|
[1] Stevenson, W., Metals Handbook 9th ed. . Vol. 7. 1985: ASM, Ohio. 1985. [2] Culp, J., D. Huffman, and R.J. Henry, Metals Handbooks, Desk ed. 1985, ASM, Ohio. p. 1. 1985. [3] 陳昭蓉, 以雙盤研磨法製作WC/(Co-Cr-Mo-Ni)超硬合金之開發研究. 2016, 新竹市: 國立清華大學. [4] 林敬翰, 雙盤研磨法製備超硬合金的開發, in 國立清華大學材料科學工程研究所碩士論文. 2012. [5] 陳威伶, 盤研磨法細化超硬合金粉末及改善超硬合金性質之研究, in 國立清華大學材料科學工程研究所碩士論文. 2013. [6] 鍾孟晃, 盤研磨法及液相燒結製備WC/Al-Co-Cr-Cu-Fe-Ni超硬合金之研究, in 國立清華大學材料科學工程研究所碩士論文. 2014. [7] Mari, D., Cermets and Hardmetals. Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., Amsterdam. 2001. [8] Fang, Z.Z., et al., Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide–A Review. International Journal of Refractory Metals and Hard Materials, 2009. 27(2): pp. 288-299. [9] Exner, H., Physical and Chemical Nature of Cemented Carbides. International metals reviews, 2013. [10] Ettmayer, P. and W. Lengauer, The Story of Cermets. Powder Metall. Int., 1989. 21(2): pp. 37-38. [11] Stevenson, W., Metals Handbook. 1985, ASM,(Metals Park, Ohio, 1985). [12] Upadhyaya, A., D. Sarathy, and G. Wagner, Advances in Alloy Design Aspects of Cemented Carbides. Materials & Design, 2001. 22(6): pp. 511-517. [13] Andren, H.-O., Microstructure Development During Sintering and Heat Treatment of Cemented Carbides and Cermets. Materials Chemistry and Physics, 2001. 67(1): pp. 209-213. [14] Akhtar, F., et al., Effect of WC Particle Size on the Microstructure, Mechanical Properties and Fracture Behavior of WC–(W, Ti, Ta) C–6wt% Co Cemented Carbides. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): pp. 405-410. [15] Mills, B., Recent Developments in Cutting Tool Materials. Journal of materials processing technology, 1996. 56(1): pp. 16-23. [16] Tracey, V., Nickel in Hardmetals. International Journal of Refractory Metals and Hard Materials, 1992. 11(3): pp. 137-149. [17] 黃坤祥, 粉末冶金學. 2003. [18] Schubert, W., A. Bock, and B. Lux, General Aspects and Limits of Conventional Ultrafine WC Powder Manufacture and Hard Metal Production. International Journal of Refractory metals and Hard materials, 1995. 13(5): pp. 281-296. [19] Jia, K., T. Fischer, and B. Gallois, Microstructure, Hardness and Toughness of Nanostructured and Conventional WC-Co Composites. Nanostructured Materials, 1998. 10(5): pp. 875-891. [20] Cha, S.I., et al., Mechanical Properties of WC–10Co Cemented Carbides Sintered from Nanocrystalline Spray Conversion Processed Powders. International Journal of Refractory Metals and Hard Materials, 2001. 19(4): pp. 397-403. [21] Zhang, S., Titanium Carbonitride-based Cermets: Processes and Properties. Materials Science and Engineering: A, 1993. 163(1): pp. 141-148. [22] Peng, Y., H. Miao, and Z. Peng, Development of TiCN-based Cermets: Mechanical Properties and Wear Mechanism. International Journal of Refractory Metals and Hard Materials, 2013. 39: pp. 78-89. [23] McCandlish, L.E., B. Kear, and S. Bhatia, Spray Conversion Process for the Production of Nanophase Composite Powders. Patent Number US 5352269, 1994. [24] Kim, B., et al., Structure and Properties of Nanophase WC/Co/VC/TaC Hardmetal. Nanostructured Materials, 1997. 9(1): pp. 233-236. [25] 蘇英源 and 郭金國, 粉末冶金學. 2001. [26] Bhaumik, S.K., G.S. Upadhyaya, and M.L. Vaidya, A Transmission Electron Microscopy Study of WC-10Co Cemented Carbides with Modified Hard and Binder Phases. Materials characterization, 1992. 28(4): pp. 241-249. [27] Wang, X., Z.Z. Fang, and H.Y. Sohn, Grain Growth During the Early Stage of Sintering of Nanosized WC–Co Powder. International Journal of Refractory Metals and Hard Materials, 2008. 26(3): pp. 232-241. [28] Seo, O., S. Kang, and E.J. Lavernia, Growth Inhibition of Nano-WC Particles in WC-Co Alloys During Liquid-phase Sintering. Materials Transactions, 2003. 44(11): pp. 2339-2345. [29] Mahmoodan, M., H. Aliakbarzadeh, and R. Gholamipour, Sintering of WC-10% Co Nano-powders Containing TaC and VC Grain Growth Inhibitors. Transactions of Nonferrous Metals Society of China, 2011. 21(5): pp. 1080-1084. [30] Pang, C., J. Luo, and Z. Guo, Microstructure and Properties of Ultrafine WC-10Co Composites with Chemically Doped VC. Rare Metals, 2011. 30(2): pp. 183-188. [31] Jaroenworaluck, A., et al., Segregation of Vanadium at the WC/Co Interface in VC-doped WC-Co. Journal of materials research, 1998. 13(09): pp. 2450-2452. [32] Lee, H.R., et al., Role of Vanadium Carbide Additive During Sintering of WC–Co:Mechanism of Grain Growth Inhibition. Journal of the American ceramic society, 2003. 86(1): pp. 152-154. [33] Sadangi, R., et al., Grain Growth Inhibition in Liquid Phase Sintered Nanophase WC/Co Alloys. Advances in powder metallurgy and particulate materials, 1998. 1: pp. 1-51. [34] Luyckx, S. and A. Love, The Dependence of the Contiguity of WC on Co Content and its Independence from WC Grain Size in WC–Co Alloys. International Journal of Refractory Metals and Hard Materials, 2006. 24(1): pp. 75-79. [35] Golovchan, V. and N. Litoshenko, On the Contiguity of Carbide Phase in WC–Co Hardmetals. International Journal of Refractory Metals and Hard Materials, 2003. 21(5): pp. 241-244. [36] 陳羽辰, WC與Al0.5CoCrCuFeNi燒結超硬合金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2004. [37] 鄭家沐, TiC與Al0.5CoCrCuFeNi燒結瓷金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2005. [38] 黃聖閔, TiC與Co1.5CrFeNi1.5Ti0.5燒結瓷金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2006. [39] 曾培原, TiC 與 Co1. 5CrFeNi1. 5TiNb0. 1V0. 1 燒結超硬合金之開發研究. 清華大學材料科學工程學系學位論文, 2009: pp. 1-129. [40] 葉欲安, 多元高熵碳化物合成及其燒結瓷金之開發研究, in 國立清華大學材料科學工程研究所碩士論文. 2010. [41] 蔡佩臻, 多元高熵碳化物(MoNbTiWZr)C及其瓷金的開發研究, in 國立清華大學材料科學工程研究所碩士論文. 2011. [42] Enayati, M., G. Aryanpour, and A. Ebnonnasir, Production of Nanostructured WC–Co powder by Ball Milling. International Journal of Refractory Metals and Hard Materials, 2009. 27(1): pp. 159-163. [43] Suryanarayana, C., Mechanical Alloying and Milling. Progress in materials science, 2001. 46(1): pp. 1-184. [44] Fang, Z. and J.W. Eason, Study of Nanostructured WC-Co Composites. International Journal of Refractory Metals and Hard Materials, 1995. 13(5): pp. 297-303. [45] Rahaman, M.N., Ceramic Processing. 2006: Wiley Online Library. [46] 伍祖璁 and 黃錦鐘, 粉末冶金. 1996, 高立圖書有限公司. [47] German, R.M., P. Suri, and S.J. Park, Review: Liquid Phase Sintering. Journal of Materials Science, 2009. 44(1): pp. 1-39. [48] German, R.M., S. Farooq, and C. Kipphut, Kinetics of Liquid Sintering. Materials Science and Engineering: A, 1988. 105: pp. 215-224. [49] Porter, D., Easterling,“KE (1992). Phase Transformations in Metals and Alloys,”. London: Chapman k Hall, 1992: pp. 147. [50] Kim, H.-C., D.-Y. Oh, and I.-J. Shon, Sintering of Nanophase WC–15vol.% Co Hard Metals by Rapid Sintering Process. International Journal of Refractory Metals and Hard Materials, 2004. 22(4): pp. 197-203. [51] Wei, C., et al., Microstructure and Properties of Ultrafine Cemented Carbides—Differences in Spark Plasma Sintering and Sinter-HIP. Materials Science and Engineering: A, 2012. 552: pp. 427-433. [52] Upadhyaya, G.S., Cemented Tungsten Carbides: Production, Properties and Testing. 1998: William Andrew. [53] Cha, S.I., S.H. Hong, and B.K. Kim, Spark Plasma Sintering Behavior of Nanocrystalline WC–10Co Cemented Carbide Powders. Materials Science and Engineering: A, 2003. 351(1): pp. 31-38. [54] Deorsola, F.A., et al., Densification of Ultrafine WC–12Co Cermets by Pressure Assisted Fast Electric Sintering. International Journal of Refractory Metals and Hard Materials, 2010. 28(2): pp. 254-259. [55] Huang, S., et al., VC, Cr3C2 and NbC Doped WC–Co Cemented Carbides Prepared by Pulsed Electric Current Sintering. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): pp. 417-422. [56] Maizza, G., et al., Relation Between Microstructure, Properties and Spark Plasma Sintering (SPS) Parameters of Pure Ultrafine WC Powder. Science and Technology of Advanced Materials, 2007. 8(7): pp. 644-654. [57] Kessel, H., et al., Rapid Sintering of Novel Materials by FAST/SPS—Further Development to the Point of an Industrial Production Process with High Cost Efficiency. FCT Systeme GmbH, 2010. 96528. [58] Yeh, J.W., et al., Nanostructured High‐entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): pp. 299-303. [59] 蔡哲瑋, ” CuCoNiCrAlxFe 高熵合金加工變形及微結構之探討. 碩士論文, 國立清華大學材料科學工程研究所, 2003. [60] 賴高廷, 葉均蔚, and 陳瑞凱, 高亂度合金微結構及性質探討. 碩士論文, 國立清華大學材料科學工程研究所, 1998. [61] 陳宣佑, Al-Cr-Cu-Fe-Mn-Ni 高熵合金變形及退火行為之研究. 2004. [62] 黃炳剛, AlCrNbSiTiV 高熵合金及其氮化物濺鍍薄膜之研究. 清華大學材料科學工程學系學位論文, 2009: pp. 1-161. [63] 郭彥甫, Al-Cr-Fe-Mn-Ni 高熵合金變形及時效行為之研究. 碩士論文, 國立清華大學材料科學工程研究所, 2005. [64] 鄭耿豪, 利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜. 2005. [65] Rizzo, A., et al., Improved Properties of TiAlN Coatings through the Multilayer Structure. Surface and Coatings Technology, 2013. 235: pp. 475-483. [66] Subramanian, C. and K.N. Strafford, Review of Multicomponent and Multilayer Coatings for Tribological Applications. Wear, 1993. 165(1): pp. 85-95. [67] Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 2012. 9(7): pp. 671-675. [68] Zhou, S., et al., Thermodynamics of the Formation of Contiguity between Ceramic Grains and Interface Structures of Ti(C,N)-based Cermets. International Journal of Refractory Metals and Hard Materials, 2009. 27(4): pp. 740-746. [69] Eso, O., Z. Fang, and A. Griffo, Liquid Phase Sintering of Functionally Graded WC–Co Composites. International Journal of Refractory Metals and Hard Materials, 2005. 23(4): pp. 233-241. [70] Eso, O., Z.Z. Fang, and A. Griffo, Kinetics of Cobalt Gradient formation During the Liquid Phase Sintering of Functionally Graded WC–Co. International Journal of Refractory Metals and Hard Materials, 2007. 25(4): pp. 286-292. [71] Gurland, J., A Study of the Effect of Carbon Content on the Structure and Properties of Sintered WC-Co Alloys. Transactions AIME, 1954. 200: pp. 285-290. [72] Fernandes, C., A. Senos, and M. Vieira, Control of Eta Carbide Formation in Tungsten Carbide Powders Sputter-coated with (Fe/Ni/Cr). International Journal of Refractory Metals and Hard Materials, 2007. 25(4): pp. 310-317. [73] Pollock, C. and H. Stadelmaier, The Eta Carbides in the Fe-W-C and Co-W-C Systems. Metallurgical Transactions, 1970. 1(4): pp. 767-770. [74] Li, Y., et al., First-principles Study on the Stability and Mechanical Property of Eta M3W3C (M= Fe, Co, Ni) Compounds. Physica B: Condensed Matter, 2010. 405(3): pp. 1011-1017. [75] Takeuchi, A. and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 2005. 46(12): pp. 2817-2829. [76] Guo, Z., et al., Effect of Mo2C on the Microstructure and Properties of WC–TiC–Ni Cemented Carbide. International Journal of Refractory Metals and Hard Materials, 2008. 26(6): pp. 601-605. [77] Exner, H.E. and J. Gurland, A Review of Parameters Influencing Some Mechanical Properties of Tungsten Carbide–Cobalt Alloys. Powder Metallurgy, 2014. 13(25): pp. 13-31. [78] Kim, C.-S., T.R. Massa, and G.S. Rohrer, Modeling the Relationship between Microstructural Features and the Strength of WC–Co Composites. International Journal of Refractory Metals and Hard Materials, 2006. 24(1-2): pp. 89-100. [79] Schubert, W., et al., Hardness to Toughness Relationship of Fine-grained WC-Co Hardmetals. International Journal of Refractory Metals and Hard Materials, 1998. 16(2): pp. 133-142. [80] Furushima, R., et al., Relationship between Hardness and Fracture Toughness in WC–FeAl Composites Fabricated by Pulse Current Sintering Technique. International Journal of Refractory Metals and Hard Materials, 2014. 42: pp. 42-46. [81] The technical data of Kyocera cutting tool, Kyocera company, 2016. [82] C. Subramanian and K. N. Strafford, Review of Multicomponent and Multilayer Coatings for Tribological Applications. Wear, 165 (1993) 85-95.
|