帳號:guest(18.118.138.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳丞峯
作者(外文):Wu, Cheng-Feng
論文名稱(中文):ZnO添加Bi2O3的活化燒結機制與束縛燒結之研究
論文名稱(外文):Activated Sintering and Constrained Sintering of Bi2O3-doped ZnO
指導教授(中文):簡朝和
指導教授(外文):Jean, Jau-Ho
口試委員(中文):方友清
李嘉甄
口試委員(外文):Fang, You-Qing
Li, Jia-Zhen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031559
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:59
中文關鍵詞:活化燒結束縛燒結
外文關鍵詞:Activated SinteringConstrained Sintering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:157
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究探討Bi2O3-doped ZnO的活化燒結機制與其在束縛燒結下的緻密行為。透過摻雜1wt%的Bi2O3,可將ZnO的自由燒結緻密溫度從1200oC降到850oC,並將束縛燒結緻密溫度從1400 oC以上降到950 oC,使 ZnO可以在束縛燒結下達到緻密。摻雜的Bi2O3在晶界形成一富含Bi的晶界玻璃膜(Intergranular glassy film, IGF)結構,此晶界玻璃膜具有較低的晶界能,因此提高了熱力學上的燒結驅動力。透過分子動力學模擬,驗證此晶界玻璃膜可降低晶界能中的應變能部分,因此擁有較低的整體晶界能。另外,在動力學上,晶界玻璃膜可降低晶界移動的活化能,提高晶界遷移行為,因而大幅提升ZnO系統的緻密行為。
  在束縛燒結下,摻雜Bi2O3造成Al2O3束縛層對ZnO產生的平面張應力下降。因此, 1 wt% Bi2O3-doped ZnO (BZ1)在束縛燒結下,擁有與自由燒結時相同的緻密機制以及等向性的微結構。而若由Z軸向施加壓應力提升束縛燒結下BZ1的緻密度,在750-950oC使束縛燒結下的BZ1具有與自由燒結相同的緻密速率所需之單軸向應力為200-1100 kPa,此結果與利用構成方程式(constitutive equations)的理論計算相符,亦驗證了微結構的等向性。
Effects of Bi2O3 on activated and constrained sintering of ZnO have been investigated. The densification temperature of ZnO is greatly reduced from 1200 oC for pure ZnO to 850 oC with the presence of 1 wt% Bi2O3 under free sintering. For the samples with 1 wt% Bi2O3, the constrained densification is slowed down, but a high sintered density of >95% at 950oC, which is close to those sintered freely, is still obtained. The above results are caused by the formation of Bi2O3-rich film at the grain boundaries, which reduces the grain boundary energy. The above results are also confirmed by the molecular dynamic simulation, at which the ratio of grain boundary energy of ZnO between with and without Bi2O3 is 0.62, consistent with that obtained experimentally, 0.69. Bi2O3-rich intergranular glassy film (IGF) lowers the tensile stress caused by constraining layers, resulting in an isotropic microstructure and unchanged densification mechanism under constrained sintering. With the presence of IGF, the polycrystalline Bi2O3-doped ZnO system can be densified under constrained sintering.
一、前言--------------------------------1
二、實驗方法----------------------------6
2.1試片製備-----------------------------6
2.2緻密度與收縮性質量測------------------7
2.3顯微結構觀察與統計分析----------------8
2.4兩面角分析---------------------------8
2.5模擬方法-----------------------------9
三、結果與討論---------------------------10
3.1活化燒結-----------------------------10
3.1.1添加Bi2O3對ZnO緻密行為的影響--------10
3.1.2顯微結構觀察-----------------------11
3.1.3燒結驅動力-------------------------11
3.1.4分子動力學模擬---------------------13
3.1.5晶粒成長動力學---------------------14
3.2束縛燒結-----------------------------15
3.2.1緻密行為---------------------------15
3.2.2平面張應力-------------------------16
3.2.3緻密機制分析-----------------------18
3.2.4晶粒方向分析-----------------------19
3.2.5外加應力---------------------------20
3.2.6燒結行為分析------------------------21
四、結論--------------------------------25
五、參考文獻-----------------------------26
1. Gongora-Rubio MR, Espinoza-Vallejos P, Sola-Laguna L, Santiago-Avilés JJ. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sensors and Actuators A: Physical. 2001;89:222-41.
2. Lautzenhiser F, Amaya E. Self-constrained LTCC tape. Am. Ceram. Soc. Bull. 2002;81:27-32.
3. Mikeska K, Jensen R. Pressure-assisted sintering of multilayer packages. Ceram Trans. 1989;15:629-50.
4. Vitriol WA, Brown RL. Process for fabricating dimensionally stable interconnect boards. US Patents; 1987.
5. Garino TJ, Bowen HK. Kinetics of constrained‐film sintering. J. Am. Ceram. Soc. 1990;73:251-7.
6. Geller B, Thaler B, Fathy A, Liberatore M, Chen H, Ayers G, et al. LTCC-M: an enabling technology for high performance multilayer RF Systems. J. Microwave. 1999;42:64-72.
7. Mikeska KR, Schaefer DT, Method for reducing shrinkage during firing of ceramic bodies. US Patents; 1994
8. Chang JC, Jean JH. Self‐constrained sintering of mixed low‐temperature‐cofired ceramic laminates. J. Am. Ceram. Soc. 2006;89:829-35.
9. Bian JJ, Kim DW, Hong KS. Glass-free LTCC microwave dielectric ceramics. Mater. Res. Bull. 2005;40:2120-9.
10. Kwon DK, Lanagan MT, Shrout TR. Microwave dielectric properties of BaO–TeO2 binary compounds. Mater. Lett. 2007;61:1827-31.
11. Green DJ, Guillon O, Rödel J. Constrained sintering: A delicate balance of scales. J. Eur. Ceram. Soc. 2008;28:1451-66.
12. Hsu RT, Jean JH, Hung YY. Stress required to densify a low‐fire NiCuZn ferrite under constrained sintering. J. Am. Ceram. Soc. 2008;91:2051-4.
13. Wang X, Atkinson A. Microstructure evolution in thin zirconia films: Experimental observation and modelling. Acta Mater. 2011;59:2514-25.
14. Amaral L, Jamin C, Senos AM, Vilarinho PM, Guillon O. Constrained sintering of BaLa4Ti4O15 thick films: Pore and grain anisotropy. J. Eur. Ceram. Soc. 2013;33:1801-8.
15. Tung YL, Peng TM, Jean JH, Lin SC. Stress development during the co‐firing of integrated ferrite/dielectric laminates. J. Am. Ceram. Soc. 2012;95:946-50.
16. Bordia R, Raj R. Sintering behavior of ceramic films constrained by a rigid substrate. J. Am. Ceram. Soc. 1985;68:287-92.
17. Choe J, Calat JN, Lu GQ. Constrained-film sintering of a gold circuit paste. J. Mater. Res. 1995;10:986-94.
18. Bordia R, Scherer G. Sintering of composites: A critique of the available analyses. Ceramic Powder Science II Transactions Westerville. 1988;1:872-86.
19. Bordia RK, Scherer GW. On constrained sintering—I. Constitutive model for a sintering body. Acta Metall. 1988;36:2393-7.
20. Bordia RK, Scherer GW. On constrained sintering—II. Comparison of constitutive models. Acta Metall. 1988;36:2399-409.
21. Bordia RK, Scherer GW. On constrained sintering—III. Rigid inclusions. Acta Metall. 1988;36:2411-6.
22. Hayden H, Brophy J. The activated sintering of tungsten with group VIII elements. J. Electrochem. Soc. 1963;110:805-10.
23. Gupta VK, Yoon DH, Meyer HM, Luo J. Thin intergranular films and solid-state activated sintering in Nickel-doped Tungsten. Acta Metall. 2007;55:3131-42.
24. Hwang K, Huang H. Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped Molybdenum. Acta Mater. 2003;51:3915-26.
25. Luo J, Wang H, Chiang YM. Origin of solid‐state activated sintering in Bi2O3‐doped ZnO. J. Am. Ceram. Soc. 1999;82:916-20.
26. Wang H, Chiang YM. Thermodynamic stability of intergranular amorphous films in Bismuth‐doped Zinc oxide. J. Am. Ceram. Soc. 1998;81:89-96.
27. Zhang T, Hing P, Huang H, Kilner J. Sintering and grain growth of CoO-doped CeO2 ceramics. J. Eur. Ceram. Soc. 2002;22:27-34.
28. Jud E, Zhang Z, Sigle W, Gauckler LJ. Microstructure of Cobalt oxide doped sintered ceria solid solutions. J. Electroceram. 2006;16:191-7.
29. Kingery WD. Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys. 1959;30:301-6.
30. Kingery W, Narasimhan M. Densification during sintering in the presence of a liquid phase. II. Experimental. J. Appl. Phys. 1959;30:307-10.
31. Jean JH, Gupta T. Liquid-phase sintering in the glass-cordierite system: particle size effect. J. Mater. Sci. 1992;27:4967-73.
32. Gibbs JW. The scientific papers of J. Willard Gibbs: Longmans, Green and Company; 1906.
33. Dillon SJ, Tang M, Carter WC, Harmer MP. Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 2007;55:6208-18.
34. Luo J. Liquid-like interface complexion: From activated sintering to grain boundary diagrams. Curr. Opin. Solid State Mater. Sci. 2008;12:81-8.
35. Luo J. Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. J. Am. Ceram. Soc. 2012;95:2358-71.
36. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. Grain boundary complexions. Acta Mater. 2014;62:1-48.
37. Choi SY, Yoon DY, Kang SJL. Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate. Acta Mater. 2004;52:3721-6.
38. Chung SY, Kang SJL. Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3. Acta Mater. 2003;51:2345-54.
39. Zhang T, Kong LB, Song X, Du Z, Xu W, Li S. Densification behaviour and sintering mechanisms of Cu-or Co-doped SnO2: A comparative study. Acta Mater. 2014;62:81-8.
40. Luo J, Shi X. Grain boundary disordering in binary alloys. Appl. Phys. Lett. 2008;92:101901.
41. Park M, Schuh CA. Accelerated sintering in phase-separating nanostructured alloys. Nat. Commun. 2015;6:6858.
42. Chu YJ, Jean JH. Constrained sintering of a low‐fire, polycrystalline Bi2 (Zn1/3Nb2/3) 2O7 Dielectric. J. Am. Ceram. Soc. 2015;98:1080-6.
43. Lee CF, Jean JH. TiO2添加CuO的活化燒結機制與束縛燒結之研究: 國立清華大學; 2016.
44. Yoshiya M, Tanaka I, Adachi H, Cannon RM. Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics. Int. J. Mater. Res. 2010;101:57-65.
45. 劉威廷. 以分子動力學模擬法探討表面效應對金屬奈米線機械性質之影響. 成功大學材料科學及工程學系學位論文. 2012:1-136.
46. Blonski S, Garofalini SH. Atomistic structure of calcium silicate intergranular films in alumina studied by molecular dynamics simulations. J. Am. Ceram. Soc. 1997;80:1997-2004.
47. Yoshiya M, Tanaka I, Adachi H. Atomic-level modeling and computation of intergranular glassy film in high-purity Si3N4 ceramics. J. Eur. Ceram. Soc. 2012;32:1301-11.
48. Zhang S, Garofalini SH. Molecular dynamics simulations of the effect of the composition of calcium alumino-silicate intergranular films on alumina grain growth. J. Phys. Chem. B 2006;110:2233-40.
49. Stokes SJ. Atomistic modelling studies of fluorite-and perovskite-based oxide materials: University of Bath; 2010.
50. Sun X, Chen Q, Wang C, Li Y, Wang J. Melting and isothermal bulk modulus of the rocksalt phase of ZnO with molecular dynamics simulation. Physica B. 2005;355:126-33.
51. Stoch P, Stoch A. Structure and properties of Cs containing borosilicate glasses studied by molecular dynamics simulations. J. Non-Cryst. Solids. 2015;411:106-14.
52. Cai PZ, Messing GL, Green DJ. Determination of the mechanical response of sintering compacts by cyclic loading dilatometry. J. Am. Ceram. Soc. 1997;80:445-52.
53. Dillon SJ, Harmer MP, Rohrer GS. The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions. J. Am. Ceram. Soc. 2010;93:1796-802.
54. Mullins WW. Theory of thermal grooving. J. Appl. Phys. 1957;28:333-9.
55. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1-19.
56. Yoshiya M, Tatsumi K, Tanaka I, Adachi H. Theoretical study on the chemistry of intergranular glassy film in Si3N4–SiO2 ceramics. J. Am. Ceram. Soc. 2002;85:109-12.
57. Chiang YM, Birnie DP, Kingery WD, Newcomb S. Physical ceramics: principles for ceramic science and engineering: Wiley New York; 1997.
58. Powers J, Glaeser A. Grain boundary migration in ceramics. Interface Sci. 1998;6:23-39.
59. Afshar A, Simchi A. Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process. Scr. Mater. 2008;58:966-9.
60. Ohring M. Materials science of thin films: Elsevier; 2001.
61. Lin YC, Jean JH. Constrained sintering of silver circuit paste. J. Am. Ceram. Soc. 2004;87:187-91.
62. Bang J, Lu GQ. Constrained‐film sintering of a borosilicate glass: In situ measurement of film stresses. J. Am. Ceram. Soc. 1995;78:813-5.
63. Chang JC, Jean JH. Camber development during the cofiring of bi‐layer glass‐based dielectric laminate. J. Am. Ceram. Soc. 2005;88:1165-70.
64. Cai PZ, Green DJ, Messing GL. Constrained densification of alumina/zirconia hybrid laminates, I: experimental observations of processing defects. J. Am. Ceram. Soc. 1997;80:1929-39.
65. Hansen JD, Rusin RP, Teng MH, Johnson DL. Combined‐stage sintering model. J. Am. Ceram. Soc. 1992;75:1129-35.
66. Jud E, Huwiler CB, Gauckler LJ. Sintering analysis of undoped and cobalt oxide doped ceria solid solutions. J. Am. Ceram. Soc. 2005;88:3013-9.
67. Zuo R, Rödel J. Temperature dependence of constitutive behaviour for solid-state sintering of alumina. Acta Mater. 2004;52:3059-67.
68. Lei CD, Jean JH. Effect of crystallization on the stress required for constrained sintering of CaO–B2O3–SiO2 glass–ceramics. J. Am. Ceram. Soc. 2005;88:599-603.
69. Huang CC, Jean JH. Stress required for constrained sintering of a ceramic‐filled glass composite. J. Am. Ceram. Soc. 2004;87:1454-8.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *