Structure of Carbon Nanotubes. Annual Review of Materials Research, 2004. 34(1): p. 247-278.
58. Herbst, J.F., R2Fe14B materials: Intrinsic properties and technological aspects. Reviews of Modern Physics, 1991. 63(4): p. 819-898.
59. Thostenson, E.T. and T.-W. Chou, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon, 2006. 44(14): p. 3022-3029.
60. Schroder, D.K., Semiconductor Material and Device Characterization, 3rd Edition. 2015: Wiley.
61. Baker-Jarvis, J., Transmission/reflection and short-circuit line permittivity measurements. 1990: National Institute of Standards and Technology (U.S.).
62. Dunsmore, J.P., Handbook of Microwave Component Measurements: With Advanced VNA Techniques. 2012: John Wiley & Sons, Ltd.
63. Rao, A.M., et al., Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science, 1997. 275(5297): p. 187-191.
64. Dresselhaus, M.S., A. Jorio, and R. Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annual Review of Condensed Matter Physics, 2010. 1(1): p. 89-108.
65. Zhang, F.-m., J. Chang, and B. Eberhard, Dissolution of poly(vinyl alcohol)-modified carbon nanotubes in a buffer solution. New Carbon Materials, 2010. 25(4): p. 241-247.
66. Chen, C., et al., Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water. Applied Physics Letters, 2010. 96(13): p. 131504.
67. Fang, J., et al., A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale, 2016. 8(16): p. 8899-909.
68. Zhang, N., Y. Huang, and M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe 3 O 4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Composites Part B: Engineering, 2018. 136: p. 135-142.
69. Nunesa, R.A.X., et al., Wear, Friction, and Microhardness of a Thermal Sprayed PET - Poly (Ethylene Terephthalate) Coating. Materials Research, 2009. 12(2): p. 121-125.
70. Xu, J., et al., Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. J Hazard Mater, 2012. 225-226: p. 36-45.
71. Wei, H., et al., Synthesis of Ferromagnetic Nd2Fe14B Nanocrystalline via Solvothermal Decomposition and Reduction–Diffusion Calcination. IEEE Transactions on Magnetics, 2015. 51(11): p. 1-4.
72. Xu, H., X.L. Hu, and L.Z. Zhang, Generalized Low-Temperature Synthesis of Nanocrystalline Rare-Earth Orthoferrites LnFeO3 (Ln ) La, Pr, Nd, Sm, Eu, Gd). Crystal Growth & Design, 2008. 8(7): p. 2061–2065.
73. Mir, S.A., M. Ikram, and K. Asokan, Structural, optical and dielectric properties of Ni substituted NdFeO3. Optik - International Journal for Light and Electron Optics, 2014. 125(23): p. 6903-6908.
74. Rhim, S.M., et al., Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics. Journal of the American Ceramic Society, 2000. 83(5): p. 1145-1148.
75. Winey, K.I., T. Kashiwagi, and M. Mu, Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers. MRS Bulletin, 2011. 32(04): p. 348-353.
76. Kymakis, E. and G.A.J. Amaratunga, Electrical properties of single-wall carbon nanotube-polymer composite films. Journal of Applied Physics, 2006. 99(8): p. 084302.
77. Ramasubramaniam, R., J. Chen, and H. Liu, Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 2003. 83(14): p. 2928-2930.
78. Durmus, Z., A. Durmus, and H. Kavas, Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. Journal of Materials Science, 2014. 50(3): p. 1201-1213.
79. Verma, V.K., J. Kapil, and N. Singh, Structural, Magnetic Properties of Soft and Hard Ferrites and their EMI Shielding Application in X-Band Frequency Range. International Journal of Engineering Research & Technology, 2014. 3(12).
80. ASTM, Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials.
81. Choi, Y.-J., et al., Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition. Applied Surface Science, 2013. 269: p. 92-97.
82. Huang, Y., et al., The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon, 2007. 45(8): p. 1614-1621.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *