帳號:guest(18.226.4.248)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張博硯
作者(外文):Chang, Po-Yen
論文名稱(中文):催化劑輔助包碳之LiFePO4製程暨導電相影響研究
論文名稱(外文):A study of Catalyzed Carbon Coating Process and Conducting Phase Effects on the Properties of LiFePO4
指導教授(中文):周麗新
指導教授(外文):Chou, Lih-Hsin
口試委員(中文):周元昉
蕭肅競
口試委員(外文):Chou, Yuan-Fang
Hsiao, Su-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031549
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:122
中文關鍵詞:磷酸鋰鐵催化劑磷化鐵導電相碳膜石墨化
外文關鍵詞:LiFePO4CatalystFe2PConductive phaseGraphitization degreeCarbon coating
相關次數:
  • 推薦推薦:0
  • 點閱點閱:150
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以多元醇回流法合成花瓣狀的纖薄LiFePO4前驅物,並以二茂鐵輔助蔗糖碳源進行包碳,於750~850℃的熱處理條件下製備LFP/fC陰極材料,以研究LFP/fC系統中,不同熱處理溫度對粉末的結晶性、粉末形貌、尺寸,以及碳膜石墨化程度的影響,並透過電池測試觀察其電化學表現。研究發現以750℃熱處理之LFP/fC陰極材料的粉末顆粒尺寸較小(定義詳第4.3.2節),且擁有較高之163.5 mAh/g的比電容。
LFP/fC陰極材料中,Fe2P導電相的含量可藉由改變熱處理之氣體流量及溫度調整。實驗結果顯示若熱處理溫度高於850℃且氣體流量較大時,便有機會生成Fe2P導電相。在850℃熱處理溫度下,氣體流量低至30 sccm時即不會生成Fe2P相。然而,於30 sccm之氣體流量下,當熱處理溫度高至900℃時便會導致Fe2P相的生成。
最後,我們藉由較低熱處理溫度製備粉末顆粒尺寸較小的LFP/fC陰極材料,再加熱至900℃以引入微量Fe2P導電相,藉以提升材料的電化學表現,於0.1 C放電時具有較高的3.32 V工作電壓,且當充放電速率由0.1 C提升至1 C時,其工作電壓衰減率較低,僅10.3%。但其比電容卻低於LFP/fC-750陰極材料。
In this work, polyol reflux method was applied to synthesize petal-like LiFePO4 precursors with 10 nm thickness. With the assistance of ferrocene catalyst, the precursours were mixed with sucrose, followed by sintering at various temperatures from 750~850℃ to obtain LFP/fC in order to study effects of annealing temperature on powders crystallinity, morphology, sizes as well as graphitization degree of carbon coating. Cell testing was also used to investigate their electrochemical performance. It showed that the LFP/fC annealed at 750℃ have smaller particle sizes and exhibit the highest discharge capacity 163.5 mAh/g at 0.1 C.
According to our investigation, the concentration of conductive Fe2P phase in LFP/fC can be controlled through adjusting the gas flow and the sintering temperatures during heat treatments. Fe2P phase may form if a sintering temperature higher than 850°C combined with a higher flow rate were applied. At 850℃, Fe2P was found exclusively if the flow rate was as low as 30 sccm. While Fe2P can still be observed in the sample heated at 900°C even with the low flow rate 30 sccm.
Finally, we promoted the electrochemical performance of LFP/fC cathode material by reducing grain sizes (Definition refers to chapter 4.3.2) with a lower sintering temperature, and introducing a slight amount of Fe2P by heating up to 900°C afterwards. The material delivers high operating voltage of 3.32 V at 0.1 C rate and demonstrates a lower voltage fading rate of 10.33% when the cycling rate raised from 0.1 C to 1 C. However, it was unable to reach the discharge capacity of LFP/fC-750 cathode material.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
第二章 文獻回顧 4
2.1 鋰離子電池之構造及其原理: 4
2.2 陽極材料 5
2.2.1 鋰金屬陽極材料 5
2.2.2 碳材陽極材料 6
2.2.3 陽極材料的改質 7
2.3電解質 8
2.4 隔離膜 9
2.5 陰極材料: 10
2.5.1 層狀結構之陰極材料 11
2.5.1.1 層狀結構之LiCoO2 11
2.5.1.2 層狀結構之LiNiO2 13
2.5.2 尖晶石結構之LiMn2O4 13
2.5.3 橄欖石結構之LiFePO4 14
2.6 LFP陰極材料的合成方法 19
2.6.1 固態反應法(Solid-State synthesis) 19
2.6.2 共沉澱法(Co-precipitation) 20
2.6.3 溶膠凝膠法(Sol-Gel synthesis) 21
2.6.4 水熱法(Hydrothermal synthesis) 22
2.6.5 溶劑熱法(Solvothermal synthesis) 23
2.6.6 多元醇回流法(Polyol Reflux method) 23
2.6.7 各合成方法流程簡圖 25
2.7 LFP陰極材料的改質 26
2.7.1 摻雜高價金屬離子(Supervalent ions doping) 26
2.7.2 包覆導電碳膜(Carbon Coating) 28
2.7.2.1 二茂鐵簡介 31
2.7.3 縮小晶粒尺寸(Size Reduction) 33
2.7.4 引入導電相Fe2P 34
2.8 研究動機與目的 37
第三章 實驗方法與步驟 39
3.1 實驗藥品 39
3.2 實驗用儀器 40
3.3 多元醇迴流法合成LFP前驅物 41
3.3.1 前置步驟 41
3.3.2 合成暨粉末收集實驗步驟 41
3.4 包覆導電碳膜 42
3.4.1 以蔗糖作為碳源進行包碳 42
3.4.2 以二茂鐵輔助蔗糖碳源進行包碳 42
3.5 電池製作 42
3.5.1 陰極極片製作 42
3.5.2 鈕扣電池組裝 43
3.6 電池充放電測試 44
3.7 實驗用儀器介紹 45
3.7.1 X-射線繞射分析儀 45
3.7.2 場發射掃描式電子顯微鏡 45
3.7.3 場發射掃描穿透式球差修正電子顯微鏡 46
3.7.4 感應耦合電漿放射光譜儀 47
3.7.5 拉曼光譜儀 48
3.8 實驗流程圖 49
第四章 結果與討論 50
4.1改變定氣流熱處理參數以控制Fe2P相的生成 51
4.1.1改變定氣流熱處理之氣體流量以控制Fe2P相的生成 51
4.1.1.1改變熱處理氣體流量以控制LFP/C中Fe2P相的生成 52
4.1.1.2 改變熱處理氣體流量及種類以控制LFP/fC中Fe2P相的生成 53
4.1.2 改變定氣流熱處理溫度以控制Fe2P相的生成 54
4.2 Fe2P相對於LFP/fC陰極材料的影響 55
4.2.1 XRD繞射分析 55
4.2.2 SEM分析 57
4.2.3 拉曼分析 60
4.2.4 TEM分析 63
4.2.5 電池充放電測試與分析 67
4.2.5.1 LFP/fC-850F電池充放電測試 67
4.2.5.2 LFP/fC-850電池充放電測試 70
4.2.5.3 LFP/fC-850F與LFP/fC-850充放電分析 73
4.3 降低LFP/fC熱處理溫度產生的影響 76
4.3.1 XRD繞射分析 77
4.3.2 SEM分析 78
4.3.3 拉曼分析 81
4.3.4 電池充放電測試與分析 84
4.3.4.1 LFP/fC-750電池充放電測試 84
4.3.4.2 LFP/fC-800電池充放電測試 87
4.3.4.3 LFP/fC-750、LFP/fC-800與LFP/fC-850充放電分析 90
4.4 縮小LFP/fC粉末顆粒尺寸並引入微量Fe2P相 95
4.4.1 XRD繞射分析 96
4.4.2 SEM分析 97
4.4.3 拉曼分析 101
4.4.4 電池充放電測試與分析 104
4.4.4.1 LFP/fC-800-900F電池充放電測試與分析 104
4.4.4.2 LFP/fC-850-900F電池充放電測試與分析 107
4.4.4.3 LFP/fC-800-900F與LFP/fC-850-900F充放電分析 110
第五章 結論 115
參考文獻 116
[1] P.Poizot and F.Dolhem, "Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices," Energy Environ. Sci., vol. 4, no. 6, pp. 2003-2019, 2011.
[2] M.Kurdve, M.Zackrisson, M.I.Johansson, B.Ebin and U.Harlin, "Considerations when Modelling EV Battery Circularity Systems," Batteries, vol. 5, no. 2, p. 40, 2019.
[3] A.S.Andersson and J.O.Thomas, "The source of first-cycle capacity loss in LiFePO4," J. Power Sources, no. 97, pp. 498-502, 2001.
[4] I.Buchmann, "BATTERY UNIVERSITY," 2019. [Online]. Available: https://batteryuniversity.com/learn/article/secondary_batteries.
[5] Y.Nishi, "Lithium ion secondary batteries; past 10 years and the future," J. Power Sources, vol. 100, no. 1-2, pp. 101-106, 2001.
[6] B.Scrosati, "Lithium Rocking Chair Batteries: An Old Concept?," J. Electrochem. Soc., vol. 139, no. 10, pp. 2776-2781, 1992.
[7] V.Etacheri, R.Marom, R.Elazari, G.Salitra and D.Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy Environ. Sci., no. 4, pp. 3243-3262, 2011.
[8] B.Kumar, "Quora," 2018. [Online]. Available: https://www.quora.com/What-is-the-process-involved-in-charging-and-discharging-a-battery-in-detail.
[9] S.Goriparti, E.Miele, F. Angelis and E. Fabrizio, "Review on recent progress of nanostructured anode materials for Li-ion batteries," J. Power Sources, vol. 257, no. 1, pp. 421-443, 2014.
[10] K.Chen, K.Wood, E.Kazyak, W.S.LePage, A.L.Davis, A.J.Sanchez and N.P.Dasgupta, "Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes," J. Mater. Chem. A, vol. 5, no. 23, pp. 11671-11681, 2017.
[11] Z.Li, J.Huang, B.Liaw, V.Metzler and J.Zhang, "A review of lithium deposition in lithium-ion and lithium metal secondary batteries," J. Power Sources, vol. 254, no. 15, pp. 168-182, 2014.
[12] M.Gaberšček, M.Bele, J.Drofenik, R.Dominko and S.Pejovnik, "Improved carbon anode properties: pretreatment of particles in polyelectrolyte solution," J. Power Sources, Vols. 97-98, pp. 67-69, 2001.
[13] Y.Wu, C.Wu and Y.Chang, "Development and Improvement of the Lithium Ion Battery Negative Material Surface Modification," J. China Institute of Technology, vol. 31, pp. 247-262, 2002.
[14] CK.Chan, H.Peng, G.Liu, K.McIlwrath, XF.Zhang, R.A.Huggins and Y.Cui, "High-performance lithium battery anodes using silicon nanowires," Nat. Nanotechnol., no. 3, p. 31–35, 2007.
[15] J.Niu and J.Lee, "Improvement of Usable Capacity and Cyclability of Silicon-Based Anode Materials for Lithium Batteries by Sol-Gel Graphite Matrix," Electrochem. Solid-State Lett., vol. 5, no. 6, pp. A107-A110, 2002.
[16] M.Doyle, T.F.Fuller and J.Newman, "The importance of the lithium ion transference number in lithium/polymer cells," Electrochim. Acta, vol. 39, no. 13, pp. 2073-2081, 1994.
[17] Y.Wang and W.Zhong, "Development of Electrolytes towards Achieving Safe and High‐Performance Energy‐Storage Devices: A Review," ChemElectroChem, vol. 2, no. 1, pp. 22-36, 2015.
[18] 江子才, "鋰電池隔離膜," 2018. [Online]. Available: https://zhuanlan.zhihu.com/p/40586622.
[19] H.Lee, M.Yanilmaz, O.Toprakci, K.Fu and X.Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries," Energy Environ. Sci., vol. 7, no. 12, pp. 3857-3886, 2014.
[20] Sayo, "隔離膜," [Online]. Available: https://www.moneydj.com/.
[21] H.Yoshizawa and T.Ohzuku, "Abstract #467," in IMLB2006, Biarritz, France, 2006.
[22] A.Van-der-Ven, M.K.Aydino and G.Ceder, "First-principles investigation of phase stability in LixCoO2," Phys. Rev. B, vol. 58, no. 6, pp. 2975-2987, 1998.
[23] J.N.Reimers and J.R.Dahn, "Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2," J. Electrochem. Soc., vol. 139, no. 8, pp. 2091-2097, 1992.
[24] A.M.Kannan, L.Rabenberg and A. Manthiram, "High Capacity Surface-Modified LiCoO2 Cathodes for Lithium-Ion Batteries," Electrochem. Solid-State Lett., vol. 6, no. 1, pp. A16-A18, 2003.
[25] Y.K.Sun, J.M.Han, S.T.Myung, S.W.Lee and K.Amine, "Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode," Electrochem. commun., vol. 8, no. 5, pp. 821-826, 2006.
[26] 鄭誼, "得鈷礦者得天下?看電動車電池背後的資源博弈," 2018. [Online]. Available: https://kknews.cc/car/9navbmq.html.
[27] D.Doughty and E. Roth, "A General Discussion of Li Ion Battery Safety," Electrochem. Soc. , pp. 37-44, 2012.
[28] D.Gunter, "Using MongoDB for Materials Discovery," 2011. [Online]. Available: https://www.slideshare.net/danglbl/using-mongodb-for-materials-discovery.
[29] J.Morales, C.Pérez-Vicente and J.L.Tirado, "Cation distribution and chemical deintercalation of Li1-xNi1+xO2," Mater. Res. Bull., vol. 25, no. 5, pp. 623-630, 1990.
[30] C.C.Chang, J.Kim and P.N.Kumta, "Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M=Ni0.75Co0.25): viable cathode materials for rechargeable lithium-ion batteries," J. Power Sources, vol. 89, no. 1, pp. 56-63, 2000.
[31] M.M.Thackeray, W.I.F.David, P.G.Bruce and J.B.Goodenough, "Lithium insertion into manganese spinels," Mater. Res. Bull., vol. 18, no. 4, pp. 461-472, 4 1983.
[32] J.M.Tarascon and D.Guyomard, "The Li1+xMn2O4/C rocking-chair system: a review," Electrochim. Acta, vol. 9, no. 38, pp. 1221-1231, 1993.
[33] R.J.Gummow, A.de_Kock and M.M.Thackeray, "Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells," Solid State Ionics, vol. 1, no. 69, pp. 59-67, 1994.
[34] R.K.Mishra and G.Thomas, "Surface energy of spinel," J. Appl. Phys., no. 48, p. 4576, 1977.
[35] D.H.Doughty, "Materials Issues in Lithium Ion Rechargeable Battery Technology," Sample J., no. 32, pp. 75-81, 1996.
[36] T.Zhang, D.Li, Z.Tao and J.Chen, "Understanding electrode materials of rechargeable lithium batteries via DFT calculations," Pro. Nat. Sci-Mater., vol. 23, no. 1, pp. 256-272.
[37] T.V.S.L.Satyavani, A.S.Kumara and P.S.V.S.Rao, "Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review," j.jestch, vol. 1, no. 19, pp. 178-188, 2016.
[38] A.K.Padhi, K.S.Nanjundaswamy and J.B.Goodenough, "Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries," J. Electrochem. Soc, vol. 4, no. 144, pp. 1188-1194, 1997.
[39] P.Tang and N.A.W.Holzwarth, "Electronic structure of FePO4, LiFePO4 and related materials," Phys. Rev. B, vol. 165107, no. 68, 2003.
[40] S.Okada, S.Sawa, M.Egashira, J.Yamaki, M.Tabuchi, H.Kageyama, T.Konishi and A.Yoshino, "Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries," J. Power Sources, no. 97-98, pp. 430-432, 2001.
[41] J.Xie, N.Imanishi, T.Zhang, A.Hirano, Y.Takeda and O.Yamamoto, "Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering," J. Power Sources, vol. 2, no. 192, pp. 689-692, 2009.
[42] J.Molenda, A.Kulka, A.Milewska, W.Zając and K.Świerczek, "Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni)," Materials, vol. 6, no. 5, pp. 1656-1687, 2013.
[43] J.Wang and X.Sun, "Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries," Energy Environ. Sci., vol. 5, no. 1, pp. 5163-5185 , 2011.
[44] Z.Yang, Y.Dai, S.Wang and J. Yub, "How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods," ‎J. Mater. Chem. A, no. 4, p. 18210–18222, 2016.
[45] A.Yamada, S.C.Chung and K.Hinokuma, "Optimized LiFePO4 for Lithium Battery Cathodes," J. Electrochem. Soc, vol. 3, no. 148, pp. A224-A229, 2001.
[46] J.Li, Li.Zhang, L.Zhang, W.Hao, H.Wang, Q.Qu and H.Zheng, "In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction," J. Power Sources, vol. 249, no. 1, pp. 311-319, 2014.
[47] C.Huang, D.Ai, L.Wang and X.He, "Rapid Synthesis of LiFePO4 by Coprecipitation," Chem. Lett., vol. 42, no. 10, pp. 1191-1193, 2013.
[48] Z.R.Chang, H.J.Lv, H.W.Tang, H.J.Li, X.Z.Yuan and H.Wang, "Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries," Electrochim. Acta, vol. 20, no. 54, pp. 4595-4599, 2009.
[49] K.F.Hsu, S.Y.Tsay and B.J.Hwang, "Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis periods," J. Power Sources, Vols. 1-2, no. 146, pp. 529-533, 2005.
[50] Y.Lin, M.X.Gao, D.Zhu, Y.F.Liu and H.G.Pan, "Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C," J. Power Sources, vol. 2, no. 184, pp. 444-448, 2008.
[51] D.Arumugam, G.P.Kalaignan and P.Manisankar, "Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries," J Solid State Electr., vol. 13, no. 2, p. 301–307, 2009.
[52] J.Chen and M.S.Whittingham, "Hydrothermal synthesis of lithium iron phosphate," Electrochem. commun., vol. 5, no. 8, pp. 855-858, 2006.
[53] N.Ye, T.Yan, Z.Jiang, W.Wu and T.Fang, "A review: Conventional and supercritical hydro/solvothermal synthesis of ultrafine particles as cathode in lithium battery," Ceram. Int., vol. 44, no. 5, pp. 4521-4537, 2018.
[54] Y.Wang, B.Zhu, Y.Wang and F.Wang, "Solvothermal synthesis of LiFePO4 nanorods as high-performance cathode materials for lithium ion batteries," Ceram. Int., vol. 42, no. 8, pp. 10297-10303, 2016.
[55] D.H.Kim and J.Kim, "Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties," Electrochem. Solid-State Lett., vol. 9, no. 9, pp. A439-A442, 2006.
[56] L.Qiu, V.G.Pol, J.C.Moreno and A.Gedanken, "Synthesis of tin nanorods via a sonochemical method combined with a polyol process," Ultrason. Sonochem., vol. 4, no. 12, pp. 243-247, 2005.
[57] F.Fiévet and R.Brayner, "The Polyol Process," in Nanomaterials: A Danger or a Promise?, 2012, pp. 1-25.
[58] C.E.A.Suesca, "Contribution to the synthesis and morphology control of LiCoPO4 Pnma using polyol method," Technischen Universität München, München, 2016.
[59] S.H.Wu, J.J.Shiu and J.Y.Lin, "Effects of Fe2P and Li3PO4 additives on the cycling performance of LiFePO4/C composite cathode materials," J. Power Sources, vol. 196, p. 6676–6681, 2011.
[60] S.Y.Chung, J.T.Bloking and Y.M.Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes," Nat. Mater., no. 1, p. 123–128, 2002.
[61] X.Ou, L. G. Liang, S.Xu and X.Zhao, "Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route," J. Power Sources, vol. 2, no. 184, pp. 543-547, 2008.
[62] Y.L.Ruan, "Effect of Doping Ions on Electrochemical Properties of LiFePO4 Cathode," Adv Mat Res., no. 197-198, pp. 1135-1138, 2011.
[63] N.Ravet, Y.Chouinard, J.F.Magnan, S.Besner, M.Gauthier and M.Armand, "Electroactivity of natural and synthetic triphylite," J. Power Sources, no. 97–98, pp. 503-507, 2001.
[64] S.S.Zhang, J.L.Allen, K.Xu and T.R.Jow, "Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes," J. Power Sources, Vols. 1-2, no. 147, pp. 234-240, 2005.
[65] Z.Huang, S.Oh, Y.He, B.Zhang, Y.Yang, Y.Mai and J.Kim, "Porous C–LiFePO4–C composite microspheres with a hierarchical conductive architecture as a high performance cathode for lithium ion batteries," J. Mater. Chem., vol. 22, no. 37, p. 19643−19645, 2012.
[66] X.Zhang, X. Zhang, W.He, Y.Yue, H.Liu and J.Ma, "Biocarbon-coated LiFePO4 nucleus nanoparticles enhancing electrochemical performances," Chem. Commun., vol. 48, no. 81, p. 10093−10095, 2012.
[67] S.Oh, S.Myung, S.Oh, K.Oh, K.Amine, B.Scrosati and Y.Sun, "Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable Lithium Batteries," Adv. Mater., vol. 22, no. 43, p. 4842−4845, 2010.
[68] Y.Zhang, L.Chen, J.Ou, J.Wang, B.Zheng, H.Yuan, Y.Guo and D.Xiao, "Improving the performance of a LiFePO4 cathode based on electrochemically cleaved graphite oxides with high hydrophilicity and good conductivity," J. Mater. Chem. A, vol. 1, no. 27, pp. 7933-7941, 2013.
[69] Z.Ma, Y.Fan, G.Shao, G.Wang, J.Song and T.Liu, "In Situ Catalytic Synthesis of High-Graphitized Carbon-Coated LiFePO4 Nanoplates for Superior Li-Ion Battery Cathodes," ACS Appl. Mater. Interfaces, vol. 7, pp. 2937-2943, 2015.
[70] C. Ho, W. Cho and J. Ho, "Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black," Electrochim. Acta, vol. 4, no. 52, pp. 1472-1476, 2006.
[71] J.Song, B.Sun, H.Liu, Z.Ma, Z.Chen, G.Shao and G.Wang, "Enhancement of the Rate Capability of LiFePO4 by a New Highly Graphitic Carbon-Coating Method," ACS Appl. Mater. Interfaces, no. 8, p. 15225−15231, 2016.
[72] T.J.Kealy and P.L.Pauson, "A New Type of Organo-Iron Compound," Nature, vol. 168, p. 1039–1040, 1951.
[73] D.R.Lide, CRC Handbook of Chemistry and Physics (86th ed.)., 2005.
[74] M.Braun and K.J.Hüttinger, "Sintering of powders of polyaromatic mesophase to high-strength isotropic carbons: III. Powders based on an iron-catalyzed mesophase synthesis," Carbon, vol. 34, no. 12, pp. 1473-1491, 1996.
[75] H.Song, X.Chen, X.Chen, S.Zhang and H.Li, "Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue," Carbon, vol. 41, no. 15, pp. 3037-3046, 2003.
[76] M.M.Doeff, J.D.Wilcox, R.Kostecki and G.Lau, "Optimization of carbon coatings on LiFePO4," J. Power Sources, vol. 163, no. 1, pp. 180-184, 2006.
[77] Y.Xia, M.Yoshio and H.Noguchi, "Improved electrochemical performance of LiFePO4 by increasing its specific surface area," Electrochim. Acta, vol. 1, no. 52, pp. 240-245, 2006.
[78] J.Jamnik and J.Maier, "Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV," Phys. Chem. Chem. Phys., vol. 5, no. 23, pp. 5215-5220 , 2003.
[79] W.J.Zhang, "Structure and performance of LiFePO4 cathode materials: A review," J. Power Sources, vol. 6, no. 196, pp. 2962-2970, 2011.
[80] L.Wang, W.Sun, X.Tang, X.Huang, X.He, J.Li, Q.Zhang, J.Gao, G.Tian and S.Fan, "Nano particle LiFePO4 prepared by solvothermal process," J. Power Sources, no. 244, pp. 94-100, 2013.
[81] P.S.Herle, B.Ellis, N.Coombs and L.F.Nazar, "Nano-network electronic conduction in iron and nickel olivine phosphates," Nat. Mater., vol. 3, p. 147–152, 2004.
[82] W.Ojczyk, J.Marzec, K.Świerczek, W.Zając, M.Molend, R.Dziembaj and J.Molend, "Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries," J. Power Sources, vol. 173, no. 2, pp. 700-706, 2007.
[83] Y.Xu, Y.Lu, L.Yan, Z.Yang and R.Yang, "Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials," J. Power Sources, vol. 160, no. 1, pp. 570-576, 2006.
[84] M.S.Song, D.Y.Kim, Y.M.Kang, Y.I.Kim, J.Y.Lee and H.S.Kwon, "Amphoteric effects of Fe2P on electrochemical performance of lithium iron phosphate–carbon composite synthesized by ball-milling and microwave heating," J. Power Sources, vol. 180, no. 1, pp. 546-552, 2008.
[85] 洪紹庭, in 磷酸鋰鐵粉末製程增量暨碳摻雜包覆導電性影響研究, 國立清華大學碩士論文, 2018.
[86] F.C.Marques, R.G.Lacerda, A.Champi, V. Stolojan, D.C.Cox and S.R.P.Silva, "Thermal expansion coefficient of hydrogenated amorphous carbon," Appl. Phys. Lett., vol. 83, no. 15, pp. 3099-3101, 2003.
[87] R.Rao, M.V.Reddy, S.Adams and B.V.R.Chowdari, "Preparation, temperature dependent structural, molecular dynamics simulations studies and electrochemical properties of LiFePO4," Mater. Res. Bull., vol. 66, p. 71–75, 2015.
[88] A.C.Ferrari and J.Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B, vol. 61, no. 20, 2000.
[89] T.Nakamura, Y.Miwa, M.Tabuchi and Y.Yamada, "Structural and Surface Modifications of LiFePO4 Olivine Particles and Their Electrochemical Properties," J. Electrochem. Soc., vol. 153, no. 6, pp. A1108-A1114, 2006.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *