帳號:guest(18.227.24.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏勲
作者(外文):Chen, Bo-Shiun
論文名稱(中文):以雙盤研磨法及液相燒結法開發TiC-WC/(Co-Cr-Mo-Ni) 超硬合金之研究
論文名稱(外文):Development of TiC-WC/(Co-Cr-Mo-Ni) Cemented Carbide by Twin Disk Milling and Liquid Phase Sintering
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien-Wei
口試委員(中文):李勝隆
洪健龍
蔡銘洪
口試委員(外文):Lee, Sheng-Long
Hong, Jian-Long
Tsai, Ming-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031555
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:166
中文關鍵詞:雙盤研磨粉末冶金液相燒結超硬合金
外文關鍵詞:TwinDiskMillingPowderMetallurgyLiquidPhaseSinteringHardmetals
相關次數:
  • 推薦推薦:0
  • 點閱點閱:157
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
超硬合金結合了陶瓷材料的硬度及金屬材料的韌性,成為綜合性質表現優異的材料,因此在工業界被廣泛的應用。其中又以碳化鎢 (WC) 為主的超硬合金和碳化鈦 (TiC) 為主的瓷金佔大多數。
相較於單元強化相之超硬合金系統,本實驗結合高韌性之碳化鎢(WC) 及高硬度之碳化鈦 (TiC) 系統,以新開發之研磨法初步細化原料粉末後,進行水平球磨及液相燒結,並針對TiC添加量、補碳量、膠結相調整等參數進行研究後,成功開發出兼具硬度及韌性之超硬合金。
本研究表現最優異之成分配比,其硬度-破裂韌性組合可高於文獻中WC/Co超硬合金之 KIC-Hv帶狀分布曲線之上限,顯示其優於傳統液相燒結 WC/Co 超硬瓷金。將本研究所開發出的成分配比進行銑刀測試後,發現其切削性質優於商用銑刀,表示本研究具有刀具的商業應用潛力。
Hardmetals consist of hard phase, which provides hardness and metal, which provides toughness. Because of the excellent mechanical performance of hardmetals, they are widely used in industry. Hardmetals mainly consist of WC-based cemented carbide and TiC-based cermet.
Compared to hard metals with only single hard phase, WC system and TiC system are combined in this research. First of all, we use newly-developed milling to refine the grain size of raw powder material. Then, we use 2D ball milling and liquid phase sintering to seek the best composition. Finally, we successfully developed hardmetals with high hardness and toughness.
The hardness-toughness distribution of the most outstanding composition in this study lies above the hardness-toughness band distribution curve limit of traditional WC/Co hardmetals, which represents its high performance. After performing cutting milling test, we found the cutting milling performance of the samples in this study are better than that of commercial cutters, which means our system owns the commercial potential in cutting tools.
摘要 I
Abstract II
致謝 III
目錄 VII
圖目錄 XII
表目錄 XVIII
壹、前言 1
貳、文獻回顧 3
2.1超硬合金 3
2.1.1超硬合金簡介 3
2.1.2超硬合金發展歷史 7
2.1.3近代超硬合金及未來發展趨勢 11
2.1.4超硬合金應用 14
2.2影響超硬合金機械性質因素 15
2.2.1晶粒尺寸大小 15
2.2.2金屬膠結相含量 16
2.2.3金屬膠結相對碳化物的溶解度及潤濕能力 17
2.2.4多元碳化物的添加 19
2.2.5 WC/WC界面連續性 (Contiguity) 23
2.3粉末製備方式 25
2.3.1粉末製備方式簡介 25
2.3.2高能球磨法 31
2.3.3噴霧轉化法 35
2.4燒結方式及機制 37
2.4.1固相燒結 38
2.4.2液相燒結 41
2.4.3燒結方式簡介 49
2.5高熵合金 54
2.5.1高熵合金發展背景 54
2.5.2高熵合金之特性 56
参、實驗方式 59
3.1成分設計與流程 59
3.2雙盤研磨法製程 61
3.2.1第三代雙盤研磨機台設計與改良 61
3.2.2雙盤研磨機操作流程 64
3.3粉末成型及燒結 66
3.3.1水平球磨 66
3.3.2生胚成型 66
3.3.3燒結製程 67
3.4性質量測與其他分析 70
3.4.1 X-Ray 繞射分析 70
3.4.2微結構與 EDS 成分分析 70
3.4.3密度量測 71
3.4.4硬度與破裂韌性量測 72
3.4.5銑刀切削測試 74
肆、結果與討論 77
4.1 TiC與WC比例變量之結果 77
4.1.1 (TiC)1(WC)9-CCMN 79
4.1.2 (TiC)2(WC)8-CCMN 82
4.1.3 (TiC)3(WC)7-CCMN 85
4.1.4 (TiC)4(WC)6-CCMN 88
4.1.5 (TiC)5(WC)5-CCMN 91
4.1.6機械性質比較 94
4.2少量TiC添加對於機械性質的影響 97
4.2.1 (TiC)0.5(WC)9.5-CCMN 99
4.2.2 3 at.% TiC至7 at.% TiC試片之機械性質比較 102
4.3最高溫持溫時間對於試片之影響 105
4.3.1 (TiC)0.6(WC)9.4-CCMN (2 hrs. sintering) 106
4.3.2 3 at.% TiC至6 at.% TiC試片之機械性質變化 (2hrs. sintering) 108
4.4 Ti元素添加對於試片的影響 110
4.4.1 (TiC)0.5(WC)9.5-CCMNT 111
4.4.2 (TiC)0.5(WC)9.5-CCMNT系列之XRD分析 114
4.4.3 (TiC)0.5(WC)9.5-CCMNT系列之機械性質探討 118
4.5雙盤研磨對於機械性質之影響
4.5.1 (TiC)0.5(WC)9.5-CCMN 123
4.5.2 (TiC)0.6(WC)9.4-CCMN 124
4.5.3 (TiC)0.5(WC)9.5-CCMNT 128
4.6試片之硬度與破裂韌性總整理 130
4.7銑刀切削測試 133
4.7.1一吋試片製備 138
4.7-2切削304不鏽鋼 141
4.7.3切削SKD11冷工具鋼 148
4.7.4綜合比較 155
伍、結論 156
陸、本研究貢獻 158
柒、建議未來研究方向 159
捌、引用文獻 160
[1] Stevenson, W., Metals Handbook 9th ed. . Vol. 7. 1985: ASM, Ohio. 1985.
[2] Culp, J., D. Huffman, and R.J. Henry, Metals Handbooks, Desk ed. 1985, ASM, Ohio. p. 1. 1985.
[3] 陳昭蓉, 以雙盤研磨法製作WC/(Co-Cr-Mo-Ni)超硬合金之開發研究. 2016, 新竹市: 國立清華大學.
[4] 林敬翰, 雙盤研磨法製備超硬合金的開發, in 國立清華大學材料科學工程研究所碩士論文. 2012.
[5] 陳威伶, 盤研磨法細化超硬合金粉末及改善超硬合金性質之研究, in 國立清華大學材料科學工程研究所碩士論文. 2013.
[6] 鍾孟晃, 盤研磨法及液相燒結製備WC/Al-Co-Cr-Cu-Fe-Ni超硬合金之研究, in 國立清華大學材料科學工程研究所碩士論文. 2014.
[7] Mari, D., Cermets and Hardmetals. Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., Amsterdam. 2001.
[8] Fang, Z.Z., et al., Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide–A Review. International Journal of Refractory Metals and Hard Materials, 2009. 27(2): pp. 288-299.
[9] Exner, H., Physical and Chemical Nature of Cemented Carbides. International metals reviews, 2013.
[10] Ettmayer, P. and W. Lengauer, The Story of Cermets. Powder Metall. Int., 1989. 21(2): pp. 37-38.
[11] Stevenson, W., Metals Handbook. 1985, ASM,(Metals Park, Ohio, 1985).
[12] Upadhyaya, A., D. Sarathy, and G. Wagner, Advances in Alloy Design Aspects of Cemented Carbides. Materials & Design, 2001. 22(6): pp. 511-517.
[13] Andren, H.-O., Microstructure Development During Sintering and Heat Treatment of Cemented Carbides and Cermets. Materials Chemistry and Physics, 2001. 67(1): pp. 209-213.
[14] Akhtar, F., et al., Effect of WC Particle Size on the Microstructure, Mechanical Properties and Fracture Behavior of WC–(W, Ti, Ta) C–6wt% Co Cemented Carbides. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): pp. 405-410.
[15] Mills, B., Recent Developments in Cutting Tool Materials. Journal of materials processing technology, 1996. 56(1): pp. 16-23.
[16] Tracey, V., Nickel in Hardmetals. International Journal of Refractory Metals and Hard Materials, 1992. 11(3): pp. 137-149.
[17] 黃坤祥, 粉末冶金學. 2003.
[18] Schubert, W., A. Bock, and B. Lux, General Aspects and Limits of Conventional Ultrafine WC Powder Manufacture and Hard Metal Production. International Journal of Refractory metals and Hard materials, 1995. 13(5): pp. 281-296.
[19] Jia, K., T. Fischer, and B. Gallois, Microstructure, Hardness and Toughness of Nanostructured and Conventional WC-Co Composites. Nanostructured Materials, 1998. 10(5): pp. 875-891.
[20] Cha, S.I., et al., Mechanical Properties of WC–10Co Cemented Carbides Sintered from Nanocrystalline Spray Conversion Processed Powders. International Journal of Refractory Metals and Hard Materials, 2001. 19(4): pp. 397-403.
[21] Zhang, S., Titanium Carbonitride-based Cermets: Processes and Properties. Materials Science and Engineering: A, 1993. 163(1): pp. 141-148.
[22] Peng, Y., H. Miao, and Z. Peng, Development of TiCN-based Cermets: Mechanical Properties and Wear Mechanism. International Journal of Refractory Metals and Hard Materials, 2013. 39: pp. 78-89.
[23] McCandlish, L.E., B. Kear, and S. Bhatia, Spray Conversion Process for the Production of Nanophase Composite Powders. Patent Number US 5352269, 1994.
[24] Kim, B., et al., Structure and Properties of Nanophase WC/Co/VC/TaC Hardmetal. Nanostructured Materials, 1997. 9(1): pp. 233-236.
[25] 蘇英源 and 郭金國, 粉末冶金學. 2001.
[26] Bhaumik, S.K., G.S. Upadhyaya, and M.L. Vaidya, A Transmission Electron Microscopy Study of WC-10Co Cemented Carbides with Modified Hard and Binder Phases. Materials characterization, 1992. 28(4): pp. 241-249.
[27] Wang, X., Z.Z. Fang, and H.Y. Sohn, Grain Growth During the Early Stage of Sintering of Nanosized WC–Co Powder. International Journal of Refractory Metals and Hard Materials, 2008. 26(3): pp. 232-241.
[28] Seo, O., S. Kang, and E.J. Lavernia, Growth Inhibition of Nano-WC Particles in WC-Co Alloys During Liquid-phase Sintering. Materials Transactions, 2003. 44(11): pp. 2339-2345.
[29] Mahmoodan, M., H. Aliakbarzadeh, and R. Gholamipour, Sintering of WC-10% Co Nano-powders Containing TaC and VC Grain Growth Inhibitors. Transactions of Nonferrous Metals Society of China, 2011. 21(5): pp. 1080-1084.
[30] Pang, C., J. Luo, and Z. Guo, Microstructure and Properties of Ultrafine WC-10Co Composites with Chemically Doped VC. Rare Metals, 2011. 30(2): pp. 183-188.
[31] Jaroenworaluck, A., et al., Segregation of Vanadium at the WC/Co Interface in VC-doped WC-Co. Journal of materials research, 1998. 13(09): pp. 2450-2452.
[32] Lee, H.R., et al., Role of Vanadium Carbide Additive During Sintering of WC–Co:Mechanism of Grain Growth Inhibition. Journal of the American ceramic society, 2003. 86(1): pp. 152-154.
[33] Sadangi, R., et al., Grain Growth Inhibition in Liquid Phase Sintered Nanophase WC/Co Alloys. Advances in powder metallurgy and particulate materials, 1998. 1: pp. 1-51.
[34] Luyckx, S. and A. Love, The Dependence of the Contiguity of WC on Co Content and its Independence from WC Grain Size in WC–Co Alloys. International Journal of Refractory Metals and Hard Materials, 2006. 24(1): pp. 75-79.
[35] Golovchan, V. and N. Litoshenko, On the Contiguity of Carbide Phase in WC–Co Hardmetals. International Journal of Refractory Metals and Hard Materials, 2003. 21(5): pp. 241-244.
[36] 陳羽辰, WC與Al0.5CoCrCuFeNi燒結超硬合金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2004.
[37] 鄭家沐, TiC與Al0.5CoCrCuFeNi燒結瓷金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2005.
[38] 黃聖閔, TiC與Co1.5CrFeNi1.5Ti0.5燒結瓷金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2006.
[39] 曾培原, TiC 與 Co1. 5CrFeNi1. 5TiNb0. 1V0. 1 燒結超硬合金之開發研究. 清華大學材料科學工程學系學位論文, 2009: pp. 1-129.
[40] 葉欲安, 多元高熵碳化物合成及其燒結瓷金之開發研究, in 國立清華大學材料科學工程研究所碩士論文. 2010.
[41] 蔡佩臻, 多元高熵碳化物(MoNbTiWZr)C及其瓷金的開發研究, in 國立清華大學材料科學工程研究所碩士論文. 2011.
[42] Enayati, M., G. Aryanpour, and A. Ebnonnasir, Production of Nanostructured WC–Co powder by Ball Milling. International Journal of Refractory Metals and Hard Materials, 2009. 27(1): pp. 159-163.
[43] Suryanarayana, C., Mechanical Alloying and Milling. Progress in materials science, 2001. 46(1): pp. 1-184.
[44] Fang, Z. and J.W. Eason, Study of Nanostructured WC-Co Composites. International Journal of Refractory Metals and Hard Materials, 1995. 13(5): pp. 297-303.
[45] Rahaman, M.N., Ceramic Processing. 2006: Wiley Online Library.
[46] 伍祖璁 and 黃錦鐘, 粉末冶金. 1996, 高立圖書有限公司.
[47] German, R.M., P. Suri, and S.J. Park, Review: Liquid Phase Sintering. Journal of Materials Science, 2009. 44(1): pp. 1-39.
[48] German, R.M., S. Farooq, and C. Kipphut, Kinetics of Liquid Sintering. Materials Science and Engineering: A, 1988. 105: pp. 215-224.
[49] Porter, D., Easterling,“KE (1992). Phase Transformations in Metals and Alloys,”. London: Chapman k Hall, 1992: pp. 147.
[50] Kim, H.-C., D.-Y. Oh, and I.-J. Shon, Sintering of Nanophase WC–15vol.% Co Hard Metals by Rapid Sintering Process. International Journal of Refractory Metals and Hard Materials, 2004. 22(4): pp. 197-203.
[51] Wei, C., et al., Microstructure and Properties of Ultrafine Cemented Carbides—Differences in Spark Plasma Sintering and Sinter-HIP. Materials Science and Engineering: A, 2012. 552: pp. 427-433.
[52] Upadhyaya, G.S., Cemented Tungsten Carbides: Production, Properties and Testing. 1998: William Andrew.
[53] Cha, S.I., S.H. Hong, and B.K. Kim, Spark Plasma Sintering Behavior of Nanocrystalline WC–10Co Cemented Carbide Powders. Materials Science and Engineering: A, 2003. 351(1): pp. 31-38.
[54] Deorsola, F.A., et al., Densification of Ultrafine WC–12Co Cermets by Pressure Assisted Fast Electric Sintering. International Journal of Refractory Metals and Hard Materials, 2010. 28(2): pp. 254-259.
[55] Huang, S., et al., VC, Cr3C2 and NbC Doped WC–Co Cemented Carbides Prepared by Pulsed Electric Current Sintering. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): pp. 417-422.
[56] Maizza, G., et al., Relation Between Microstructure, Properties and Spark Plasma Sintering (SPS) Parameters of Pure Ultrafine WC Powder. Science and Technology of Advanced Materials, 2007. 8(7): pp. 644-654.
[57] Kessel, H., et al., Rapid Sintering of Novel Materials by FAST/SPS—Further Development to the Point of an Industrial Production Process with High Cost Efficiency. FCT Systeme GmbH, 2010. 96528.
[58] Yeh, J.W., et al., Nanostructured High‐entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): pp. 299-303.
[59] 蔡哲瑋, ” CuCoNiCrAlxFe 高熵合金加工變形及微結構之探討. 碩士論文, 國立清華大學材料科學工程研究所, 2003.
[60] 賴高廷, 葉均蔚, and 陳瑞凱, 高亂度合金微結構及性質探討. 碩士論文, 國立清華大學材料科學工程研究所, 1998.
[61] 陳宣佑, Al-Cr-Cu-Fe-Mn-Ni 高熵合金變形及退火行為之研究. 2004.
[62] 黃炳剛, AlCrNbSiTiV 高熵合金及其氮化物濺鍍薄膜之研究. 清華大學材料科學工程學系學位論文, 2009: pp. 1-161.
[63] 郭彥甫, Al-Cr-Fe-Mn-Ni 高熵合金變形及時效行為之研究. 碩士論文, 國立清華大學材料科學工程研究所, 2005.
[64] 鄭耿豪, 利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜. 2005.
[65] Rizzo, A., et al., Improved Properties of TiAlN Coatings through the Multilayer Structure. Surface and Coatings Technology, 2013. 235: pp. 475-483.
[66] Subramanian, C. and K.N. Strafford, Review of Multicomponent and Multilayer Coatings for Tribological Applications. Wear, 1993. 165(1): pp. 85-95.
[67] Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 2012. 9(7): pp. 671-675.
[68] Zhou, S., et al., Thermodynamics of the Formation of Contiguity between Ceramic Grains and Interface Structures of Ti(C,N)-based Cermets. International Journal of Refractory Metals and Hard Materials, 2009. 27(4): pp. 740-746.
[69] Eso, O., Z. Fang, and A. Griffo, Liquid Phase Sintering of Functionally Graded WC–Co Composites. International Journal of Refractory Metals and Hard Materials, 2005. 23(4): pp. 233-241.
[70] Eso, O., Z.Z. Fang, and A. Griffo, Kinetics of Cobalt Gradient formation During the Liquid Phase Sintering of Functionally Graded WC–Co. International Journal of Refractory Metals and Hard Materials, 2007. 25(4): pp. 286-292.
[71] Gurland, J., A Study of the Effect of Carbon Content on the Structure and Properties of Sintered WC-Co Alloys. Transactions AIME, 1954. 200: pp. 285-290.
[72] Fernandes, C., A. Senos, and M. Vieira, Control of Eta Carbide Formation in Tungsten Carbide Powders Sputter-coated with (Fe/Ni/Cr). International Journal of Refractory Metals and Hard Materials, 2007. 25(4): pp. 310-317.
[73] Pollock, C. and H. Stadelmaier, The Eta Carbides in the Fe-W-C and Co-W-C Systems. Metallurgical Transactions, 1970. 1(4): pp. 767-770.
[74] Li, Y., et al., First-principles Study on the Stability and Mechanical Property of Eta M3W3C (M= Fe, Co, Ni) Compounds. Physica B: Condensed Matter, 2010. 405(3): pp. 1011-1017.
[75] Takeuchi, A. and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 2005. 46(12): pp. 2817-2829.
[76] Guo, Z., et al., Effect of Mo2C on the Microstructure and Properties of WC–TiC–Ni Cemented Carbide. International Journal of Refractory Metals and Hard Materials, 2008. 26(6): pp. 601-605.
[77] Exner, H.E. and J. Gurland, A Review of Parameters Influencing Some Mechanical Properties of Tungsten Carbide–Cobalt Alloys. Powder Metallurgy, 2014. 13(25): pp. 13-31.
[78] Kim, C.-S., T.R. Massa, and G.S. Rohrer, Modeling the Relationship between Microstructural Features and the Strength of WC–Co Composites. International Journal of Refractory Metals and Hard Materials, 2006. 24(1-2): pp. 89-100.
[79] Schubert, W., et al., Hardness to Toughness Relationship of Fine-grained WC-Co Hardmetals. International Journal of Refractory Metals and Hard Materials, 1998. 16(2): pp. 133-142.
[80] Furushima, R., et al., Relationship between Hardness and Fracture Toughness in WC–FeAl Composites Fabricated by Pulse Current Sintering Technique. International Journal of Refractory Metals and Hard Materials, 2014. 42: pp. 42-46.
[81] The technical data of Kyocera cutting tool, Kyocera company, 2016.
[82] C. Subramanian and K. N. Strafford, Review of Multicomponent and Multilayer Coatings for Tribological Applications. Wear, 165 (1993) 85-95.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *