帳號:guest(18.116.81.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何奕霆
作者(外文):Ho, I-Ting
論文名稱(中文):添加成核劑對雷射積層製造IN718微結構之影響與改善雷射積層製造應力誘發相變化之超合金設計
論文名稱(外文):Microstructure evolution induced by inoculants in Selective Laser Melting of IN718 and Mitigation of stress-induced phase transformation in superalloy processed by Selective Laser Melting
指導教授(中文):葉安洲
指導教授(外文):Yeh, An-Chou
口試委員(中文):康永昌
陳志鵬
蔡哲瑋
口試委員(外文):Kang, Yung-Chang
Chen, Chih-Peng
Tsai, Tse-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031554
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:79
中文關鍵詞:雷射積層製造超合金成核劑合金設計
外文關鍵詞:Selective Laser MeltingSuperalloysInoculantAlloy design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:447
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以改善雷射積層製造超合金為目的,研究WC-W2C共晶成核劑對雷射積層製造IN718晶粒結構之影響,以及透過合金設計提升雷射積層製造超合金之可列印性並改善在發生在雷射積層製造IN718中應力誘發相變化之問題。
在加入WC-W2C共晶成核劑後,從SEM及EBSD的影像觀察可以在成核劑表面及因部分熔融之成核劑與IN718混合所產生之擴散層發現成核並成長的晶粒;同時,根據晶粒大小分布分析,與沒加入成核劑之雷射積層製造IN718相比,加入成核劑之雷射積層製造IN718擁有較小的晶粒,說明成核劑對雷射積層製造IN718之晶粒細化有一定的影響。而在熱處理過後,從SEM及EBSD的影像觀察可以發現成核劑表面上晶粒的進一步成核與成長,同時促使富含鈮的析出物在晶界上析出,透過晶粒大小分布分析,可以確認在熱處理的過程中再結晶的發生,同時當提高熱處理溫度後,晶粒成長也會變得更為顯著。透過理論分析,可以確認WC-W2C共晶成核劑能夠提供IN718適當的介面及較小的接觸角,使IN718能夠在該成核劑異質成核並成長;不過根據理論估算及EBSD的殘留應力分析,WC-W2C共晶成核劑與IN718基材或擴散層之介面並沒有因熱漲冷縮差異產生額外的應力殘留,又殘留應力為促進再結晶之主要驅動力,因此可以推斷WC-W2C共晶成核劑對雷射積層製造IN718晶粒結構之影響與細化主要為異質成核而非額外的殘留應力。
另一方面,透過模擬軟體JMatPro及Thermocalc的計算,可以發現新合金擁有比IN718更少的TCP脆硬相,並且是以穩定之γ’為強化相。而雷射積層製造的結果也證明該合金可以成功被列印出來,並且沒有發生裂痕的生成。在熱處理之後,除了γ’強化相及碳化鈮外,並未發現其他TCP脆硬相之生成,而這也證明透過適當的合金設計,可以成功改善發生在雷射積層製造IN718中因應力誘發相變化所產生脆硬相生成之問題。
This study focuses on two subjects concerning Selective Laser Melting (SLM) of Superalloys – the microstructure variation controlled by eutectic WC-W2C inoculants in SLM IN718, and the alloy design for desirable processability and better phase stability than IN718 to prevent the formation of detrimental phases induced by stress-induced phase transformation during SLM.
The microstructure of as-SLM IN718 with inoculant addition indicates that grain nucleation occurred on the surface of inoculants and diffusion layer composed of a mixture of compositions of IN718 and inoculants, the grain size distribution also suggests that eutectic WC-W2C inoculants could slightly facilitate grain refinement. After post heat-treatment, more grains nucleated around the inoculants and Nb-rich precipitates grew along the grain boundaries; grain size distribution analysis reveals that recrystallization and grain growth occurred during post heat-treatment and became more pronounced with an increase of post heat-treatment temperature and time. In order to elucidate the underlying mechanism, both theoretical and experimental analysis were performed; in summary, instead of residual stress induced by the difference of the thermal expansion coefficient between eutectic WC-W2C inoculant and IN718, heterogeneous nucleation is the primary mechanism through which inoculants can influence the grain structure of SLM IN718.
The results analyzed by JMatPro and Thermocalc indicate that unlike IN718, the newly-designed Nickel-based superalloy possesses less TCP phases and was strengthened by thermodynamically stable γ’ precipitates. Microstructure observations for SLM specimens confirm that this superalloy could be successfully fabricated by SLM. After post heat-treatment, only γ’ precipitates and NbC could be found in the microstructure, suggesting that through alloy design, the new superalloy could be more suitable than IN718 to prevent the formation of detrimental phases induced by stress-induced phase transformation.
Table of contents
Abstract I
摘要 II
Acknowledgement III
1. Introduction 1
1.1. Background 1
1.2. Motivation and Goals 2
2. Literature Review 4
2.1. Strengthening mechanisms of γ’-bearing superalloys at elevated temperatures 4
2.2. Restrictions of conventional forming and welding process to superalloys with high γ’ volume fraction 9
2.3. Recent researches on Selective Laser Melting of superalloys 12
2.4. Recent studies on grain refinement of superalloys by adding inoculants 18
2.5. Alloy design tools – JmatPro and Thermocalc 20
2.6. The effects of refractory elements on microstructure, mechanical properties and segregation behaviors of Nickel-based superalloys 21
3. Materials and Methods 23
3.1. Experimental procedures 23
3.1.1. Microstructure evolution induced by inoculants during Selective Laser Melting of IN718 23
3.1.2. Alloy design for Selective Laser Melting 25
3.2. Alloy design 27
3.3. Powders 30
3.4. Selective Laser Melting 33
3.5. Differential Thermal Analyzer 36
3.6. Differential Scanning Calorimetry (DSC) 36
3.7. X-ray Diffractometer (XRD) 36
3.8. Post Heat-treatment 37
3.9. Optical Metallography (OM) 38
3.10. Scanning Electron Microscope (SEM) 38
3.11. Electron Back-scattered Diffraction System (EBSD) 39
3.12. Room temperature hardness test 39
4. Results and Discussions 40
4.1. Microstructure evolution induced by inoculants during SLM of IN718 40
4.1.1. Scanning parameters optimization for SLM IN718 40
4.1.2. As-built microstructures 45
4.1.3. Microstructures after post heat-treatment 49
4.1.4. Theoretical analysis on microstructure evolution induced by inoculants 54
4.2. Alloy design for SLM process 59
4.2.1. Pre-study on various properties of Alloy 1 fabricated by VAM 59
4.2.2. Microstructure of SLM Alloy 1 66
5. Conclusion 69
6. Future work 71
Reference 72
[1] R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press2008.
[2] D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC Press2017.
[3] O. Ojo, M. Chaturvedi, On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy, Materials Science and Engineering: A 403(1) (2005) 77-86.
[4] R. Sidhu, O. Ojo, M. Chaturvedi, Microstructural response of directionally solidified René 80 superalloy to gas-tungsten arc welding, Metallurgical and Materials Transactions A 40(1) (2009) 150-162.
[5] O. Ojo, N. Richards, M. Chaturvedi, Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy, Scripta Materialia 50(5) (2004) 641-646.
[6] M.G. Benz, Preparation of clean superalloys, MATERIALS ENGINEERING-NEW YORK- 15 (1999) 31-48.
[7] P.W. Lee, Y. Trudel, R.M. German, B.L. Ferguson, W.B. Eisen, K. Mover, D. Madan, H. Sanderow, S.R. Lampman, G.M. Davidson, ASM handbook, Powder metal technologies and applications 7 (1998) 1146.
[8] I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies, Springer2010.
[9] K. Osakada, M. Shiomi, Flexible manufacturing of metallic products by Selective Laser Melting of powder, International Journal of Machine Tools and Manufacture 46(11) (2006) 1188-1193.
[10] F. Brenne, A. Taube, M. Pröbstle, S. Neumeier, D. Schwarze, M. Schaper, T. Niendorf, Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after Selective Laser Melting, Progress in Additive Manufacturing 1(3-4) (2016) 141-151.
[11] J. Strößner, M. Terock, U. Glatzel, Mechanical and Microstructural Investigation of Nickel‐Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM), Advanced Engineering Materials 17(8) (2015) 1099-1105.
[12] M. Pröbstle, S. Neumeier, J. Hopfenmüller, L. Freund, T. Niendorf, D. Schwarze, M. Göken, Superior creep strength of a nickel-based superalloy produced by Selective Laser Melting, Materials Science and Engineering: A 674 (2016) 299-307.
[13] K. Amato, S. Gaytan, L. Murr, E. Martinez, P. Shindo, J. Hernandez, S. Collins, F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by Selective Laser Melting, Acta Materialia 60(5) (2012) 2229-2239.
[14] D. Deng, R.L. Peng, H. Brodin, J. Moverare, Microstructure and mechanical properties of Inconel 718 produced by Selective Laser Melting: sample orientation dependence and effects of post heat treatments, Materials Science and Engineering: A (2017).
[15] X. Wang, L.N. Carter, B. Pang, M.M. Attallah, M.H. Loretto, Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy, Acta Materialia 128 (2017) 87-95.
[16] V. Divya, R. Muñoz-Moreno, O. Messé, J. Barnard, S. Baker, T. Illston, H.J. Stone, Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment, Materials Characterization 114 (2016) 62-74.
[17] R. Muñoz-Moreno, V. Divya, S. Driver, O. Messé, T. Illston, S. Baker, M. Carpenter, H. Stone, Effect of heat treatment on the microstructure, texture and elastic anisotropy of the nickel-based superalloy CM247LC processed by Selective Laser Melting, Materials Science and Engineering: A 674 (2016) 529-539.
[18] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D printing of high-strength aluminium alloys, Nature 549(7672) (2017) 365-369.
[19] M. Zielińska, J. Sieniawski, M. Poręba, Microstructure and mechanical properties of high temperature creep resisting superalloy Rene 77 modified CoAl2O4, Archives of Materials Science and Engineering 28(10) (2007) 629-632.
[20] F. Binczyk, J. Śleziona, P. Gradoń, Modification of the macrostructure of nickel superalloys with cobalt nanoparticles, Composites 1 (2011) 49-55.
[21] M. Zielińska, K. Kubiak, J. Sieniawski, Surface modification, microstructure and mechanical properties of investment cast superalloy, Journal of Achievements in Materials and Manufacturing Engineering 35(1) (2009) 55-62.
[22] F. Binczyk, J. Śleziona, Macrostructure of IN-713C superalloy after volume modification, Archives of Foundry Engineering 9(2) (2009) 105-108.
[23] F. Binczyk, J. Śleziona, R. Przeliorz, Calorimetric examination of mixtures for modification of nickel and cobalt superalloys, Archives of Foundry Engineering 9(2) (2009) 97-100.
[24] F. Binczyk, J. Śleziona, Macro-and microhardness of IN-713C nickel superalloy constituents, Archives of Foundry Engineering 9(4) (2009) 9-12.
[25] F. Binczyk, J. Śleziona, A. Kościelna, Effect of modification and cooling rate on the macrostructure of IN-713C alloy, Archives of Foundry Engineering 9(3) (2009) 13-16.
[26] L. Liu, T. Huang, Y. Xiong, A. Yang, Z. Zhao, R. Zhang, J. Li, Grain refinement of superalloy K4169 by addition of refiners: cast structure and refinement mechanisms, Materials Science and Engineering: A 394(1) (2005) 1-8.
[27] H. Matysiak, M. Zagorska, A. Balkowiec, B. Adamczyk-Cieslak, K. Dobkowski, M. Koralnik, R. Cygan, J. Nawrocki, J. Cwajna, K.J. Kurzydlowski, The Influence of the Melt-Pouring Temperature and Inoculant Content on the Macro and Microstructure of the IN713C Ni-Based Superalloy, JOM 68(1) (2016) 185-197.
[28] L. Liu, R. Zhang, L. Wang, S. Pang, B. Zhen, A new method of fine grained casting for nickle-base superalloys, Journal of Materials Processing Technology 77(1) (1998) 300-304.
[29] W. Fang, T. Cho, J. Yoon, K. Song, S. Hur, S. Youn, H. Chun, Processing optimization, surface properties and wear behavior of HVOF spraying WC–CrC–Ni coating, Journal of materials processing technology 209(7) (2009) 3561-3567.
[30] N. Hodge, R. Ferencz, J. Solberg, Implementation of a thermomechanical model for the simulation of Selective Laser Melting, Computational Mechanics 54(1) (2014) 33-51.
[31] L. Rickenbacher, T. Etter, S. Hövel, K. Wegener, High temperature material properties of IN738LC processed by Selective Laser Melting (SLM) technology, Rapid Prototyping Journal 19(4) (2013) 282-290.
[32] L.N. Carter, M.M. Attallah, R.C. Reed, Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking, Superalloys 2012 (2012) 577-586.
[33] R. Engeli, T. Etter, S. Hoevel, K. Wegener, Processability of different IN738LC powder batches by Selective Laser Melting, Journal of Materials Processing Technology 229 (2016) 484-491.
[34] R. Engeli, T. Etter, F. Geiger, A. Stankowski, K. Wegener, Effect of Si on the SLM processability of IN738LC, Solid Freeform Fabrication Symposium, 2015.
[35] Y.-L. Kuo, S. Horikawa, K. Kakehi, Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing, Scripta Materialia 129 (2017) 74-78.
[36] E. Nembach, K. Suzuki, M. Ichihara, S. Takeuchi, In situ deformation of the γ'hardened superalloy Nimonic PE16 in high-voltage electron microscopes, Philosophical Magazine A 51(4) (1985) 607-618.
[37] E. Nembach, Particle strengthening of metals and alloys, (1997).
[38] A. Ardell, Precipitation hardening, Metallurgical Transactions A 16(12) (1985) 2131-2165.
[39] W. Huther, B. Reppich, Interaction of dislocations with coherent, stree-free ordered particles, Zeitschrift fur Metallkunde 69(10) (1978) 628-634.
[40] M. Jackson, R. Reed, Heat treatment of UDIMET 720Li: the effect of microstructure on properties, Materials Science and Engineering: A 259(1) (1999) 85-97.
[41] P. Veyssière, G. Saada, Microscopy and plasticity of the L12 γphase, Dislocations in solids, Elsevier1996, pp. 253-441.
[42] M.J. Donachie, S.J. Donachie, Superalloys: a technical guide, ASM international2002.
[43] D. Duvall, W. Owczarski, Method to improve the weldability and formability of nickel-base superalloys, Google Patents, 1973.
[44] M. Zhong, H. Sun, W. Liu, X. Zhu, J. He, Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy, Scripta materialia 53(2) (2005) 159-164.
[45] M.T. Rush, P.A. Colegrove, Z. Zhang, D. Broad, Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds, Journal of materials processing technology 212(1) (2012) 188-197.
[46] A. Egbewande, R. Buckson, O. Ojo, Analysis of laser beam weldability of Inconel 738 superalloy, Materials characterization 61(5) (2010) 569-574.
[47] D. Dye, O. Hunziker, R. Reed, Numerical analysis of the weldability of superalloys, Acta Materialia 49(4) (2001) 683-697.
[48] S. Kou, Welding metallurgy, John Wiley & Sons2003.
[49] M. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Nickel based superalloy welding practices for industrial gas turbine applications, Science and Technology of Welding and Joining 9(1) (2004) 13-21.
[50] M. Attallah, H. Terasaki, R. Moat, S. Bray, Y. Komizo, M. Preuss, In-Situ observation of primary γ′ melting in Ni-base superalloy using confocal laser scanning microscopy, Materials characterization 62(8) (2011) 760-767.
[51] B. Radhakrishnan, R. Thompson, Liquid film migration (LFM) in the weld heat affected zone (HAZ) of a Ni-base superalloy, Scripta Metallurgica et Materialia 24(3) (1990) 537-542.
[52] B. Radhakrishnan, R. Thompson, A quantitative microstructural study of intergranular liquation and its relationship to hot cracking, Metallography 21(4) (1988) 453-471.
[53] A. Ramirez, J. Lippold, High temperature behavior of Ni-base weld metal: Part I. Ductility and microstructural characterization, Materials Science and Engineering: A 380(1-2) (2004) 259-271.
[54] M. Collins, J. Lippold, An investigation of ductility dip cracking in nickel-based filler materials-Part I, Welding Journal 82(10) (2003) 288.
[55] M. Collins, A. Ramirez, J. Lippold, An investigation of ductility dip cracking in nickel-based weld metals-Part II: Fracture behavior and fracture surface morphology are related to microstructure, composition, and temperature, Welding journal 82(12) (2003) 348. S-354. S.
[56] M. Collins, A. Ramirez, J. Lippold, An investigation of ductility-dip cracking in nickel-based weld metals-Part III, WELDING JOURNAL-NEW YORK- 83(2) (2004) 39-S.
[57] A. Ramirez, J. Lippold, High temperature behavior of Ni-base weld metal: Part II–Insight into the mechanism for ductility dip cracking, Materials Science and Engineering: A 380(1-2) (2004) 245-258.
[58] W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, V. Hansen, Microstructure and hardness studies of Inconel 718 manufactured by Selective Laser Melting before and after solution heat treatment, Materials Science and Engineering: A 689 (2017) 220-232.
[59] T. Trosch, J. Strößner, R. Völkl, U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting, Materials letters 164 (2016) 428-431.
[60] J. Brooks, P. Bridges, Metallurgical stability of Inconel alloy 718, Superalloys 88 (1988) 33-42.
[61] R. Cozar, A. Pineau, Morphology of y’and y” precipitates and thermal stability of inconel 718 type alloys, Metallurgical Transactions 4(1) (1973) 47-59.
[62] X. Wang, N. Read, L.N. Carter, R.M. Ward, M.M. Attallah, Defect Formation and its Mitigation in Selective Laser Melting of High γ′ Ni‐Base Superalloys, Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys, Wiley Online Library, 2016, pp. 351-358.
[63] L.N. Carter, C. Martin, P.J. Withers, M.M. Attallah, The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, Journal of Alloys and Compounds 615 (2014) 338-347.
[64] L.N. Carter, M.M. Attallah, R.C. Reed, Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking, Proc. of the 12th Int. Symp. on Superalloys, Champion, PA, 9–13 September 2012, 2012, pp. 577-586.
[65] L.N. Carter, K. Essa, M.M. Attallah, Optimisation of Selective Laser Melting for a high temperature Ni-superalloy, Rapid Prototyping Journal 21(4) (2015) 423-432.
[66] L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa, M.M. Attallah, Process optimisation of Selective Laser Melting using energy density model for nickel based superalloys, Materials Science and Technology 32(7) (2016) 657-661.
[67] M. Cloots, P.J. Uggowitzer, K. Wegener, Investigations on the microstructure and crack formation of IN738LC samples processed by Selective Laser Melting using Gaussian and doughnut profiles, Materials & Design 89 (2016) 770-784.
[68] F. Geiger, K. Kunze, T. Etter, Tailoring the texture of IN738LC processed by Selective Laser Melting (SLM) by specific scanning strategies, Materials Science and Engineering: A 661 (2016) 240-246.
[69] A. Smith, A. Mainwood, M. Watkins, The kinetics of the capture of nitrogen by nickel defects in diamond, Diamond and related materials 11(3-6) (2002) 312-315.
[70] M. Lachowicz, Characteristics of microstructural changes and fracture mechanism during welding and heat treatment of Inconel 713C superalloy, Doctor's Thesis, Politechnika Wrocławska (2006).
[71] W. Yang, P. Qu, L. Liu, Z. Jie, T. Huang, F. Wang, J. Zhang, Nucleation Crystallography of Ni Grains on CrFeNb Inoculants Investigated by Edge‐to‐Edge Matching Model in an IN718 Superalloy, Advanced Engineering Materials (2017).
[72] M. Volmer, Über keimbildung und keimwirkung als spezialfälle der heterogenen katalyse, Berichte der Bunsengesellschaft für physikalische Chemie 35(9) (1929) 555-561.
[73] C. Small, N. Saunders, The application of Calphad techniques in the development of a new gas-turbine disk alloy, Mrs Bulletin 24(4) (1999) 22-26.
[74] M. Gambone, S. Shendye, P. Andrews, W. Chen, M. Gungor, J. Valencia, M. Tims, Properties of RS 5 and other superalloys cast using thermally controlled solidification, Ninth International Symposium on Superalloys, 2000, pp. 161-170.
[75] B.G. Thomas, C. Beckermann, Modeling of casting, welding, and advanced solidification processes VIII: proceedings of the Eighth International Conference on Modeling of Casting and Welding Processes, held in San Diego, California on June 7-12, 1998, International Conference on Modeling of Casting and Welding Processes (8th: 1998: San Diego, Calif.), Engineering Foundation (US), 1998.
[76] S.S. Ltd., Sente Software - Home, 2017. https://www.sentesoftware.co.uk/.
[77] T.-C.S. Ltd., Thermo-calc software, 2013. http://www.thermocalc.com/.
[78] C. Sims, N. Stoloff, W. Hagel, S. II, High temperature materials for aerospace and industrial power, A Wiley-lnterscience Publication John Wiley and Sons, New York (1987).
[79] A. Jena, M. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys, Journal of Materials Science 19(10) (1984) 3121-3139.
[80] S. Antonov, M. Detrois, D. Isheim, D. Seidman, R.C. Helmink, R.L. Goetz, E. Sun, S. Tin, Comparison of thermodynamic database models and APT data for strength modeling in high Nb content γ–γ′ Ni-base superalloys, Materials & Design 86 (2015) 649-655.
[81] T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, Journal of propulsion and power 22(2) (2006) 361-374.
[82] R. Kearsey, J. Beddoes, P. Jones, P. Au, Compositional design considerations for microsegregation in single crystal superalloy systems, Intermetallics 12(7-9) (2004) 903-910.
[83] T.M. Pollock, The growth and elevated temperature stability of high refractory nickel-base single crystals, Materials Science and Engineering: B 32(3) (1995) 255-266.
[84] A. Giamei, D. Anton, Rhenium additions to a Ni-base superalloy: effects on microstructure, Metallurgical transactions A 16(11) (1985) 1997-2005.
[85] S. Wlodek, The structure of in-100(Structure in two heats of in-100 nickel-base alloy before and after heating, and in presence of stress), ASM TRANSACTIONS QUARTERLY 57 (1964) 110-119.
[86] S. Wlodek, G. Fuchs, K. Dannemann, T. Deragon, Long Term Stability of High Temperature Materials, Edited by GE Fuchs, KA Dannemann, and TC Deragon (1999) 1-30.
[87] W. Walston, J. Schaeffer, W. Murphy, A new type of microstructural instability in superalloys-SRZ, Superalloys 1996 (1996) 9-18.
[88] S. Tin, T. Pollock, W. Murphy, Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: carbon additions and freckle formation, Metallurgical and Materials Transactions A 32(7) (2001) 1743-1753.
[89] T. Pollock, W. Murphy, E. Goldman, D. Uram, J. Tu, Grain defect formation during directional solidification of nickel base single crystals, Superalloys 1992 (1992) 125-134.
[90] P. Sung, D. Poirier, Liquid-solid partition ratios in nickel-base alloys, Metallurgical and Materials Transactions A 30(8) (1999) 2173-2181.
[91] V. Beaubois, J. Huez, S. Coste, O. Brucelle, J. Lacaze, Short term precipitation kinetics of delta phase in strain free Inconel* 718 alloy, Materials science and technology 20(8) (2004) 1019-1026.
[92] M.H.N. Edition, vol. 4 Heat Treating, ASM Heat Treating Division Council (1981).
[93] G. Samsonov, A. Panasyuk, G.K. Kozina, Wetting of refractory carbides with liquid metals, Powder Metallurgy and Metal Ceramics 7(11) (1968) 874-878.
[94] R. Warren, M. Waldron, Microstructural development during the liquid-phase sintering of cemented carbides: i. wettability and grain contact, Powder Metallurgy 15(30) (1972) 166-201.
[95] G. Yasinskaya, The wetting of refractory carbides, borides, and nitrides by molten metals, Soviet Powder Metallurgy and Metal Ceramics 5(7) (1966) 557-559.
[96] U. Dahmen, Orientation relationships in precipitation systems, Acta Metallurgica 30(1) (1982) 63-73.
[97] F. Liu, Y. Gencang, Stress-induced recrystallization mechanism for grain refinement in highly undercooled superalloy, Journal of Crystal growth 231(1-2) (2001) 295-305.
[98] W. Roberts, B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working, Acta Metallurgica 26(5) (1978) 801-813.
[99] W.D. Kingery, Factors affecting thermal stress resistance of ceramic materials, Journal of the American Ceramic Society 38(1) (1955) 3-15.
[100] F. Liu, X. Lin, G. Yang, M. Song, J. Chen, W. Huang, Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy, Optics & laser technology 43(1) (2011) 208-213.
[101] S. Lay, J. Thibault, S. Hamar-Thibault, Structure and role of the interfacial layers in VC-rich WC-Co cermets, Philosophical Magazine 83(10) (2003) 1175-1190.
[102] R.W. Balluffi, S. Allen, W.C. Carter, Kinetics of materials, John Wiley & Sons2005.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *