帳號:guest(3.145.168.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):溫育博
作者(外文):Wen, Yu-Po
論文名稱(中文):利用控制自組裝金奈米立方體、八面體和菱形十二面體顆粒與銀薄膜間的極短間距來達到高度增強拉曼訊號之晶片
論文名稱(外文):Promising SERS substrate of self assembly gold nanocubes, octahedra, and rhombic dodecahedra with extremely small nanogaps on a silver mirror
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):黃暄益
徐文光
口試委員(外文):Huang, Xuan-Yi
Hsu, Wen-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031568
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:89
中文關鍵詞:表面增強拉曼光譜鏡面上沈積奈米顆粒多形狀奈米金顆粒合成自組裝結構田口統計方法
外文關鍵詞:Surface enhanced Raman spectrumnanoparticles on mirrorPolyhedral nanoparticlesSelf assembly structureTaguchi method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
表面增強拉曼光譜(SERS)近期在檢測領域上佔有非常重要的地位,拉曼散射是一種強而有力的分析技術,他能提供分子結構上的資訊並應用於快速的篩檢或是分子蹤跡的檢測上,但是在實際應用上,用於測量拉曼強度的基板也面臨到許多問題,例如整個基板的各個位置測量強度不均又或是製作基板時的良率不高,導致在追蹤待測分子時的不便。因此,如何發展出一個簡單的檢測樣品前處理技術並應用於實際的分子追蹤上已經成了研究的顯學。而利用貴金屬奈米顆粒來增強拉曼光譜訊號可以說是最常見的方法。

在此研究中,我們提出了全新的實驗設計。我們利用多形狀的奈米金顆粒結合銀薄膜來達到一個強大的電場增幅效果,同時可以提升整個基板的增強因子以及量測拉曼訊號時的均勻度,此法也稱作Nanoparticle on mirror法。此基板是利用物理蒸鍍系統在矽基板上鍍上一層銀薄膜,再將基板泡入硫醇中使得硫醇可以貼附在銀薄膜上並充當間隔物,最後用旋塗法滴上自己開發的可以在水溶液中合成奈米金顆粒的方法--水熱法及晶種法,用以合成八面體、菱形十二面體和立方體的奈米金顆粒,此外,由於三種奈米金顆粒有著不同數量的尖端邊緣、尺寸,以及基板浸泡硫醇的時間控制、旋塗法的轉速,這些參數都在這個實驗設計裡,所需要在其中找到一組最優化的組合搭配,所以藉由科技工業上常用的統計的方法-田口方法(Taguchi method),我們得以設計一個適當的實驗製程,並在眾多實驗參數裡得出一個最佳化的組合。另外,這個實驗的另個突破在於基板上的多形狀奈米金顆粒由於緊密地彼此靠近著,又由於奈米顆粒與銀薄膜間只隔著3-5奈米的硫醇,因此能夠達到強烈的尖端放電效果外,整個基板也因為擁有良好的金奈米顆粒的分佈,導致在基板上的各個位置量測到的拉曼訊號均差異不大,

從分析拉曼光譜的訊號中得知,多樣染料的拉曼峰值以及檢測限都能達到相當好的水準。並且藉由基板穩定度的測試中得知,此設計下的基板能夠抗氧化並維持能夠激活表面增強拉曼光譜的特性長達4個月,證明了此設計可以在利用簡單的方法以及較低的成本中達到追蹤低濃度化學分子的特性。

因此證實此研究可以嚴謹地同時控制奈米顆粒的形狀和排列下,大幅的提升在檢測待測物的能力,相信此基板能夠有潛力應用於實際的生化快篩檢測上。
Surface enhanced raman spectroscopy(SERS)is a powerful analytical technique that reveals structural information of molecules to provide fast screening and detection applications. In this research, sensitive SERS substrates with hotspots on a large scale from massive nanogaps can be fabricated by assembling polyhedral gold nanoparticles on the massed Ag mirror via 1,2-ethanedithiol monolayer as ultra-thin spacer. 

Preparation of different diameter of nanoparticles with excellent morphology control is necessary for demonstrations of their shape-dependent optical properties. Theoretically, SERS activity is related to the large localized field enhancement such as the presence of sharp tips and is thus critically shape-dependent for nanoparticles. With different morphologies of gold nanoparticles, we can not only confirm our substrate is more stable than traditional noble metal nanoparticles coated substrate but also make a denser close packed structure with sharp corners. Furthermore, we have proved that self-assembly structure combine with nanoparticle on mirror(NPOM) configuration can increase SERS signal dramatically. 

In our work, we applied seed-mediated synthesis method for the preparation of gold nanoparticles. It's the first synthesis process done in aqueous solution. The combination of using cetyltrimethylammonium chloride (CTAC) surfactant and a small amount of NaBr to control the bromide concentration in the growth solution was important to the formation of nanoparticles. Variation in the volume of ascorbic acid added to the growth solution enabled the fine control of nanocrystal morphology. Next, by spin coating we can fabricate a close packed gold nanoparticles monolayer on a dielectric layer that deposited on silver mirror. Due to the existence of ultra-thin dielectric spacer, it can prevent the directly touch of two metallic surfaces, which prevails the strong plasmonic interaction at the nanogap between two metal surfaces. By this design, we were able to conclude size and shape effect of noble metal nanoparticles on SERS. 
摘要
Abstract
Content
Acknowledge
List of Figures
List of Tables
Chapter 1 Introduction………………………………………………………………P.1
Chapter 2 Literature review
2.1 Surface-enhanced Raman spectroscopy(SERS) ………………….…………P.3
2.1.1 Raman technique…………………………………………………...…...P.3
2.1.2 Surface-enhanced Raman spectroscopy………………………...………P.5
2.1.3 Plasmonic paper………………………………………………….……P.10
2.2 Evolution of the SERS active elements and distribution…………..………P.12
2.2.1 Engineered nanomaterials (ENMs) of SERS…………………….……P.12
2.2.2 Polyhedral gold nanoparticles synthesis………………………………P.17
2.2.3 Langmuir Blodgett method………………………………...………….P.22
2.2.4 Nanoparticles on mirror(NPOM)…………………… ……….……….P.26
2.3 Taguchi method…………………………………………………………….P.28
Chapter 3 Design of experiment
3.1 Gold nanoparticles Synthesis………………………………………………P.31
3.1.1 Seed mediated Synthesis………………………………………………P.33
3.1.2 Hydrothermal Synthesis…………………………………………….…P.37
3.2 Sample fabrication…………………………………………………………P.39
3.2.1 Nanoparticles on mirror(NPOM)………………………………...……P.39
3.2.2 Preparation of Dithiol………………………………………….………P.40
3.2.3 Spin coating ………………………………………………………..…P.42
3.3 Taguchi method……………………………………………………….……P.43
3.4 Spotting technique…………………………………………………….……P.47
3.5 Raman measurement…………………………………………………….....P.49
Chapter 4
4.1 Benefit of NPOM structure……………………………………...…………P.50
4.1.1 Polyhedral gold nanoparticles…………………………………………P.50
4.1.2 Surface property of substrate…………………………………….……P.58
4.2 Taguchi L9 OAs and Raman measurement…………………………..……P.62
4.3 Enhancement factor…………………………………………………...……P.70
4.4 Uniformity test………………………………………………………..……P.72
4.5 CST simulation……………………………………………………….……P.74
4.6 XPS spectra………………………………………………………...………P.77
4.7 Detection limit………………………………………………….…...……P.79
Chapter 5 Conclusion………………………………………………….………P.82
References…………………………………………………………………….……P.84
Future work………………………………………………………………………...P.89
[1] Shu-Chun Cheng, Ten-Chin Wen ” Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1,2-ethanedithiol monolayer as linkage and ultra-thin spacer” Materials Chemistry and Physics
[2] https://www.nanophoton.net/raman/raman-spectroscopy.html
[3] Eric C. Le Ru, Pablo G. Etchegoin “Principles of Surface-Enhanced Raman Spectroscopy 2009”
[4] Shenfei Zong, Zhuyuan Wang, Hui Chen & Yiping Cui “Assessing Telomere Length Using Surface Enhanced Raman Scattering” Scientific Reports volume 4, Article number: 6977 (2014)
[5] Bhavya Sharma, Renee R. Frontiera, Anne-IsabelleHenry, Emilie Ringe, Richard P. Van Duyne “SERS: Materials, applications, and the future” Materials Today
[6] Boris Khlebtsov, Vitaly Khanadeev, Nikolai Khlebtsov” Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods” Nano Research
[7] Chang H. Lee, Mikella E. Hankus, Limei Tian, Paul M. Pellegrino, and Srikanth Singamaneni “Plasmonic Paper as a Highly Efficient SERS Substrate”, Proc. SPIE 8358, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, 835815
[8] Polly Liou. Dr. Mengshi Lin “Detection of Engineered Nanoparticles by SERS”, A Thesis presented to the Faculty of the Graduate School at the University of Missouri
[9] Li Zhang, Bin Wang, Guang Zhu, Xia Zhou “Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram”, Spectrochim Acta A Mol Biomol Spectrosc. 2014 Dec 10;133:411-6. doi: 10.1016/j.saa.2014.06.054. Epub 2014 Jun 16.
[10] https://www.theengineer.co.uk/nanowire-arrays-could-form-wearable-cooling-devices/
[11] Ningbo Yi, Chen Zhang, Qinghai Song & Shumin Xiao “A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection “, Scientific Reports volume 6, Article number: 25134 (2016)
[12] Leilei Kang, Jiayu Chu, Hongtao Zhao, Ping Xu and Mengtao Sun “Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions”,J. Mater. Chem. C, 2015, 3, 9024-9037
[13] Na Zhang, Lianming Tong, and Jin Zhang “Graphene-Based Enhanced Raman Scattering toward Analytical Applications”, Chem. Mater., 2016, 28 (18), pp 6426–6435 DOI: 10.1021/acs.chemmater.6b02925
[14] Bo Peng, Guangyuan Li, Dehui Li, Stephanie Dodson, Qing Zhang, Jun Zhang, Yih Hong Lee, Hilmi Volkan Demir, Xing Yi Ling, and Qihua Xiong “Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants”, ACS Nano, 2013, 7 (7), pp 5993–6000 DOI: 10.1021/nn401685p
[15] LiZhang “Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection”, Applied Surface Science 270 (2013) 292–294
[16] Chia-Chien Chang, Hsin-Lun Wu, Chun-Hong Kuo, and Michael H. Huang “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures” Chem. Mater. 2008, 20, 7570–7574
[17] Hsin-Lun Wu, Chun-Hong Kuo, and Michael H. Huang “Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures” Langmuir 2010, 26(14), 12307–12313
[18] Dung The Nguyen, Dong-Joo Kim, Kyo-Seon Kim “Controlled synthesis and biomolecular probe application of gold nanoparticles”, Micron Volume 42, Issue 3, April 2011, Pages 207-227
[19] Junyan Xiao and Limin Qi “Surfactant-assisted, shape-controlled synthesis of gold nanocrystals”, Nanoscale, 2011, 3, 1383-1396
[20] https://en.wikipedia.org/wiki/Langmuir%E2%80%93Blodgett_film
[21] Pilar Cea, Luz Marina Ballesteros, Santiago Martín, ”Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics”, Nanofabrication 2014; 1: 96–117
[22] S. Paul*†, C. Pearson†, A. Molloy†, M. A. Cousins†⊥, M. Green‡, S. Kolliopoulou§, P. Dimitrakis§, P. Normand§, D. Tsoukalas§‖, and M. C. Petty† “Langmuir−Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures”, Nano Letters, 2003, 3 (4), pp 533–536
[23] Yu Huang1, Lingwei Ma2, Jianghao Li2and Zhengjun Zhang “Nanoparticle-on-mirror cavity modes forhuge and/or tunable plasmonic fieldenhancement” Nano Lett., 12 (2012), pp. 2088-2094
[25] Shu-Chun Chenga, Ten-Chin Wen “Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1,2-ethanedithiol monolayer as linkage and ultra-thin spacer”, Materials Chemistry and Physics 143 (2014) 1331-1337
[26] Yu Huang, Lingwei Ma, Mengjing Hou, Jianghao Li, Zheng Xie & Zhengjun Zhang “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror” Scientific Reports volume 6, Article number: 30011 (2016)
[27 ] Shyam Kumar Karna, Dr. Rajeshwar Sahai “An Overview on Taguchi Method” International Journal of Engineering and Mathematical Sciences Jan.- June 2012, Volume 1, pp.11-18
[28] https://www.quora.com/What-exactly-is-the-Taguchi-Method-for-Optimization
[29] Davood Ajloo* , Behnaz Yoonesi, Ahmad Soleymanpour “Solvent Effect on the Reduction Potential of Anthraquinones Derivatives. The Experimental and Computational Studies” Int. J. Electrochem. Sci., 5 (2010) 459 - 477
[30] Pegis, M. L., Roberts, J. A. S., Wasylenko, D. J., Mader, E. A., Appel, A. M., & Mayer, J. M. (2015). Standard Reduction Potentials for Oxygen and Carbon Dioxide Couples in Acetonitrile and N,N-Dimethylformamide. Inorganic Chemistry, 54(24), 11883-11888. DOI: 10.1021/acs.inorgchem.5b02136
[31] Hsin-Lun Wu, Chun-Hong Kuo and Michael H. Huang “Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures”, Langmuir 2010, 26(14), 12307–12313
[32] Chia-Chien Chang, Hsin-Lun Wu, Chun-Hong Kuo and Michael H. Huang “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures”Chem. Mater. 2008, 20, 7570–7574
[33] Yupeng Shi, Heng Zhang, Zhenfeng Yue, Zhaomin Zhang, Kar-Seng Teng, Mei-Jin Li, Changqing Yi1 and Mengsu Yang “Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection”, Nanotechnology 28 (2017) 235603
[34]https://www.spincoating.com/en/featured-items/how-to-do-a-sol-gel-coating-using-spin-coating-technique/205/
[35] Yu Liu,a Shuping Xu,a Haibo Li,a Xiaoguang Jiana and Weiqing Xu ”Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation“ Chem. Commun., 2011, 47, 3784–3786

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *