帳號:guest(3.145.57.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘品君
作者(外文):Pan, Pin-Chun
論文名稱(中文):缺陷調制: 利用氫電漿處理調變二氧化鈦多晶結構奈米纖維晶粒間的接面位能作為光電抑菌試劑
論文名稱(外文):Defect Engineering: Polycrystalline TiO2 Nanofibers with H2 Plasma Treatment Tuning Grain to Grain Boundary Potential for Optoelectrical Antibacterial - Agents
指導教授(中文):陳力俊
葉炳宏
指導教授(外文):Chen, Lih-Juann
Yeh, Ping-Hung
口試委員(中文):吳文偉
呂明諺
口試委員(外文):Wu, Wen-Wei
Lu, Ming-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031565
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:75
中文關鍵詞:奈米纖維靜電紡絲技術缺陷可見光感測抑菌
外文關鍵詞:nanofiberelectrospinningdefectvisible-light-detectionantibacterial
相關次數:
  • 推薦推薦:0
  • 點閱點閱:226
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
在過去的研究中,多晶結構二氧化鈦奈米纖維材料常被用於光電化學轉換效應(光催化)生物相容性相關研究。憑藉多功能性和低成本的優勢,「靜電紡絲技術」製成方式已被廣泛應用及探討在多晶結構奈米纖維的研究上,例如在組織工程、薄膜、太陽能電池以及化學和生物抑菌機制研究。其中,本研究最關注在生物相容的細胞成長及生物抑菌機制研究上。然而,大部分應用於此類光催化研究的n型金屬氧化物半導體如單晶結構二氧化鈦材料,多只應用於紫外光(UV光) (波長小於400 nm)的光催化研究。但本實驗利用擁有豐富缺陷性質的多晶結構的二氧化鈦奈米纖維,造成電子傳遞中受能帶深度、缺陷能階等因素影響,而又多波段可見光(波長橫跨約400 ~ 550 nm)至紫外光的光電轉換性質。但因為其材料結構本生多缺陷特性,使此技術製成之材料有高電阻、低導電度特性。故藉由氫電漿轟擊處理之方式,在適當氫電漿瓦數的轟擊下,可以調變晶粒間的能障、表面位能及與外接氣體環境立即接觸氧空缺懸擺鍵。在此類處理後,多晶結構奈米纖維也對低能量(常波長的光源,波長範圍介在620~730 nm間)的光源有反應。

延續第一階段研究,利用靜電紡絲技術製成的由奈米晶粒組成奈米纖維,擁有零維材料的高比表面積特性及一維材料較高傳輸特性的性質兩大優勢,使其可以有利用應用於生物抑菌實驗研究。使用上階段的氫電漿處理,也增加可以在生物抑菌研究上反應的氫氧自由基,亦增加其光電轉換催化效益。利用此研究關注的缺陷工程及表面工程處理,此研究顯示製成調變出可以高度運用於生物相關實驗之多晶結構二氧化鈦奈米纖維材料。
Light to electric conversion photochemical effect can be achieved by using biocompatible material, polycrystalline titanium dioxide nanofibers (poly-TiO2 NFs). With versatility and low cost advantages, electrospinning process had been explored recently as means for preparing a wide variety of polycrystalline nanofiber materials for potential applications.

Cell division and antibacterial issues were widely explored in recent research. However, as a large bandgap n type semiconductor, single crystalline TiO2 materials has the attribute of responding to UV light (400 nm). Due to the defect-rich structure, poly-TiO2 NFs can respond not only to UV light but also to visible light (wavelength between 400~550 nm). The photochemical effect can be significantly enhanced by using specific power hydrogen plasma treatment because plasma treatment can tune the barrier height between grains, surface potential and defect level. After such treatment, the soft energy light (long wavelength light, such as the red light (region wavelength between 620~730 nm)) can also be used in bio research (such as stimulating the cell growth or antibacterial growth).

Recently, there are considerable interests in electrospun TiO2 NFs as antibacterial agents owing to their large grain to grain surface and the formation of reactive hydroxyl radicals (which can react with bacteria, cell membranes, and cellular proteins, leading to cell death). However, the photocatalytic effects of TiO2 NFs are relatively low due to the rich defect states. With H2 plasma treatment passivation, the surface potential of poly-TiO2 NFs was smoothened for electrons to transport. Consequently, the H2 plasma treated TiO2 NFs remained showed greater numbers of hydroxyl radicals and significantly enhanced visible light photocatalytic antibacterial activity. Based on these defect and interface engineering, poly-TiO2 NFs with hydrogen plasma treatment is a promising candidate for biological application.
致謝................................................................I
Abstract..........................................................III
摘要................................................................V
Table of Contents.................................................VII
List of Figures....................................................XI
List of Tables.....................................................XV
List of Abbreviations and Acronyms................................XVI
Chapter 1 Introduction..............................................1
1.1 Motivation......................................................1
1.2 Nanomaterials and Nanostructure Technology......................3
1.2.1 One Dimensional Nanostructures................................3
1.3 One-Dimensional Metal-Oxide Semiconductor Nanostructure
Applications........................................................4
1.3.1 Photoelectrical Effect Applications
(Photocatalytic/Antibacterial Agent/ Photodetector).................4
1.3.2 Various Nano-surface Structure Gas Sensors....................7
1.3.3 Biomaterials Application......................................8
1.4 Titanium Dioxide (TiO2) (Brookite, Anatase, Rutile).............8
1.5 Crystalline Structure of Material..............................11
1.5.1 Single Crystalline Structure.................................11
1.5.2 Polycrystalline Structure....................................12
1.5.3 Amorphous Crystalline Structure..............................12
1.6 Surface Modification of One-Dimensional Metal Oxide Nanostructure/ Electric Conductive Transportation..................13
1.6.1 Polymer – Metal Oxide Nanostructure..........................13
1.6.2 Semiconductor – Metal Oxide Nanostructure....................14
1.6.3 Metallic – Metal Oxide Nanostructure.........................15
1.6.4 Non-metal –Metal Oxide Nanostructure.........................16
1.7 Metal-Semiconductor Contact (MS contact) Photodetector Device..18
1.7.1 Ohmic Contact................................................20
1.7.2 Schottky Contact.............................................21
1.7.3 Metal-Semiconductor-Metal Contact Photodetector..............23
Chapter 2 Experimental Procedures..................................25
2.1 Material Preparation and Device Fabrication....................25
2.1.1 Fabrication Process of Polycrystalline Metal-oxide Nanostructures.....................................................25
2.1.2 Fabrication of TiO2 NFs Photoelectrical Measurement Device...26
2.1.3 Tunable Hydrogen Plasma Treatment of TiO2 NFs................27
2.1.4 Photoelectrical Properties Measurement Procedures............28
2.1.5 Photocatalytic (Photochemical) Antibacterial Experiment......29
2.2 Experimental Systems and Procedures............................30
2.2.1 Electrospinning Nanomaterial Fabrication Instruments.........30
2.2.2 Hydrogen Plasma Bombardment System...........................32
2.2.3 Semiconductor Electrical Measurement Instruments.............33
2.3 Material Analysis Experimental Systems.........................34
2.3.1 Scanning Electron Microscope (SEM)...........................34
2.3.2 Transmission Electron Microscope (TEM).......................35
2.3.3 Energy Dispersive Spectrometry (EDS).........................36
2.3.4 X-ray Diffraction (XRD) Analysis.............................37
2.3.5 UV-Vis Spectroscopy..........................................37
2.3.6 Photoluminescence (PL).......................................38
2.3.7 X-ray Photoelectron Spectroscopy (XPS).......................39
Chapter 3 Results and Discussion...................................40
3.1 Polycrystalline TiO2 NFs Annealed at Different Temperature.....40
3.1.1 Analysis of Material Surface Structure and Characteristics of the TiO2 NFs.......................................................40
3.1.1.1 SEM Observation............................................40
3.1.1.2 EDS Analysis...............................................41
3.1.1.3 XRD Analysis...............................................42
3.1.1.4 TEM Observation............................................43
3.1.1.5 UV-Vis Light Absorbance Spectrum...........................45
3.1.2 Photoelectrical Property Measurement of Polycrystalline Not-Woven Like TiO2 Nanofiber Photodetector............................46
3.1.2.1 Metal-Semiconductor-Metal Device Structure.................46
3.1.2.2 Electrical Properties of TiO2 NFs Annealed at Different Temperatures.......................................................47
3.1.2.3 Optical Properties of TiO2 NFs Annealed at Different Temperatures.......................................................49
3.2 Photoelectrical Property Enhancement of Polycrystalline TiO2 NFs by Hydrogen Plasma Treatment.......................................51
3.2.1 Measurement of Photoelectrical Properties of Hydrogen Plasma Treated TiO2 NFs Photodetector.....................................52
3.2.1.1 Electrical Properties and Physical Mechanism...............52
3.2.1.2 Photoelectrical Properties.................................55
3.2.2 Analysis of Oxygen Vacancy Variation by Hydrogen Plasma Treatment..........................................................60
3.2.2.1 Photoluminescence (PL) Analysis............................60
3.2.2.2 X-ray Photoelectron Spectroscopy (XPS) Analysis............61
3.3 TiO2 NFs Photochemical Bio-agent...............................63
3.3.1 Biocompatibility of Polycrystalline TiO2 NFs.................63
3.3.2 Antibacterial Activity of TiO2 Nanofiber.....................64
Chapter 4 Summary and Conclusions..................................68
Chapter 5 Future Prospects.........................................69
5.1 Bio-dressing Applications......................................69
5.2 Gas Sensor: Tuning Amount of Reactive Oxide Species in TiO2 NFs................................................................69
References.........................................................71

1. Bak T, Nowotny J, Rekas M, Sorrell CC. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy 2002, 27: 991-1022.

2. Weng B, Liu S, Tang Z-R, Xu Y-J. One-dimensional nanostructure based materials for versatile photocatalytic applications. RSC Advances 2014, 4: 12685-12700.

3. Hideki M, Masahiro S. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Japanese Journal of Applied Physics 1996, 35: L126.

4. Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters 1982, 40: 939-941.

5. Morales AM, Lieber CM. A Laser Ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279: 208.

6. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292: 1897.

7. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science 2001, 291: 1947.

8. Lee JS, Jang J. Hetero-structured semiconductor nanomaterials for photocatalytic applications. Journal of Industrial and Engineering Chemistry 2014, 20: 363-371.

9. Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y. Electrochemically induced sol−gel preparation of single-crystalline TiO2 nanowires. Nano Letters 2002, 2: 717-720.

10. Liu B, Aydil ES. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society 2009, 131: 3985-3990.

11. Macak Jan M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angewandte Chemie International Edition 2005, 44: 7463-7465.

12. Wu N, Wang J, Tafen DN, Wang H, Zheng J-G, Lewis JP, et al. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. Journal of the American Chemical Society 2010, 132: 6679-6685.

13. Kim I-D, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Letters 2006, 6: 2009-2013.

14. Petritz RL. Theory of photoconductivity in semiconductor films. Physical Review 1956, 104: 1508-1516.

15. Würthner F. Generating a photocurrent on the nanometer scale. Science 2006, 314: 1693.

16. Zhou J, Gu Y, Hu Y, Mai W, Yeh P-H, Bao G, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters 2009, 94: 191103.

17. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Applied Materials & Interfaces 2009, 1: 1140-1143.

18. Gong J, Li Y, Hu Z, Zhou Z, Deng Y. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. The Journal of Physical Chemistry C 2010, 114: 9970-9974.

19. Sung C-H, Chien T-C, Chang C-M, Chang C-M, Yeh P-H. A nanopoint Schottky-gate array device: surface defect application and molecular detection. RSC Advances 2015, 5: 16769-16773.

20. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 2015, 7: 219-242.

21. Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 2006, 47: 2434-2441.

22. Maquet V, Martin D, Malgrange B, Franzen R, Schoenen J, Moonen G, et al. Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. Journal of Biomedical Materials Research 2000, 52: 639-651.

23. Skoner JM, Pitman KT. Facial plastic and reconstructure surgery, Third Edition.

24. Ismail AA, Bahnemann DW. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Materials Chemistry 2011, 21: 11686-11707.

25. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews 1995, 95: 735-758.

26. Mo S-D, Ching WY. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical Review B 1995, 51: 13023-13032.

27. Cromer DT, Herrington K. The structures of anatase and rutile. Journal of the American Chemical Society 1955, 77: 4708-4709.

28. Baur W. Atomabstande und bindungswinkel im brookit, TiO2. Acta Crystallographica 1961, 14: 214-216.

29. Valeria CF, Christian FAN, Oviedo MB, Franco PB, Fabiana YO, Cristián GS. A theoretical study of the optical properties of nanostructured TiO2. Journal of Physics: Condensed Matter 2013, 25: 115304.

30. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6: 5164-5173.

31. Jung-Chul L, Kyung-Soo P, Tae-Geun K, Heon-Jin C, Yun-Mo S. Controlled growth of high-quality TiO2 nanowires on sapphire and silica. Nanotechnology 2006, 17: 4317.

32. Lai C-Y, Chien T-C, Lin T-Y, Ke T, Hsu S-H, Lee Y-J, et al. Intensify the application of ZnO-based nanodevices in humid environment: O2/H2 plasma suppressed the spontaneous reaction of amorphous ZnO nanowires. Nanoscale Research Letters 2014, 9: 281.

33. Ardo S, Meyer GJ. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews 2009, 38: 115-164.

34. Grätzel M. Photoelectrochemical cells. Nature 2001, 414: 338.

35. Spanhel L, Haase M, H.Weller, A.Henglein. Surfase modification and stability of strong luminescing CdS particles. Journal of the American Chemical Society 1987, 109: 5649-5655.

36. Liu G, Wang L, Yang HG, Cheng H-M, Lu GQ. Titania-based photocatalysts-crystal growth, doping and heterostructuring. Journal of Materials Chemistry 2010, 20: 831-843.

37. Asahi R, Tanaka T, Ohwaki Y, K.Aoki, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxide. Science 2001, 293: 26.

38. Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. The Journal of Physical Chemistry B 2004, 108: 10617-10620.

39. Lin C-C, Chen H-P, Liao H-C, Chen S-Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Applied Physics Letters 2005, 86: 183103.

40. Hu Y, Zhou J, Yeh PH, Li Z, Wei TY, Wang Zhong L. Supersensitive, Fast‐response nanowire sensors by using Schottky contacts. Advanced Materials 2010, 22: 3327-3332.

41. Liang S, Sheng H, Liu Y, Huo Z, Lu Y, Shen H. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 2001, 225: 110-113.

42. Cultrera A, Boarino L, Amato G, Lamberti C. Band-gap states in unfilled mesoporous nc-TiO 2 : measurement protocol for electrical characterization. Journal of Physics D: Applied Physics 2014, 47: 015102.

43. Imanishi A, Tsuji E, Nakato Y. Dependence of the work function of TiO2 (rutile) on crystal faces, studied by a scanning auger microprobe. The Journal of Physical Chemistry C 2007, 111: 2128-2132.

44. Setvin M, Hulva J, Parkinson GS, Schmid M, Diebold U. Electron transfer between anatase TiO2 and an O2 molecule directly observed by atomic force microscopy.

45. Li C, Bando Y, Liao M, Koide Y, Golberg D. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Applied Physics Letters 2010, 97: 161102.

46. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25: 1-29.

47. Ma S, Reish ME, Zhang Z, Harrison I, Yates JT. Anatase-selective photoluminescence spectroscopy of P25 TiO2 nanoparticles: different effects of oxygen adsorption on the band bending of anatase. The Journal of Physical Chemistry C 2017, 121: 1263-1271.

48. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S. Structural and optical properties of electrospun TiO2 nanofibers. Chemistry of Materials 2007, 19: 6536-6542.

49. Pan X, Yang M-Q, Fu X, Zhang N, Xu Y-J. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5: 3601-3614.

50. Sanjinés R, Tang H, Berger H, Gozzo F, Margaritondo G, Lévy F. Electronic structure of anatase TiO2 oxide. Journal of Applied Physics 1994, 75: 2945-2951.

51. Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics 2013, 15: 10978-10988.

52. Mou X, Wang S, Liu X, Guo W, Li J, Qiu J, et al. Static pressure-induced neural differentiation of mesenchymal stem cells. Nanoscale 2017, 9: 10031-10037.

53. Diebold U. The surface science of titanium dioxide. Surface Science Reports 2003, 48: 53-229.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *