帳號:guest(3.12.74.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳玟儒
作者(外文):Chen, Wen-Ju
論文名稱(中文):體心立方低中高熵合金機械性質與變形行為之研究
論文名稱(外文):Mechanical Properties and Deformation Behavior of Body-centered Cubic Low-, Medium- and High-entropy Alloys
指導教授(中文):張守一
指導教授(外文):Chang, Shou-Yi
口試委員(中文):鄭憲清
陳柏宇
口試委員(外文):Jang, Shian-Ching
Chen, Po-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031548
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:133
中文關鍵詞:高熵合金耐火高熵合金晶格扭曲機械性質體心立方
外文關鍵詞:High Entropy AlloysMechanical PropertiesBody-centered Cubicrefractory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:168
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
「高熵合金」為多元素以相近比例混合並呈穩定固溶相之合金, 其組成原子大小差異所致之晶格扭曲效應,造就許多特殊的機械性 質。其中,BCC 結構的耐火高熵合金在室溫時擁有較高的硬度、在 高溫下也能維持一定的強度以及良好的相穩定性,為一個值得探討 的領域。因此本研究對 BCC 系列金屬及合金包括 W、WTa、 WTaMo、WTaMoNb 與 WTaMoNbV 進行基本特性分析與機械性質 量測。基本特性分析部分包含密度測量、XRD 量測及 EBSD 晶粒方 向鑑定,機械性質部分則藉由奈米壓痕測試、SEM 臨場微米柱壓 縮、TEM 臨場奈米柱壓縮觀察並分析不同元素數與晶體方向之單晶 合金的機械行為。實驗發現高熵合金具有包括晶格扭曲膨脹、彈塑 性異向性減弱、口香糖變形及大量部分差排短距離移動等,許多與 傳統合金結構及變形行為顯著差異之處,為探索高熵合金核心原理 的未來研究方向提供重要的訊息。
High-entropy alloys (HEAs) are entropy-stabilized solid solutions that consist of multi-principal elements. Severe lattice distortion comes from the different atom sizes that provide HEAs a lot of unprecedented mechanical properties. Among this novel family, BCC HEAs, particularly BCC HEAs based on refractory elements like WTaMoNbV, has high phase stability and large mechanical strength at elevated temperatures. This research was thus conducted on a series of BCC alloys consisting of W, WTa, WTaMo, WTaMoNb and HEA WTaMoNbV by measuring their basic properties and mechanical properties. Basic property analyses included density measurement, X-ray diffraction and electron backscatter diffraction (EBSD). Mechanical experiments included nanoindentation, in-situ SEM compression and in-situ TEM compression. Experimental results showed numerous unique characteristics in both deformation behavior and crystal structure between traditional alloys and HEAs, including lattice distortion/expansion, reduced elastic/plastic anisotropy, gum-like deformation and the short-distance movement of abundant partial dislocations that provide further insight for future study of HEA’s core effect and compositional theory.
摘要………………………………………………………..............I
Abstract……………………………………………………….........Ⅱ
目錄………………………………………………………..............Ⅲ
表目錄………………………………………………………..........Ⅶ
圖目錄………………………………………………………..........Ⅷ
壹、前言………………………………………………………......1
貳、文獻回顧…………………………………………………......2
2-1 高熵合金…………………………………………………....2
2-1-1 高熵合金之發展……………………………………….2
2-1-2 高熵合金核心效應…………………………………….4
2-1-3 高熵合金之特性與應用……………………………….6
2-2 高熵合金之機械行為……………………………………....9
2-2-1 部分差排、疊差及變形雙晶變形機制…………….....9
2-2-2 相變化變形機制…………………………………….....10
2-2-3 晶界遷移緩慢…………………………………….........11
2-3 材料機械行為及其影響因素…………………………........16
2-3-1 晶體結構…………………………………….................16
2-3-2 異向性…………………………………….............18
2-3-3 材料成分比例………………………………….............22
2-3-4 微結構………………………………………………….26
2-3-5 尺寸效應…………………………………….................29
2-4 結構扭曲及其分析……………………………………........31
2-4-1 結構扭曲…………………………………………….....31
2-4-2 結構扭曲之理論計算……………………………….....36
2-4-3 結構扭曲之模擬分析……………………………….....38
2-4-4 結構扭曲之實驗分析……………………………….....40
2-5奈米尺度機械行為分析…………………………………….44
2-5-1 奈米壓痕測試 (Nanoindentation)……………………..44
2-5-2 臨場掃描式電子顯微鏡 (In-situ SEM) 分析…………46
2-5-3 臨場穿透式電子顯微鏡 (In-situ TEM) 分析…………49
2-6 研究目的…………………………………………………....51
參、實驗步驟…………………………………………………......53
3-1 實驗規劃…………………………………………………....53
3-2 實驗步驟…………………………………………………....54
3-2-1 低熵、中熵、高熵合金試片製備……………………54
3-2-2 成分分析與理論計算………………………………….56
3-2-3 基本特性分析……………………………………….....59
3-2-4 機械性質測試……………………………………….....62
3-2-5 聚焦離子束 (FIB) 臨場試片製備……………………64
3-2-6 臨場 SEM 壓縮測試 (In-situ SEM Compression)…….67
3-2-7 臨場 TEM 壓縮測試 (In-situ TEM Compression)……70
肆、結果與討論…………………………………………………..72
4-1 基本特性分析……………………………………………....72
4-1-1 材料密度……………………………………………....72
4-2-2 X 光繞射分析……………………………………….....74
4-2-3 EBSD 晶粒方向鑑定……………………………….....77
4-2 奈米壓痕測試分析………………………………………....79
4-2-1 彈性模數 (Elastic Modulus)…………………………...79
4-2-2 硬度 (Hardness)………………………………………..80
4-3 臨場 SEM 壓縮測試分析…………………………………91
4-3-1 低熵至高熵合金壓縮後外觀之比較………………….91
4-3-2 低熵至高熵合金之應力應變曲線…………………....92
4-4 微米柱縱剖面變形微結構觀察……………………………102
4-5 臨場 TEM 壓縮測試分析…………………………….........109
4-5-1 純鎢金屬……………………………………………….109
4-5-2 高熵合金……………………………………………….109
4-5-3 低熵至高熵合金之比較……………………………….110
4-6 變形機制綜合比較分析…………………………………...113
伍、結論……………………………………………….................118
陸、參考文獻…………………………………………..................120
[1] D. J. Lloyd, in Composites Engineering Handbook (Mallick PK, Ed.), ed New York, NY: Marcel Dekker, Inc., 1997.
[2] Handbook Committee, Metals Handbook (Davis JR, Ed.), 10 ed. vol. 1,2. Metals Park, OH: ASM International, 1990.
[3] J. H. Westbrook, "Intermetallic Compounds: Principles and Practice (Westbrook JH, Fleischer RL, Eds.)," ed New York: Wiley, 1995.
[4] Handbook Committee, in Metals Handbook (DavisJR,Ed.). vol.7, 10 ed Metals Park, OH: ASM International, 1990.
[5] G. He, J. Eckert, W. Löser, and L. Schultz, "Novel Ti-base nanostructure–dendrite composite with enhanced plasticity," Nature Materials, vol. 2, pp. 33-37, 2003.
[6] Handbook Committee, in Metals Handbook (BakerH,Ed.vol.3,10ed Metals Park, OH: ASM International, 1992.
[7] A. L. Greer, "Confusion by design," Nature, vol. 366, pp. 303-304, 1993.
[8] F. R. Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, in Cohesion in Metals: Transition Metal Alloys (Boer FR, Pettifor DG, Eds.), ed New York: Elsevier, 1988.
[9] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun,C.- H. Tsau, and S.-Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004.
[10] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.- H. Tsau, and S.-Y. Chang, "Formation of simple crystal structures in Cu- Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metallurgical and Materials Transactions A, vol. 35, pp. 2533-2536, 2004.
[11] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.- W. Yeh, "Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys," Intermetallics, vol. 26, pp. 44-51, 2012.
[12] C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, and H.- C. Chen, "On the elemental effect of AlCoCrCuFeNi high-entropy alloy system," Materials letters, vol. 61, pp. 1-5, 2007.
[13] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, "Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co– Cr–Fe–Si alloy systems with multi-principal elements," Materials Chemistry and Physics, vol. 103, pp. 41-46, 2007.
[14] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, "Sluggish diffusion in Co–Cr– Fe–Mn–Ni high-entropy alloys," Acta Materialia, vol. 61, pp. 4887-4897, 2013.
[15] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, "Microstructures and properties of high-entropy alloys," Progress in Materials Science, vol. 61, pp. 1-93, 2014.
[16] J. W. Y. B.S. Myuty, S. Ranganathan, High-Entropy Alloys. London, UK: Elsevier, 2014.
[17] J. W. Y. M.C. Gao, P.K. Liaw,Y. Zhang (Eds.), High-Entropy Alloys - Fundamentals and Applications. Switzerland: Springer, 2016.
[18] D. Miracle and O. Senkov, "A critical review of high entropy alloys and related concepts," Acta Materialia, vol. 122, pp. 448-511, 2017.
[19] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, "A fracture-resistant high-entropy alloy for cryogenic applications," Science, vol. 345, pp. 1153-1158, 2014.
[20] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George, "The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy," Acta Materialia, vol. 61, pp. 5743- 5755, 2013.
[21] B. Gludovatz, A. Hohenwarter, K. V. Thurston, H. Bei, Z. Wu, E. P. George, and R. O. Ritchie, "Exceptional damage-tolerance of a medium- entropy alloy CrCoNi at cryogenic temperatures," Nature Communications, vol. 7, 2016.
[22] Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, and C. C. Tasan, "Metastable high-entropy dual-phase alloys overcome the strength- ductility trade-off," Nature, 2016.
[23] M. Yao, K. Pradeep, C. Tasan, and D. Raabe, "A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility," Scripta Materialia, vol. 72, pp. 5-8, 2014.
[24] Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, and D. Raabe, "Design of a twinning-induced plasticity high entropy alloy," Acta Materialia, vol. 94, pp. 124-133, 2015.
[25] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and S.-Y. Chang, "Preparation and characterization of AlCrTaTiZr multi-element nitride coatings," Surface and Coatings Technology, vol. 201, pp. 3275-3280, 2006.
[26] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and A. Davison, "Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr) N coatings," Journal of Physics D: Applied Physics, vol. 39, p. 4628, 2006.
[27] S.-Y. Chang, S.-Y. Lin, Y.-C. Huang, and C.-L. Wu, "Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr) Nx multi-component coatings," Surface and Coatings Technology, vol. 204, pp. 3307-3314, 2010.
[28] S.-Y. Lin, S.-Y. Chang, Y.-C. Huang, F.-S. Shieu, and J.-W. Yeh, "Mechanical performance and nanoindenting deformation of (AlCrTaTiZr) NC y multi-component coatings co-sputtered with bias," Surface and Coatings Technology, vol. 206, pp. 5096-5102, 2012.
[29] S.-Y. Lin, S.-Y. Chang, C.-J. Chang, and Y.-C. Huang, "Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr) NxSiy high-entropy coatings," Entropy, vol. 16, pp. 405-417, 2013.
[30] S.-Y. Chang, M.-K. Chen, and D.-S. Chen, "Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization," Journal of The Electrochemical Society, vol. 156, pp. G37-G42, 2009.
[31] S.-Y. Chang and D.-S. Chen, "10-nm-thick quinary (AlCrTaTiZr) N film as effective diffusion barrier for Cu interconnects at 900 C," Applied Physics Letters, vol. 94, p. 231909, 2009.
[32] S.-Y. Chang, C.-Y. Wang, M.-K. Chen, and C.-E. Li, "Ru incorporation on marked enhancement of diffusion resistance of multi- component alloy barrier layers," Journal of Alloys and Compounds, vol. 509, pp. L85-L89, 2011.
[33] S.-Y. Chang, C.-E. Li, S.-C. Chiang, and Y.-C. Huang, "4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr) N x as robust diffusion barrier for Cu interconnects," Journal of Alloys and Compounds, vol. 515, pp. 4-7, 2012.
[34] S.-Y. Chang, C.-E. Li, Y.-C. Huang, H.-F. Hsu, J.-W. Yeh, and S.-J. Lin, "Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials," Scientific Reports, vol. 4, 2014.
[35] C.-y. Hsu, J.-W. Yeh, S.-K. Chen, and T.-T. Shun, "Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition," Metallurgical and Materials Transactions A, vol. 35, pp. 1465-1469, 2004.
[36] M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, and Y.- S. Huang, "Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy," Metallurgical and Materials Transactions A, vol. 37, pp. 1363-1369, 2006.
[37] M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and C.-P. Tu, "Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys," Materials Transactions, vol. 47, pp. 1395-1401, 2006.
[38] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, "Adhesive wear behavior of Al x CoCrCuFeNi high-entropy alloys as a function of aluminum content," Wear, vol. 261, pp. 513-519, 2006.
[39] O. Senkov, G. Wilks, J. Scott, and D. Miracle, "Mechanical properties of Nb 25 Mo 25 Ta 25 W 25 and V 20 Nb 20 Mo 20 Ta 20 W 20 refractory high entropy alloys," Intermetallics, vol. 19, pp. 698-706, 2011.
[40] O. Senkov, S. Senkova, D. Miracle, and C. Woodward, "Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system," Materials Science and Engineering: A, vol. 565, pp. 51-62, 2013.
[41] Y. Chen, U. Hong, H. Shih, J. Yeh, and T. Duval, "Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel," Corrosion Science, vol. 47, pp. 2679-2699, 2005.
[42] Y. Chen, U. Hong, J. Yeh, and H. Shih, "Mechanical properties of a bulk Cu 0.5 Ni Al Co Cr Fe Si glassy alloy in 288° C high-purity water," Applied Physics Letters, vol. 87, p. 261918, 2005.
[43] Y. Chen, U. Hong, J. Yeh, and H. Shih, "Selected corrosion behaviors of a Cu 0.5 NiAlCoCrFeSi bulk glassy alloy in 288° C high- purity water," Scripta Materialia, vol. 54, pp. 1997-2001, 2006.
[44] Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S. X. Mao, et al., "Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi," Nature Communications, vol. 6, pp. 10143, 2015.
[45] Zhou N, Hu T, Huang J, Luo J., "Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions," Scripta Materialia, vol.124, pp. 160-163, 2016.
[46] Zou Y, Ma H, Spolenak R., "Ultrastrong ductile and stable high- entropy alloys at small scales," Nature Communications, vol.6, pp. 7748, 2015.
[47] J. P. Hirth and J. Lothe, Theory of Dislocations, 2 ed. New York: Wiley, 1982.
[48] A. M. Giwa, P. K. Liaw, K. A. Dahmen, and J. R. Greer, "Microstructure and small-scale size effects in plasticity of individual phases of Al 0.7 CoCrFeNi High Entropy alloy," Extreme Mechanics Letters, vol. 8, pp. 220-228, 2016.
[49] J. J. Vlassak and W. Nix, "Measuring the elastic properties of anisotropic materials by means of indentation experiments," Journal of the Mechanics and Physics of Solids, vol. 42, pp. 1223-1245, 1994.
[50] B. Viswanath, R. Raghavan, U. Ramamurty, and N. Ravishankar, "Mechanical properties and anisotropy in hydroxyapatite single crystals," Scripta Materialia, vol. 57, pp. 361-364, 2007.
[51] B. Wang, R. Xin, G. Huang, and Q. Liu, "Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression," Materials Science and Engineering: A, vol. 534, pp. 588-593, 2012.
[52] T. Li, Y. Gao, H. Bei, and E. P. George, "Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals," Journal of the Mechanics and Physics of Solids, vol. 59, pp. 1147-1162, 2011.
[53] J. Kiely and J. Houston, "Nanomechanical properties of Au (111), (001), and (110) surfaces," Physical Review B, vol. 57, p. 12588, 1998.
[54] W. Wang and K. Lu, "Nanoindentation measurement of hardness and modulus anisotropy in Ni 3 Al single crystals," Journal of Materials Research, vol. 17, pp. 2314-2320, 2002.
[55] J. Vlassak, M. Ciavarella, J. Barber, and X. Wang, "The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape," Journal of the Mechanics and Physics of Solids, vol. 51, pp. 1701-1721, 2003.
[56] Chung, D.H. and W.R. Buessem, "The Elastic Anisotropy of Crystals," Journal of Applied Physics, vol. 38 (5), pp. 2010-2012, 1967.
[57] Yim, D., et al., "Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi high-entropy alloy powders," Materials Science and Engineering: A, vol. 708. 2017.
[58] Li, D., et al., "High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures," Acta Materialia, vol. 123, pp. 285-294, 2017.
[59] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles, 4 ed. Standford, CT: CENGAGE Learning, 2010.
[60] Wu, Y.D., et al., "Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys," Materials & Design, vol. 83, pp. 651-660, 2015.
[61] Huang, H., et al., "Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering," Advanced
Materials, vol. 29, pp. 1701678, 2017.
[62] Lu, L., et al., "Revealing the Maximum Strength in Nanotwinned
Copper," Science, vol. 323, pp. 607, 2009.
[63] Cai, Z., et al., "In situ TEM tensile testing on high-entropy alloy coating by laser surface alloying," Journal of Alloys and Compounds, vol. 708, pp. 380-384 2017.
[64] K. Lu, L. Lu, and S. Suresh, "Strengthening materials by engineering coherent internal boundaries at the nanoscale," Science, vol. 324, pp. 349-352, 2009.
[65] J. Zhang, G. Liu, and J. Sun, "Comparisons between homogeneous boundaries and heterophase interfaces in plastic deformation: Nanostructured Cu micropillars vs. nanolayered Cu-based micropillars," Acta Materialia, vol. 61, pp. 6868-6881, 2013.
[66] S. H. Oh, M. Legros, D. Kiener, and G. Dehm, "In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal," Nature materials, vol. 8, pp. 95-100, 2009.
[67] C. Q. Sun, "Dominance of broken bonds and nonbonding electrons at the nanoscale," Nanoscale, vol. 2, pp. 1930-1961, 2010.
[68] Zou, Y., et al., "Size-dependent plasticity in an Nb 25 Mo 25 Ta 25 W 25 refractory high-entropy alloy," Acta Materialia, vol. 65, pp. 85-97, 2014.
[69] J. R. Greer and J. T. M. De Hosson, "Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect," Progress in Materials Science, vol. 56, pp. 654-724, 2011.
[70] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solid‐ solution phase formation rules for multi‐component alloys," Advanced
Engineering Materials, vol. 10, pp. 534-538, 2008.
[71] M. Danisch, Y. Jin, and H. A. Makse, "Model of random packings of
different size balls," Physical Review E, vol. 81, p. 051303, 2010.
[72] Z. Wang, Y. Huang, Y. Yang, J. Wang, and C. Liu, "Atomic-size effect and solid solubility of multicomponent alloys," Scripta Materialia, vol. 94, pp. 28-31, 2015.
[73] S. Guo, C. Ng, J. Lu, and C. Liu, "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys," Journal of Applied Physics, vol. 109, p. 103505, 2011.
[74] S. Guo, Q. Hu, C. Ng, and C. Liu, "More than entropy in high- entropy alloys: Forming solid solutions or amorphous phase," Intermetallics, vol. 41, pp. 96-103, 2013.
[75] Pickering, E.J. and N.G. Jones, "High-entropy alloys: a critical assessment of their founding principles and future prospects," International Materials Reviews, vol. 61, pp. 183-202, 2016.
[76] Song, H., et al., "Local lattice distortion in high-entropy alloys," Physical Review Materials, vol. 1, pp. 023404, 2017.
[77] Santodonato, L.J., et al., "Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy," Nature Communications, vol. 6, pp. 5964, 2015.
[78] Owen, L.R., et al., "An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy," Acta Materialia, vol. 122, pp. 11-18, 2017.
[79] Chang, S.-Y. and T.-K. Chang, "Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test," Journal of Applied Physics, vol.101, pp. 033507, 2007.
[80] Maier-Kiener V, Schuh B, George EP, Clemens H, Hohenwarter A, "Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys," Materials & Design, vol, 115, pp. 479-485, 2017.
[81] Y. Zou, J. M. Wheeler, H. Ma, P. Okle, and R. Spolenak, "Nanocrystalline High-Entropy Alloys: A New Paradigm in High- Temperature Strength and Stability," Nano Letters, vol. 17, pp. 1569-1574, 2017.
[82] M. Wall and U. Dahmen, "An in situ nanoindentation specimen holder for a high voltage transmission electron microscope," Microscopy Research and Technique, vol. 42, pp. 248-254, 1998.
[83] Z. Shan, R. K. Mishra, S. S. Asif, O. L. Warren, and A. M. Minor, "Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals," Nature Materials, vol. 7, pp. 115-119, 2008.
[84] J. Ye, R. K. Mishra, A. R. Pelton, and A. M. Minor, "Direct observation of the NiTi martensitic phase transformation in nanoscale volumes," Acta Materialia, vol. 58, pp. 490-498, 2010.
[85] Y. Liu, I. Karaman, H. Wang, and X. Zhang, "Two Types of Martensitic Phase Transformations in Magnetic Shape Memory Alloys by
In‐Situ Nanoindentation Studies," Advanced Materials, vol. 26, pp. 3893-3898, 2014.
[86] D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, "A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples," Acta Materialia, vol. 56, pp. 580-592, 2008.
[87] Y. Yue, P. Liu, Z. Zhang, X. Han, and E. Ma, "Approaching the theoretical elastic strain limit in copper nanowires," Nano Letters, vol. 11, pp. 3151-3155, 2011.
[88] S. Mao, H. Li, Y. Liu, Q. Deng, L. Wang, Y. Zhang, and X. D. Han, "Stress-induced martensitic transformation in nanometric NiTi shape memory alloy strips: An in situ TEM study of the thickness/size effect," Journal of Alloys and Compounds, vol. 579, pp. 100-111, 2013.
[89] Yeh et al., "High-Entropy Alloys," Oxford: Butterworth-Heinemann, 2014.
[90] Beake, B.D. and S. Goel, "Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius and crystal orientation," International Journal of Refractory Metals and Hard Materials, vol. 75, pp. 63-69, 2018.
[91] Wu Y, Liu WH, Wang XL, Ma D, Stoica AD, Nieh TG, et al. "In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy," Applied Physics Letters, vol. 104, pp. 051910, 2014.
[92] 張建民, 徐可為, 「體心立方多晶膜中應變能密度的各向異性分 析,」物理學報, vol. 53, pp. 176, 2004.
[93] M. A. Meyers, K. K. Chawla, “Mechanical Metallurgy Principles and Applications," Prentice-Hall, 1984.
[94] Torrents Abad, O., et al., "Temperature-dependent size effects on the strength of Ta and W micropillars," Acta Materialia, vol. 103, pp. 483-494, 2016.
[95] Kim, J.-Y., D. Jang, and J.R. Greer, "Crystallographic orientation and size dependence of tension–compression asymmetry in molybdenum nano-pillars," International Journal of Plasticity, vol. 28, pp. 46-52, 2012.
[96] Chi-Huan Tung, Shou-Yi Chang, Unpublished Work, 2018.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *