|
1. Gongora-Rubio MR, Espinoza-Vallejos P, Sola-Laguna L, Santiago-Avilés JJ. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sensors and Actuators A: Physical. 2001;89:222-41. 2. Lautzenhiser F, Amaya E. Self-constrained LTCC tape. Am. Ceram. Soc. Bull. 2002;81:27-32. 3. Mikeska K, Jensen R. Pressure-assisted sintering of multilayer packages. Ceram Trans. 1989;15:629-50. 4. Vitriol WA, Brown RL. Process for fabricating dimensionally stable interconnect boards. US Patents; 1987. 5. Garino TJ, Bowen HK. Kinetics of constrained‐film sintering. J. Am. Ceram. Soc. 1990;73:251-7. 6. Geller B, Thaler B, Fathy A, Liberatore M, Chen H, Ayers G, et al. LTCC-M: an enabling technology for high performance multilayer RF Systems. J. Microwave. 1999;42:64-72. 7. Mikeska KR, Schaefer DT, Method for reducing shrinkage during firing of ceramic bodies. US Patents; 1994 8. Chang JC, Jean JH. Self‐constrained sintering of mixed low‐temperature‐cofired ceramic laminates. J. Am. Ceram. Soc. 2006;89:829-35. 9. Bian JJ, Kim DW, Hong KS. Glass-free LTCC microwave dielectric ceramics. Mater. Res. Bull. 2005;40:2120-9. 10. Kwon DK, Lanagan MT, Shrout TR. Microwave dielectric properties of BaO–TeO2 binary compounds. Mater. Lett. 2007;61:1827-31. 11. Green DJ, Guillon O, Rödel J. Constrained sintering: A delicate balance of scales. J. Eur. Ceram. Soc. 2008;28:1451-66. 12. Hsu RT, Jean JH, Hung YY. Stress required to densify a low‐fire NiCuZn ferrite under constrained sintering. J. Am. Ceram. Soc. 2008;91:2051-4. 13. Wang X, Atkinson A. Microstructure evolution in thin zirconia films: Experimental observation and modelling. Acta Mater. 2011;59:2514-25. 14. Amaral L, Jamin C, Senos AM, Vilarinho PM, Guillon O. Constrained sintering of BaLa4Ti4O15 thick films: Pore and grain anisotropy. J. Eur. Ceram. Soc. 2013;33:1801-8. 15. Tung YL, Peng TM, Jean JH, Lin SC. Stress development during the co‐firing of integrated ferrite/dielectric laminates. J. Am. Ceram. Soc. 2012;95:946-50. 16. Bordia R, Raj R. Sintering behavior of ceramic films constrained by a rigid substrate. J. Am. Ceram. Soc. 1985;68:287-92. 17. Choe J, Calat JN, Lu GQ. Constrained-film sintering of a gold circuit paste. J. Mater. Res. 1995;10:986-94. 18. Bordia R, Scherer G. Sintering of composites: A critique of the available analyses. Ceramic Powder Science II Transactions Westerville. 1988;1:872-86. 19. Bordia RK, Scherer GW. On constrained sintering—I. Constitutive model for a sintering body. Acta Metall. 1988;36:2393-7. 20. Bordia RK, Scherer GW. On constrained sintering—II. Comparison of constitutive models. Acta Metall. 1988;36:2399-409. 21. Bordia RK, Scherer GW. On constrained sintering—III. Rigid inclusions. Acta Metall. 1988;36:2411-6. 22. Hayden H, Brophy J. The activated sintering of tungsten with group VIII elements. J. Electrochem. Soc. 1963;110:805-10. 23. Gupta VK, Yoon DH, Meyer HM, Luo J. Thin intergranular films and solid-state activated sintering in Nickel-doped Tungsten. Acta Metall. 2007;55:3131-42. 24. Hwang K, Huang H. Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped Molybdenum. Acta Mater. 2003;51:3915-26. 25. Luo J, Wang H, Chiang YM. Origin of solid‐state activated sintering in Bi2O3‐doped ZnO. J. Am. Ceram. Soc. 1999;82:916-20. 26. Wang H, Chiang YM. Thermodynamic stability of intergranular amorphous films in Bismuth‐doped Zinc oxide. J. Am. Ceram. Soc. 1998;81:89-96. 27. Zhang T, Hing P, Huang H, Kilner J. Sintering and grain growth of CoO-doped CeO2 ceramics. J. Eur. Ceram. Soc. 2002;22:27-34. 28. Jud E, Zhang Z, Sigle W, Gauckler LJ. Microstructure of Cobalt oxide doped sintered ceria solid solutions. J. Electroceram. 2006;16:191-7. 29. Kingery WD. Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys. 1959;30:301-6. 30. Kingery W, Narasimhan M. Densification during sintering in the presence of a liquid phase. II. Experimental. J. Appl. Phys. 1959;30:307-10. 31. Jean JH, Gupta T. Liquid-phase sintering in the glass-cordierite system: particle size effect. J. Mater. Sci. 1992;27:4967-73. 32. Gibbs JW. The scientific papers of J. Willard Gibbs: Longmans, Green and Company; 1906. 33. Dillon SJ, Tang M, Carter WC, Harmer MP. Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 2007;55:6208-18. 34. Luo J. Liquid-like interface complexion: From activated sintering to grain boundary diagrams. Curr. Opin. Solid State Mater. Sci. 2008;12:81-8. 35. Luo J. Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. J. Am. Ceram. Soc. 2012;95:2358-71. 36. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. Grain boundary complexions. Acta Mater. 2014;62:1-48. 37. Choi SY, Yoon DY, Kang SJL. Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate. Acta Mater. 2004;52:3721-6. 38. Chung SY, Kang SJL. Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3. Acta Mater. 2003;51:2345-54. 39. Zhang T, Kong LB, Song X, Du Z, Xu W, Li S. Densification behaviour and sintering mechanisms of Cu-or Co-doped SnO2: A comparative study. Acta Mater. 2014;62:81-8. 40. Luo J, Shi X. Grain boundary disordering in binary alloys. Appl. Phys. Lett. 2008;92:101901. 41. Park M, Schuh CA. Accelerated sintering in phase-separating nanostructured alloys. Nat. Commun. 2015;6:6858. 42. Chu YJ, Jean JH. Constrained sintering of a low‐fire, polycrystalline Bi2 (Zn1/3Nb2/3) 2O7 Dielectric. J. Am. Ceram. Soc. 2015;98:1080-6. 43. Lee CF, Jean JH. TiO2添加CuO的活化燒結機制與束縛燒結之研究: 國立清華大學; 2016. 44. Yoshiya M, Tanaka I, Adachi H, Cannon RM. Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics. Int. J. Mater. Res. 2010;101:57-65. 45. 劉威廷. 以分子動力學模擬法探討表面效應對金屬奈米線機械性質之影響. 成功大學材料科學及工程學系學位論文. 2012:1-136. 46. Blonski S, Garofalini SH. Atomistic structure of calcium silicate intergranular films in alumina studied by molecular dynamics simulations. J. Am. Ceram. Soc. 1997;80:1997-2004. 47. Yoshiya M, Tanaka I, Adachi H. Atomic-level modeling and computation of intergranular glassy film in high-purity Si3N4 ceramics. J. Eur. Ceram. Soc. 2012;32:1301-11. 48. Zhang S, Garofalini SH. Molecular dynamics simulations of the effect of the composition of calcium alumino-silicate intergranular films on alumina grain growth. J. Phys. Chem. B 2006;110:2233-40. 49. Stokes SJ. Atomistic modelling studies of fluorite-and perovskite-based oxide materials: University of Bath; 2010. 50. Sun X, Chen Q, Wang C, Li Y, Wang J. Melting and isothermal bulk modulus of the rocksalt phase of ZnO with molecular dynamics simulation. Physica B. 2005;355:126-33. 51. Stoch P, Stoch A. Structure and properties of Cs containing borosilicate glasses studied by molecular dynamics simulations. J. Non-Cryst. Solids. 2015;411:106-14. 52. Cai PZ, Messing GL, Green DJ. Determination of the mechanical response of sintering compacts by cyclic loading dilatometry. J. Am. Ceram. Soc. 1997;80:445-52. 53. Dillon SJ, Harmer MP, Rohrer GS. The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions. J. Am. Ceram. Soc. 2010;93:1796-802. 54. Mullins WW. Theory of thermal grooving. J. Appl. Phys. 1957;28:333-9. 55. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1-19. 56. Yoshiya M, Tatsumi K, Tanaka I, Adachi H. Theoretical study on the chemistry of intergranular glassy film in Si3N4–SiO2 ceramics. J. Am. Ceram. Soc. 2002;85:109-12. 57. Chiang YM, Birnie DP, Kingery WD, Newcomb S. Physical ceramics: principles for ceramic science and engineering: Wiley New York; 1997. 58. Powers J, Glaeser A. Grain boundary migration in ceramics. Interface Sci. 1998;6:23-39. 59. Afshar A, Simchi A. Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process. Scr. Mater. 2008;58:966-9. 60. Ohring M. Materials science of thin films: Elsevier; 2001. 61. Lin YC, Jean JH. Constrained sintering of silver circuit paste. J. Am. Ceram. Soc. 2004;87:187-91. 62. Bang J, Lu GQ. Constrained‐film sintering of a borosilicate glass: In situ measurement of film stresses. J. Am. Ceram. Soc. 1995;78:813-5. 63. Chang JC, Jean JH. Camber development during the cofiring of bi‐layer glass‐based dielectric laminate. J. Am. Ceram. Soc. 2005;88:1165-70. 64. Cai PZ, Green DJ, Messing GL. Constrained densification of alumina/zirconia hybrid laminates, I: experimental observations of processing defects. J. Am. Ceram. Soc. 1997;80:1929-39. 65. Hansen JD, Rusin RP, Teng MH, Johnson DL. Combined‐stage sintering model. J. Am. Ceram. Soc. 1992;75:1129-35. 66. Jud E, Huwiler CB, Gauckler LJ. Sintering analysis of undoped and cobalt oxide doped ceria solid solutions. J. Am. Ceram. Soc. 2005;88:3013-9. 67. Zuo R, Rödel J. Temperature dependence of constitutive behaviour for solid-state sintering of alumina. Acta Mater. 2004;52:3059-67. 68. Lei CD, Jean JH. Effect of crystallization on the stress required for constrained sintering of CaO–B2O3–SiO2 glass–ceramics. J. Am. Ceram. Soc. 2005;88:599-603. 69. Huang CC, Jean JH. Stress required for constrained sintering of a ceramic‐filled glass composite. J. Am. Ceram. Soc. 2004;87:1454-8.
|