|
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669. 2. Desai, S.B., et al., MoS2 transistors with 1-nanometer gate lengths. Science, 2016. 354(6308): p. 99-102. 3. Mak, K.F., et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13). 4. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150. 5. Tan, C.L. and H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015. 44(9): p. 2713-2731. 6. Zhao, W.J., et al., Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. Acs Nano, 2013. 7(1): p. 791-797. 7. Ataca, C., H. Sahin, and S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999. 8. Zeng, H.L., et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific Reports, 2013. 3: p. 5. 9. Kosmider, K. and J. Fernandez-Rossier, Electronic properties of the MoS2-WS2 heterojunction. Physical Review B, 2013. 87(7): p. 4. 10. Britnell, L., et al., Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science, 2013. 340(6138): p. 1311-1314. 11. Fang, H., et al., High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Letters, 2012. 12(7): p. 3788-3792. 12. Gutierrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454. 13. Huang, J.K., et al., Large-Area Synthesis of Highly Crystalline WSe2 Mono layers and Device Applications. Acs Nano, 2014. 8(1): p. 923-930. 14. Sasaki, S., et al., Growth and optical properties of Nb-doped WS2 monolayers. Applied Physics Express, 2016. 9(7): p. 4. 15. Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X-2 semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B, 2012. 85(3): p. 5. 16. Xing, L. and L.Y. Jiao, Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide. Acta Physico-Chimica Sinica, 2016. 32(9): p. 2133-2145. 17. Huang, C.M., et al., Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nature Materials, 2014. 13(12): p. 1096-1101. 18. Chiu, M.H., et al., Spectroscopic Signatures for Interlayer Coupling in MoS2-WSe2 van der Waals Stacking. Acs Nano, 2014. 8(9): p. 9649-9656. 19. Zhang, J., et al., Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures. Advanced Materials, 2016. 28(10): p. 1950-1956 20. Choudhary, N., et al., Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure. Scientific Reports, 2016. 6: p. 7. 21. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010. 5(10): p. 722-726. 22. Lin, Y.C., et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-6641. 23. Li, M.Y., et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 2015. 349(6247): p. 524-528. 24. Gong, Y.J., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014. 13(12): p. 1135-1142. 25. Zhang, Z.W., et al., Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 2017. 357(6353): p. 788-794. 26. Bernardi, M., M. Palummo, and J.C. Grossman, Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Letters, 2013. 13(8): p. 3664-3670. 27. Bertolazzi, S., D. Krasnozhon, and A. Kis, Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures. Acs Nano, 2013. 7(4): p. 3246-3252. 28. Huo, N.J., et al., Novel and Enhanced Optoelectronic Performances of Multilayer MoS2-WS2 Heterostructure Transistors. Advanced Functional Materials, 2014. 24(44): p. 7025-7031. 29. Mehew, J.D., et al., Fast and Highly Sensitive Ionic-Polymer-Gated WS2-Graphene Photodetectors. Advanced Materials, 2017. 29(23): p. 7. 30. Tan, C.L. and H. Zhang, Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 2015. 137(38): p. 12162-12174. 31. Li, H.L., et al., Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures via Layer-Selected Atomic Substitution. Acs Nano, 2017. 11(1): p. 961-967. 32. Zheng, S.J., et al., Monolayers of WxMo1-xS2 alloy heterostructure with in-plane composition variations. Applied Physics Letters, 2015. 106(6): p. 5. 33. Bogaert, K., et al., Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures. Nano Letters, 2016. 16(8): p. 5129-5134. 34. Zhang, Y., et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. Acs Nano, 2013. 7(10): p. 8963-8971. 35. Molas, M.R., et al., Raman scattering excitation spectroscopy of monolayer WS2. Scientific Reports, 2017. 7: p. 8. 36. Chiu, K.C., et al., Synthesis of In-Plane Artificial Lattices of Monolayer Multijunctions. Advanced Materials, 2018. 30(7): p. 9. 37. Desai, S.B., et al., Strain-Induced Indirect to Direct Bandgap Transition in Multi layer WSe2. Nano Letters, 2014. 14(8): p. 4592-4597. 38. Fan, Y., et al., Photoinduced Schottky Barrier Lowering in 2D Monolayer WS2 Photodetectors. Advanced Optical Materials, 2016. 4(10): p. 1573-1581. 39. Duan, X.D., et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology, 2014. 9(12): p. 1024-1030. 40. Allain, A. and A. Kis, Electron and Hole Mobilities in Single-Layer WSe2. Acs Nano, 2014. 8(7): p. 7180-7185.
|