帳號:guest(3.128.197.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅宇棋
作者(外文):Lo, Yu-Chi
論文名稱(中文):以可溼式製程之透明導電金屬氧化物作為有機發光二極體之電洞注入層
論文名稱(外文):Solution processed transparent and conductive metal oxide as an efficient hole injection layer for organic light emitting diode
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):薛景中
王欽戊
岑尚仁
口試委員(外文):Shyue, Jing-Jong
Wang, Ching-Wu
Chen, Sun-Zen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031547
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:90
中文關鍵詞:金屬氧化物旋塗製成有機發光二極體
外文關鍵詞:Metal OxideOrganic Light Emitting DiodeSping-coating Method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:409
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金屬氧化物在有機發光二極體中可扮演緩衝層及電洞注入層之角色,並改善有機材料與ITO電極表面不平整之問題,進而使電洞效能提升,讓更多的電洞、電子能夠在發光層內產生結合,使元件低驅動電壓與高放光效率等優點;因此,本研究使用低成本金屬氧化物MoO3與V2O5作為綠光元件之電洞注入層並改變氨水溶液(Ammonia Water)與氧化物之固溶比,再利用溼式旋塗方式製作透明電洞注入層以取代商業常用之材料PEDOT:PSS;結果顯示,使用PEDOT:PSS為對照參數,元件在亮度為100 nits下,能量效率為46.6 lm/w,最大亮度為20,160 cd/m2,而使用MoO3為電洞注入層,元件在亮度為100 nits下能量效率為49.0 lm/w,最大亮度為25,960 cd/m2,而使用V2O5為電洞注入層,能量效率為51.9 lm/w,最大亮度為27,700 cd/m2,最後使用共同混摻MoO3與V2O5為電洞注入層,能量效率為50.1 lm/w,最大亮度為23,570 cd/m2;由此顯示,使用MoO3、V2O5與兩種混摻型態作為電洞注入層,元件效率皆略優於商業用PEDOT:PSS元件。
Since the metal oxide can play a significant role of buffer layer and hole injection layer in the organic light-emitting diode (OLED). Metal oxide can improve the surface roughness, therefore, it can increase the injection ability to enhance the recombination rate in emissive layer, thereby achieving low driving voltage and high light-emitting efficiency of the devices. The present study used low-cost metal oxides, MoO3 and V2O5 were the precursors, and were mixed together. The ratio of ammonia water to solid oxide was adjusted to different solid-solution ratio. A transparent injection layers Molybdenum oxide and vanadium oxide thin films were prepared by spin-coating method, and expected to replace commercially used material poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). In devices performance, the power efficiency of control part of PEDOT:PSS is 46.6 lm/w at 100nits. To the other The optimized efficiency of MoO3 thin film is 49.0lm/wat at 100 nits, and the maximum brightness is 25,960 cd/m2. For V2O5 the optimized efficiency is 51.9 lm/w, and the maximum brightness is 27,700 cd/m2. Finally, the mixed MoO3 and V2O5, the efficacy is 50.1 lm/w, and the maximum brightness is 23,570 cd/m2. Overall, the use of MoO3, V2O5, and mixed part as the hole injection layers are all slightly better than commercial PEDOT:PSS devices.
摘要 ……………………………………………………………………….I
Abstract ……………………………………………………………….. II
致謝 …………………………………………………………………...IV
圖目錄 ………………………………………………………………...... X
表目錄 ……………………………………………………………....... XIII
壹、緒論 ………………………………………………………………....1
貳、文獻回顧…………………………………………………….…….…3
2-1 、OLED的歷史發展 …………………………………………..3
2-2 、OLED的發光原理 …………………………………………..16
2-3 、OLED的發光機制 …………………………………………..17
2-4 、OLED的基本結構 …………………………………………..22
2-5 、OLED的能量傳遞機………………………………….…..…. 23
2-6 、OLED高效率元件的製作方法 26
2-7 、濕製OLED之發展……………………………….…...……….33
2-8 、過渡金屬氧化物與商業PEDOT:PSS做電洞注入層之比較………………………………………………..……...…......38
參、實驗方法 .42
3-1、元件結構與使用材料...................................................................42
3-2、元件設計與製備………………………………….………....…..47
3-2-1、元件電路設計 48
3-2-2、基材清洗……………………...………………….….…. 49
3-2-3、旋轉塗佈製程 49
3-2-4、熱蒸鍍製程 50
3-2-5、成膜鍍率測定 51
3-2-6、有機層之製備 51
3-2-7、無機層之製備 52
3-3、元件特性量測 52
3-3-1、發光效率之量測 53
3-3-2、電致發光光譜量測 54
3-4、XRD薄膜分析 56
3-5、SEM 薄膜分析 56
3-6、AFM 薄膜分析 58
3-7、XPS 薄膜分析 60
肆、結果與討論………………………………………………...…….... 60
4-1、MoO3與V2O5薄膜之元素定量分析…………..……………64
4-2、MoO3與V2O5薄膜之微結構分析 69
4-3、MoO3與V2O5作為電洞注入層之元件效能 77
4-4、混摻MoO3與V2O5作為電洞注入層之元件光譜與效率 80
4-5、總結………..……………………………………………...…..82
伍、結論 .84
陸、參考資料 91











圖目錄
圖一、美國科達公司於1987年發表之雙層OLED元件結構圖[26] 5
圖二、劍橋大學卡文迪西實驗室所發表之單層高分子元件結構[28] 6
圖三、日本Saito教授團隊發表三層式的OLED元件結構[30] 7
圖四、 Kido研究團隊加入一載子侷限層,在電洞傳輸層及電子傳輸層之間的OLED元件結構[32] 8
圖五、德國Leo教授研究團隊所發表之P-I-N結構OLED[36] 9
圖六、鄧清雲等人發表之堆疊式 (tandem) OLED結構[37] 10
圖七、美國Yang教授發表之熱蒸鍍源製程方法[38] 11
圖八、清華大學周卓煇教授發表之溶劑預混法示意圖[39] 12
圖九、 Forrest教授團隊所發表之光柵結構及OLED元件出光 [40] ..12
圖十、Leo教授發表高折射玻璃與半球形出光結構之示意圖[41] 13
圖十一、Wang教授所發表之出光結構及可撓式高效率綠光OLED[42] .14
圖十二、日本Adachi教授所發表之TADF材料能量傳遞圖[43] 15
圖十三、OLED元件發光機制示意圖 18
圖十四、OLED基本結構示意圖 22
圖十五、Förster與Dexter兩種能量傳遞機制示意圖 24
圖十六、元件厚度對內建電場之影響[55] 26
圖十八、OLED元件階梯式結構示意圖[55] 28
圖十九、有效將載子侷限在發光層示意圖[55] 29
圖二十、載子注入平衡,電子與電洞進入發光層的數量相當示意圖[55] 30
圖二十一、加入單層載子調制層,有效將電洞分配到不同的發光區 …30
圖二十二、加入雙載子調制層,更有效將電洞區隔在不同的再結合區 31
圖二十三、在低電壓時,載子容易注入客體形成激子 32
圖二十四、在高電壓時,載子具備足夠能量克服能障,使載子可以在主體上再結合形成激子 33
圖二十五、堆疊式OLED元件結構示意圖 34
圖二十六、OLED 照明製程預測成本[86] 35
圖二十七、濕式白光OLED元件結構示意圖[87]………………..…….46
圖二十八、電洞注入材料MoO3、V2O5與PEDOT:PSS結構式……46
圖二十九、主體材料CBP結構式圖 …………………………………46
圖三十、客體染料Ir(ppy)3結構式圖 ………………………………46
圖三十一、電子傳輸材料TPBi結構式圖 ……………………….…47
圖三十二、OLED元件電路設計示意圖 (續)…………..……………50
圖三十三、真空熱蒸鍍系統示意圖 52
圖三十四、OLED元件之發光效率之量測示意圖………………….…53
圖三十五、OLED元件之電致發光光譜量測示意圖 60
圖三十六、利用SEM與EDS初步分析MoO3薄膜之表面形貌與定量元素分析 ………………………………………………….61
圖三十七、MoO3薄膜中之Mo 3p軌域鍵結能量 …………………..62
圖三十八、MoO3薄膜中之O 1S軌域鍵結能量 …………………….64
圖三十九、利用SEM與EDS初步分析V2O5薄膜之表面形貌與定量元素分析 …………………………………………………65
圖四十、V2O5薄膜中V 2P軌域與O 1S鍵結能量…………………66
圖四十一、 PEDOT:PSS薄膜表面形貌之 (a) 2D微結構影像與 (b) 3D之影像,其表面粗糙度為0.96 nm…………………….67
圖四十二、 MoO3薄膜表面形貌之 (a) 2D微結構影像與 (b) 3D之影像,其表面粗糙度為0.53 nm………………………….…67
圖四十三、V2O5薄膜表面形貌之 (a) 2D微結構影像與 (b) 3D之影像,其表面粗糙度為1.70 nm …………………………68
圖四十四、MoO3薄膜之XRD分析,以不同MoO3粉末重量溶於氨水溶液固溶比 (x mg : ml,x = 1, 3, 5與10)下皆呈非晶相 ……….…………………………………………………….69
圖四十五、V2O5薄膜之XRD分析圖,不同V2O5粉末重量溶於氨水溶液固溶比 (x mg : ml,x = 0.5, 1, 3與5)下皆呈非晶相…………………………………………………...….......72
圖四十六、濕式製備MoO3作為綠光元件之電洞注入層在不同亮度下之(a)電流效率與(b)能量效率 ……………………………72
圖四十七、濕式製備MoO3作為綠光元件之電洞注入層在不同電壓下之(a)電流效率與(b)亮度 …………………………………75
圖四十八、濕式製備V2O5作為綠光元件之電洞注入層在不同亮度下之(a)電流效率與(b)能量效率 ……………………………76
圖四十九、濕式製備V2O5作為綠光元件之電洞注入層在不同電壓下之(a)電流效率與(b)亮度 …………………………………79
圖五十、濕式製備混摻V2O5與MoO3作為綠光元件之電洞注入層在不同亮度下之(a)電流效率與(b)能量效率 ……………80
圖五十一、濕式製備混摻V2O5與MoO3作為綠光元件之電洞注入層在不同電壓下之(a)電流效率與(b)亮度 ……………………80
圖五十二、單獨使用V2O5、MoO3與共同混摻兩者材料之綠光元件光譜…………………………….……………………………... 80









表目錄
表一、本研究所使用之材料的功能、化學式及簡稱………………….45
表二、MoO3在不同固溶比(x mg/ml,x = 0.5, 1 , 3與5)下當作電洞注入層之元件表現 ……………………………………………….71
表三、V2O5在不同固溶比(x mg/ml,x = 0.5, 1 , 3與5)下當作電洞注入層之元件光電特性 ………………………………………….74
表四、共同混摻MoO3與V2O5在不同重量濃度比例 (x : y = 30:70
50:50與70:30)下當作電洞注入層之元件表 現……………................................................................…..…....77

[1] M. A. Baldo , M. E. Thompson , S. R. Forrest , Nature 2000., 403, 750.
[2] T. Sekitani , T. Someya , Advanced Materials., 2010, 22, 2228-2246.
[3] K. Junghwan, K. Geunjin, G. Youna, L. Jongjin, P. Sung Heum, L.
Kwanghee, Journal of Applied Physics. 2012., 111, 114511.
[4] B. Maennig, M. Pfeiffer, A. Nollau, X. Zhou, K. Leo, Physical Review
B., 2001, 64, 195208.
[5] Y. Cao , G. Yu , C. Zhang , R. Menon , A. J. Heeger , Synthetic Metals.,
1997, 87, 171.
[6] D. Heithecker, A. Kammoun, T. Dobbertin, T. Riedl, E. Becker,
D. Metzdorf, D. Schneider, H. H. Johannes, W. Kowalsky, Applied Physics Letters., 2003, 82, 4178.
[7] F. So, D. Kondakov, Advanced Materials., 2010, 22, 3762 .
[8] M. P. de Jong , L. J. van IJzendoorn , M. J. A. de Voigt , Applied Physics
Letters., 2000, 77, 2255 .
[9] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, 2005,
Applied Physics Letters., 87, 193508.
[10] S. Hamwi, J. Meyer, T. Winkler, T. Riedl, and W. Kowalsky, Applied Physics Letters., 2007, 91, 113506.
[11] K. Kanai, K. Koizumi, S. Ouchi, Y. Tsukamoto, K. Sakanoue, Y.
Ouchi, K. Seki, Organic Electronics., 2010, 11, 188.
[12] H. Lee, S. W. Cho, K. Han, P. E. Jeon, C. -N. Whang, K. Jeong, K.
Cho, Y. Yi, Applied Physics Letters., 2008, 93, 043308.
[13] D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J. W. Kim, J.-J. Kim,
Applied Physics Letters., 2007, 91, 011113.
[14] K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, D. C. Olson, Organic Electronics., 2010, 11, 1414.
[15] M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn,
Applied Physics Letters., 2009 , 95, 123301.
[16] D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, R. H. Friend, Advanced
Materials., 2010, 22, 3194-3198.
[17] H. You, Y. Dai, Z. Zhang, D. Ma, J, Applied Physics Letters.,
2007,101, 026105.
[18]A. Bernanose, M. Comte, P. Vouaux, Journal De Chimie Physique Et De Physico-Chimie Biologique., 1953, 50, 64-68.
[19]M. Pope, P. Magnante, H. P. Kallmann, Journal of Chemical Physics., 1963, 38, 2042-2043.
[20]W. Helfrich, W. G. Schneide, Physical Review Letters., 1965, 14, 229-231.
[21]W. Helfrich, Schneide.Wg, Journal of Chemical Physics., 1966, 44, 2902-2909.
[22]P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films., 1982, 94, 171-183.
[23]R. Partridge, Polymer, 1983, 24, 733-738.
[24]C. W. Tang, S. A. Vanslyke, Applied Physics Letters., 1987, 51, 913-915.
[25]C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Journal of Applied Physics., 2001, 90, 5048-5051.
[26]S. A. VanSlyke, C. W. Tang, L. C. Roberts, US Patent, 1988, No. 4720432.
[27]C. W. Tang, S. A. Vanslyke, C. H. Chen, Journal of Applied Physics., 1989, 65, 3610-3616.
[28]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature., 1990, 347, 539-541.
[29]R. H. Friend, J. H. Burroughes, D. D. Bradley, US Patent, 1993 No. 5247190.
[30]C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Japanese Journal of Applied Physics Part 2-Letters., 1988, 27, L713-L715.
[31]J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, K. Nagai, Japanese Journal of Applied Physics Part 2-Letters., 1993, 32, L917-L920.
[32]J. Kido, H. Shionoya, K. Nagai, Applied Physics Letters., 1995, 67, 2281-2283.
[33]J. Kido, M. Kimura, K. Nagai, Science., 1995, 267, 1332-1334.
[34]L. S. Hung, C. W. Tang, M. G. Mason, Applied Physics Letters., 1997, 70, 152-154.
[35]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature., 1998, 395, 151-154.
[36]J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Y. Liu, Applied Physics Letters., 2002, 80, 139-141.
[37]L. S. Liao, K. P. Klubek, C. W. Tang, Applied Physics Letters., 2004, 84, 167-169.
[38]Y. Shao, Y. Yang, Applied Physics Letters., 2005, 85, 073510.
[39]J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, C. Hu, Applied Physics Letters., 2006, 88, 193501.
[40]Y. Sun, S. R. Forrest, Nature Photonics., 2008, 2, 483-487.
[41]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature., 2009, 459, 234.
[42]Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, Z. H. Lu, Nature Photonics., 2011, 5, 753-757.
[43]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature., 2012, 492, 234-238.
[44]J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen, C. H. Lin, Advanced Functional Materials., 2013, 23, 2750-2757.
[45]L. G. Thompson, S. E. Webber, Journal of Physical Chemistry., 1972,
76, 221.
[46]A. Dodabalapur, Solid State Communications., 1997, 102, 259-267.
[47]W. D. Gill, Journal of Applied Physics., 1972, 43, 5033-5040.
[48]U. Wolf, V. I. Arkhipov, H. Bassler, Physical Review B., 1999, 59,
7507-7513.
[49]S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. E. Seidler, W. Riess, Physical Review B., 1999, 60, 8791-8797.
[50]M. A. Lampert, P. Mark, New York, Academic Press., 1970.
[51]P. N. Murgatro, Journal of Physics D: Applied Physics., 1970, 3, 151-156.
[52]T. Förster, Ann. Physik., 437, 1948, 55-75.
[53]L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
[54]M. Klessonger and J. Michl, “Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York, 1995.
[55]J. H. Jou, C. Y. Hsieh, J. R. Tseng, P. W. Chen, S. H. Peng, Y. C. Jou,
J. H. Hong, S. H. Shen, M. C. Tang, P. C. Chen, and C. H, Lin, Adv.
Funct. Maters, 23, 2750–2757, 2013. 23. J. H. Jou. "The Second
Chapter." OLED Introdcution. Taiwan, Gau Li, 2015. Print.
[56] J. H. Jou, Y. T. Su, M. T. Hsaio, H. H. Yu, Z. H. He, S. C. Fu, C. H. Chiang, C. T. Chen, C. H. Chou, and J. J. Shyue, J. Phys. Chem. C, 2016, 120, 18794-18802.
[57] William Feehery, Dupont,”OLED lighting manufacturing cost,” SSL Manufacturing Workshop, Fairfox, VA, April 2009.
[58] J. H. Jou, M. C. Sun, H. H. Chou, and C. H. Li, Appl. Phys. Lett. 87, 047508, 2005.
[59] “DuPont Teams with Dainippon Screen to Develop Printed OLED Technology.”, OLED-info, May 2008.
[60] E. Smith. “Solution Processing for OLED TVs”, October 2012.
[61] DuPont, Kateeva Partner to Advance OLED Inkjet Printing - Analyst Blog, Zacks Equity Research, Retrieved June 02, 2015, from http://finance.yahoo.com/news/dupont-kateeva-partner-advance-oled-212609093.html
[62] D. Jury. "Letterpress: The Allure of the Handmade." Rotovision, August, 2004. Print.
[63]S. A. Ruiz, and C. S. Chen, Soft Matter., 3, 168-177, 2007.
[64]J. H. Jou, K. Y. Chou, F. C. Yang, A. Agrawal, S. Z. Chen, J. R. Tseng, C. C. Lin, P. W. Chen, K. T. Wong, and Y. Chi, Appl. Phys. Lett., 104, 203304, 2014.
[65] Fei Huang, Hongbin Wu, Yong Cao, Chemical Society Reviews., 2010, 39, 2500.
[66] Roland Steim, F. Rene Koglera, Christoph J. Brabeccd, Journal of Materials Chemistey., 2010, 20, 2499.
[67] Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, Z. H. Lu, Physical Review B., 2009, 80, 235325.
[68] Yanming Sun, Christopher J. Takacs, Sarah R. Cowan, Jung Hwa Seo, Xiong Gong, Anshuman Roy, Alan J. Heeger, Advanced Materials., 2011, 23, 2226.
[69] T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik,
C. J. Brabec, Applied Physics Letters., 2011, 98, 253308.
[70 ] J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, Advanced Materials.,
2011, 23, 70.
[71]S. Murase, Y. Yang, Advanced Materials., 2012, 24, 2459.
[72] Jacek J. Jasieniak, Jason Seifter, Jang Jo, Tom Mates, and Alan J. Heeger, Advanced Materials., 2012, 22, 2594.
[73] Fengxian Xie, Wallace C. H. Choy, Chuandao Wang, Xinchen Li, Shaoqing Zhang, and Jianhui Hou, Advanced Materials., 2013, 25, 2051–2055.
[74] K. Zilberberg , S. Trost , H. Schmidt , T. Riedl , Advanced Energy Materials., 2011, 1, 377.
[75]K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt,
D.Lützenkirchen-Hecht, R. Frahm , T. Riedl, Advanced Functional
Materials., 2011, 21, 4776-4783.
[76] Xinchen Li, Fengxian Xie, Shaoqing Zhang, Jianhui Hou, Wallace CH Choy, Light: Science & Applications., 2015, 4, 273.
[77] Abdullah Alsulami ,Jonathan Griffin , Rania Alqurashi , Hunan Yi , Ahmed Iraqi , David Lidzey, Alastair Buckley, Materials 2016., 9(4), 235.
[78] Richard J. Colton, Alberto M. Guzman, J. Wayne Rabalais, Applied
Physics Letters., 1978, 49, 409.
[79] Hongyuan Chuai, Defeng Zhou, Xiaofei Zhu b, Zhaohui Li, Weiping Huang, ScienceDirect., 2015, 36, 2194–2202.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *