|
1. Bak T, Nowotny J, Rekas M, Sorrell CC. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy 2002, 27: 991-1022.
2. Weng B, Liu S, Tang Z-R, Xu Y-J. One-dimensional nanostructure based materials for versatile photocatalytic applications. RSC Advances 2014, 4: 12685-12700.
3. Hideki M, Masahiro S. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Japanese Journal of Applied Physics 1996, 35: L126.
4. Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters 1982, 40: 939-941.
5. Morales AM, Lieber CM. A Laser Ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279: 208.
6. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292: 1897.
7. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science 2001, 291: 1947.
8. Lee JS, Jang J. Hetero-structured semiconductor nanomaterials for photocatalytic applications. Journal of Industrial and Engineering Chemistry 2014, 20: 363-371.
9. Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y. Electrochemically induced sol−gel preparation of single-crystalline TiO2 nanowires. Nano Letters 2002, 2: 717-720.
10. Liu B, Aydil ES. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society 2009, 131: 3985-3990.
11. Macak Jan M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angewandte Chemie International Edition 2005, 44: 7463-7465.
12. Wu N, Wang J, Tafen DN, Wang H, Zheng J-G, Lewis JP, et al. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. Journal of the American Chemical Society 2010, 132: 6679-6685.
13. Kim I-D, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Letters 2006, 6: 2009-2013.
14. Petritz RL. Theory of photoconductivity in semiconductor films. Physical Review 1956, 104: 1508-1516.
15. Würthner F. Generating a photocurrent on the nanometer scale. Science 2006, 314: 1693.
16. Zhou J, Gu Y, Hu Y, Mai W, Yeh P-H, Bao G, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters 2009, 94: 191103.
17. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Applied Materials & Interfaces 2009, 1: 1140-1143.
18. Gong J, Li Y, Hu Z, Zhou Z, Deng Y. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. The Journal of Physical Chemistry C 2010, 114: 9970-9974.
19. Sung C-H, Chien T-C, Chang C-M, Chang C-M, Yeh P-H. A nanopoint Schottky-gate array device: surface defect application and molecular detection. RSC Advances 2015, 5: 16769-16773.
20. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 2015, 7: 219-242.
21. Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 2006, 47: 2434-2441.
22. Maquet V, Martin D, Malgrange B, Franzen R, Schoenen J, Moonen G, et al. Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. Journal of Biomedical Materials Research 2000, 52: 639-651.
23. Skoner JM, Pitman KT. Facial plastic and reconstructure surgery, Third Edition.
24. Ismail AA, Bahnemann DW. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Materials Chemistry 2011, 21: 11686-11707.
25. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews 1995, 95: 735-758.
26. Mo S-D, Ching WY. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical Review B 1995, 51: 13023-13032.
27. Cromer DT, Herrington K. The structures of anatase and rutile. Journal of the American Chemical Society 1955, 77: 4708-4709.
28. Baur W. Atomabstande und bindungswinkel im brookit, TiO2. Acta Crystallographica 1961, 14: 214-216.
29. Valeria CF, Christian FAN, Oviedo MB, Franco PB, Fabiana YO, Cristián GS. A theoretical study of the optical properties of nanostructured TiO2. Journal of Physics: Condensed Matter 2013, 25: 115304.
30. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6: 5164-5173.
31. Jung-Chul L, Kyung-Soo P, Tae-Geun K, Heon-Jin C, Yun-Mo S. Controlled growth of high-quality TiO2 nanowires on sapphire and silica. Nanotechnology 2006, 17: 4317.
32. Lai C-Y, Chien T-C, Lin T-Y, Ke T, Hsu S-H, Lee Y-J, et al. Intensify the application of ZnO-based nanodevices in humid environment: O2/H2 plasma suppressed the spontaneous reaction of amorphous ZnO nanowires. Nanoscale Research Letters 2014, 9: 281.
33. Ardo S, Meyer GJ. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews 2009, 38: 115-164.
34. Grätzel M. Photoelectrochemical cells. Nature 2001, 414: 338.
35. Spanhel L, Haase M, H.Weller, A.Henglein. Surfase modification and stability of strong luminescing CdS particles. Journal of the American Chemical Society 1987, 109: 5649-5655.
36. Liu G, Wang L, Yang HG, Cheng H-M, Lu GQ. Titania-based photocatalysts-crystal growth, doping and heterostructuring. Journal of Materials Chemistry 2010, 20: 831-843.
37. Asahi R, Tanaka T, Ohwaki Y, K.Aoki, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxide. Science 2001, 293: 26.
38. Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. The Journal of Physical Chemistry B 2004, 108: 10617-10620.
39. Lin C-C, Chen H-P, Liao H-C, Chen S-Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Applied Physics Letters 2005, 86: 183103.
40. Hu Y, Zhou J, Yeh PH, Li Z, Wei TY, Wang Zhong L. Supersensitive, Fast‐response nanowire sensors by using Schottky contacts. Advanced Materials 2010, 22: 3327-3332.
41. Liang S, Sheng H, Liu Y, Huo Z, Lu Y, Shen H. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 2001, 225: 110-113.
42. Cultrera A, Boarino L, Amato G, Lamberti C. Band-gap states in unfilled mesoporous nc-TiO 2 : measurement protocol for electrical characterization. Journal of Physics D: Applied Physics 2014, 47: 015102.
43. Imanishi A, Tsuji E, Nakato Y. Dependence of the work function of TiO2 (rutile) on crystal faces, studied by a scanning auger microprobe. The Journal of Physical Chemistry C 2007, 111: 2128-2132.
44. Setvin M, Hulva J, Parkinson GS, Schmid M, Diebold U. Electron transfer between anatase TiO2 and an O2 molecule directly observed by atomic force microscopy.
45. Li C, Bando Y, Liao M, Koide Y, Golberg D. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Applied Physics Letters 2010, 97: 161102.
46. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25: 1-29.
47. Ma S, Reish ME, Zhang Z, Harrison I, Yates JT. Anatase-selective photoluminescence spectroscopy of P25 TiO2 nanoparticles: different effects of oxygen adsorption on the band bending of anatase. The Journal of Physical Chemistry C 2017, 121: 1263-1271.
48. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S. Structural and optical properties of electrospun TiO2 nanofibers. Chemistry of Materials 2007, 19: 6536-6542.
49. Pan X, Yang M-Q, Fu X, Zhang N, Xu Y-J. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5: 3601-3614.
50. Sanjinés R, Tang H, Berger H, Gozzo F, Margaritondo G, Lévy F. Electronic structure of anatase TiO2 oxide. Journal of Applied Physics 1994, 75: 2945-2951.
51. Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics 2013, 15: 10978-10988.
52. Mou X, Wang S, Liu X, Guo W, Li J, Qiu J, et al. Static pressure-induced neural differentiation of mesenchymal stem cells. Nanoscale 2017, 9: 10031-10037.
53. Diebold U. The surface science of titanium dioxide. Surface Science Reports 2003, 48: 53-229.
|