帳號:guest(18.191.72.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳宜宏
作者(外文):Chen, Yi-Hong
論文名稱(中文):氧化鎢/石墨相氮化碳異質結構及助催化劑於光催化水解產氫之研究
論文名稱(外文):Fabrication of WO3/g-C3N4 Z-scheme Structure and Co-catalysts for Photocatalytic Hydrogen Evolution
指導教授(中文):彭宗平
指導教授(外文):Perng, Tsong-Pyng
口試委員(中文):王致傑
柯志忠
口試委員(外文):Wang, Chih-Chieh
Kei, Chi-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031545
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:96
中文關鍵詞:光催化產氫Z-scheme異質結構石墨相氮化碳氧化鎢助催化劑水解產氫
外文關鍵詞:photocatalytic hydrogen evolutionZ-scheme structuregraphitic carbon nitridetungsten oxideCo-catalystswater splitting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
  近年來,頻繁發生的極端氣候以及氣候變遷導致的天災,引起大家開始關心氣候變遷及全球暖化的議題。因此,許多先進國家已經開始發展再生能源。氫能是其中一種備受期待的綠能,而光催化產氫為一種具有發展潛力的氫氣生產方式。此外,Z-scheme能帶結構可以降低光催化材料的電子、電洞再結合機率,進而提升光催化效率。
  石墨相氮化碳是近幾年來的新星材料,因為其擁有合適的能帶位置、能隙及較低的生產成本。本研究中,以石墨相氮化碳及氧化鎢兩種材料形成Z-scheme複合材料,並探討鉑與金作為助催化劑對光催化產氫之效果。助催化劑有降低電子、電洞再結合之效果,亦能作為催化反應的有效位置。此外,金奈米顆粒有表面電漿共振效應,可以吸收部份的可見光波段,並強化奈米顆粒附近的電場而增加光催化效率。
  本研究以尿素作為石墨相氮化碳之前驅物,並利用溶膠凝膠法及多孔結構之聚碸模板製備氧化鎢奈米顆粒,再藉由溼式研磨及後續的熱處理製備複合材料。而助催化劑是以硼氫化鈉化學還原法的方式附著在材料上。材料的晶體結構、表面形貌、氧化鎢含量、吸收光譜、元素分布分別使用X光繞射儀、掃描式電子顯微鏡、熱重分析儀、紫外光/可見光光譜儀、能量散射X光光譜儀進行分析。
  經由在太陽能模擬光照射下的產氫結果比較,加入5 wt.%的氧化鎢的石墨相氮化碳能提升約兩倍的產氫效率。此外,鉑奈米顆粒最佳的沉積量為1 wt.%;而金奈米顆粒的最佳沉積量則是3 wt.%。光催化產氫結果顯示,加入助催化劑的氧化鎢/石墨相氮化碳,其效率大幅提升。以鉑當作助催化劑之複合材料,其效率高達2290.6 μmol/g∙h;以金當作助催化劑之複合材料,其效率為1104.2 μmol/g∙h。另外,在可見光下的光催化產氫結果顯示,鉑作為助催化劑之效率比金之效率更佳。因此,本研究證明氧化鎢/石墨相氮化碳為具有發展潛力的材料,而鉑奈米顆粒適合當此材料系統之助催化劑。
  Recently, extreme climate change has been noticed by many countries because it has been speeded up and caused many horrible disasters. Most of advanced countries have been developing renewable energies. Hydrogen energy is considered as an alternative. Photocatalytic hydrogen evolution is a potential approach to produce hydrogen. In addition, Z-scheme band structure is an effective way to reduce the recombination rate of electrons and holes so that the photocatalytic efficiency can be improved.
  g-C3N4 is a popular material for photocatalytic water splitting in recent years due to its suitable band positions, bandgap, and low cost. In this research, g-C3N4 was combined with another photocatalyst, WO3, in order to enhance the photocatalytic efficiency. The Z-scheme composite was fabricated by simple wet grinding urea-derived g-C3N4 and WO3 powders, followed by heat treatment at 300 ℃ for 2 h. Furthermore, Pt and Au nanoparticles were deposited as co-catalysts by wet reduction. The co-catalyst significantly improves the photocatalytic performance by serving as the electron sinks and active sites. For Au, it has extra surface plasmonic resonance absorption of visible light. The enhanced electric field around the nanoparticles has benefit on photocatalytic efficiency. The crystal structures, morphologies, contents of WO3, bandgap energies, and elemental distributions of g-C3N4, WO3, and the composite samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), UV-vis spectroscopy, and energy-dispersive X-ray (EDX) mapping, respectively.
  The optimal weight ratio of WO3 in WO3/g-C3N4 composite was 5 wt.%, which led to 2.2 times of H2 production compared to bare g-C3N4 under solar irradiation. Moreover, the optimal loadings for Pt and Au were 1 wt.% and 3 wt.%, respectively. The efficiencies for 1 wt.% Pt-loaded and 3 wt.% Au-loaded WO3/g-C3N4 composites were 2290.6 and 1104.2 μmol/g∙h under solar irradiation, respectively. For the photocatalytic efficiency under visible light (> 420 nm), the Pt-loaded g-C3N4 performed better than Au-loaded g-C3N4. Hence, WO3/g-C3N4 is a promising photocatalyst, and Pt was proved to be a more suitable co-catalyst than Au under either solar light or visible light irradiation.
摘要---I
Abstract---III
誌謝---V
Chapter I Introduction---1
1-1. Energy crisis---1
1-2. Photocatalyst for water splitting---4
1-3. Z-scheme structure---8
1-4. Co-catalyst---10
1-5. Motivation---12
Chapter II Literature Review---15
2-1. Graphitic carbon nitride (g-C3N4)---15
2-2. Tungsten oxide (WO3)---18
2-3. Surface plasmonic resonance effect---23
2-4. Au-deposited photocatalyst---26
2-5. Direct Z-scheme WO3/g-C3N4 photocatalyst---31
Chapter III Experimental Procedures---42
3-1. Synthesis of g-C3N4 powder---42
3-2. Synthesis of WO3 powder---42
3-3. Fabrication of WO3/g-C3N4 composite---42
3-4. Co-catalyst loading---44
3-5. Characterization---44
3-5-1. X-ray diffraction (XRD)---44
3-5-2. Scanning electron microscopy (SEM)---44
3-5-3. Thermogravimetric analysis (TGA)---45
3-5-4. UV-visible absorption spectroscopy---45
3-5-5. Measurement of Pt loading---46
3-6. Photocatalytic H2 evolution test---46
Chapter IV Results and Discussion---50
4-1. Characterization of g-C3N4 and WO3 powders---50
4-2. Characterization of WO3/g-C3N4 composite---57
4-3. Characterization of the noble-metal-loaded g-C3N4 and WO3/g-C3N4 composite---63
4-4. Photocatalytic H2 evolution---70
4-5. Proposed mechanism---80
Chapter V Conclusions---85
Chapter VI Suggested Future Work---87
References---88
[1] BP statistical review of world energy, 2017.
[2] https://www.ecotricity.co.uk/our-green-energy/energy-independence/the-end-of-fossil-fuels.
[3] https://climate.nasa.gov/vital-signs/global-temperature/
[4] A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev., 2009, 38, 253-279.
[5] A. Fujishima and K. Honda, “Electrochemical evidence for the mechanism of the primary stage of photosynthesis,” Bull. Chem. Soc. Jpn., 1971, 44, 1148-1150.
[6] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 1972, 238, 37-38.
[7] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen, “GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting,” J. Am. Chem. Soc., 2005, 127, 8286-8287.
[8] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J.R. Gong, “Highly Efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets,” J. Am. Chem. Soc., 2011, 133, 10878-10884.
[9] J. Zhang, J. Yu, Y. Zhang, Q. Li, and J.R. Gong, “Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer,” Nano Lett., 2011, 11, 4774-4779.
[10] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, and S.L. Suib, “Photocatalytic water splitting-the untamed dreams: a review of recent advances,” Molecules, 2016, 21, 900-928.
[11] Z.F. Huang, J. Song, X. Wang, L. Pan, K. Li, X. Zhang, L. Wang, and J.J. Zou, “Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution,” Nano Energy, 2017, 40, 308-316.
[12] A. Bard, “Photoelectrochemistry and heterogeneous photocatalysis at semiconductors,” J. Photochem., 1979, 10, 59-75.
[13] H. Li, W. Tu, Y. Zhou, and Z. Zou, “Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges,” Adv. Sci., 2016, 3, 1500389-1500400.
[14] H. Li, Y. Zhou, W. Tu, J. Ye, and Z. Zou, “State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance,” Adv. Funct. Mater., 2015, 25, 998-1013.
[15] J. Yang, D. Wang, H. Han, and C. Li, “Roles of cocatalysts in photocatalysis and photoelectrocatalysis,” Acc. Chem. Res., 2013, 46, 1900-1909.
[16] J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S.Z Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,” Chem. Soc. Rev., 2014, 43, 7787-7812.
[17] B. Zhu, L. Zhang, B. Cheng, and J. Yu, “First-principle calculation study of tri-s-triazine-based g-C3N4: a review,” Appl. Catal. B-Environ., 2018, 224, 983-999.
[18] W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, and T. Peng, “Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production,” Appl. Catal. B-Environ., 2017, 219, 693-704.
[19] X. Wang, S. Blechert, and M. Antonietti, “Polymeric graphitic carbon nitride for heterogeneous photocatalysis,” ACS Catal., 2012, 2, 1596-1606.
[20] S. Cao, J. Low, J. Yu, and M. Jaroniec, “Polymeric photocatalysts based on graphitic carbon nitride,” Adv. Mater., 2015, 27, 2150-2176.
[21] Y. Chen, J. Li, Z. Hong, B. Shen, B. Lin, and B. Gao, “Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production,” Phys. Chem. Chem. Phys., 2014, 16, 8106-8113.
[22] L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, and G. Cai, “Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity,” Dalton Trans., 2013, 42, 8606-8616.
[23] S.C. Yan, Z.S. Li, and Z.G. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir, 2009, 25, 10397-10401.
[24] F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, and W.K. Ho, “In situ construction of g‑C3N4/g‑C3N4 metal-free heterojunction for enhanced visible-light photocatalysis,” ACS Appl. Mater. Interfaces, 2013, 5, 11392-11401.
[25] J. Liu, T. Zhang, Z. Wang, G. Dawson, and W. Chen, “Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity,” J. Mater. Chem., 2011, 21, 14398-14401.
[26] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater., 2009, 8, 76-80.
[27] F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew Chem. Int. Ed., 2006, 45, 4467-4471.
[28] S.K. Deb, “Opportunities and challenges in science and technology of WO3 for electrochromic and related applications,” Sol. Energy Mater. Sol. Cells, 2008, 92, 245-258.
[29] S.J. Hong, S. Lee, J.S. Jang, and J.S Lee, “Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation,” Energy Environ. Sci., 2011, 4, 1781-1787.
[30] J. Kim, C.W. Lee, and W. Choi, “Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light,” Environ. Sci. Technol., 2010, 44, 6849-6854.
[31] X. An, J.C. Yu, Y. Wang, Y. Hu, X. Yu, and G. Zhang, “WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing,” J. Mater. Chem., 2012, 22, 8528-8531.
[32] A.C. Marques, L. Santos, M.N. Costa, J.M. Dantas, P. Duarte, A. Gancalves, R. Martins, C.A. Salgueiro, and E. Fortunato, “Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes,” Sci. Rep., 2015, 5, 9910-9916.
[33] I.M. Szilágyi, B. Fórizs, O. Rosseler, Á.Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K. Varga-Josepovits, K. László, A.L. Tóth, P. Baranyai, and M. Leskelä, “WO3 photocatalysts: influence of structure and composition,” J. Catal., 2012, 294, 119-127.
[34] Y.P. Xie, G. Liu, L. Yin, and H.M. Cheng, “Crystal facet-dependent photocatalytic oxidation and reduction activity of monoclinic WO3 for solar energy conversion,” J. Mater. Chem., 2012, 22, 6746-6751.
[35] S. Sarina, E. R. Waclawik, and H. Zhu, “Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation,” Green Chem., 2013, 15, 1814-1833.
[36] S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater., 2011, 10, 911-921.
[37] Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett., 2008, 92, 043107.
[38] Y. Tian and T. Tasuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc., 2005, 127, 7632-7637.
[39] Y.C. Pu, G. Wang, K.D. Chang, Y. Ling, Y.K. Lin, B.C. Fitzmorris, C.M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.J. Hsu, and Y. Li, “Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting,” Nano Lett., 2013, 13, 3817-3823.
[40] J.J. Chen, J C.S. Wu, P.C. Wu, and D.P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C, 2011, 115, 210-216.
[41] J. Jiang, J. Yu, and S. Cao, “Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light,” J. Colloid Interface Sci., 2016, 461, 56-63.
[42] H. Katsumata, Y. Tachi, T. Suzuki, and S. Kaneco, “Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composites photocatalysts,” RSC Adv., 2014, 4, 21405-21409.
[43] C. Cheng, J. Shi, Y. Hu, and L. Guo, “WO3/g-C3N4 composites: one-pot preparation and enhanced photocatalytic H2 production under visible-light irradiation,” Nanotechnology, 2017, 28, 164002-164010.
[44] X. Han, D. Xu, L. An, C. Hou, Y. Li, Q. Zhang, and H. Wang, “WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production,” Inter. J. Hydrogen Energy, 2018, 43, 4845-4855.
[45] G. Zhang, J. Zhang, M. Zhang, and X. Wang, “Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts,” J. Mater. Chem., 2012, 22, 8083-8091.
[46] S. Chen, Y. Hu, S. Meng, and X. Fu, “Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3,” Appl. Catal. B-Environ., 2014, 150, 564-573.
[47] Q. Gu, Z. Gao, H. Zhao, Z. Lou, Y. Liao, and C. Xue, “Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light,” RCS Adv., 2015, 5, 49317-49325.
[48] J. Ran, T.Y. Ma, G. Gao, X.W. Du, and S.Z. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci., 2015, 8, 3708-3717.
[49] P. Niu, Y. Yang, J.C. Yu, G. Liu, and H.M. Cheng, “Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst,” Chem. Commun., 2014, 50, 10837-10840.
[50] W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng, and G. Chen, “Template-induced high-crystalline g‑C3N4 nanosheets for enhanced photocatalytic H2 evolution,” ACS Energy Lett., 2018, 3, 514-519.
[51] A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells, 2007, 91, 266-274.
[52] K. Zhang, C. McCleese, P. Lin, X. Chen, M.G. Morales, W. Cao, F.J. Seo, C. Burda, and H. Baumgart, “Synthesis of ALD tungsten trioxide thin films from W(CO)6 and H2O precursors,” ECS Trans. 2015, 69, 199-205.
[53] M.J. Hossain, M.S. Rahman, M.S. Rahman. M.A. Ali, N.C. Nandi, P. Noor, K.N. Ahmed, and S. Akhter, “Optimized reduction conditions for the microfluidic synthesis of 1.3 ± 0.3 nm Pt clusters,” J. Nanostruc. Chem., 2016, 6, 49-56.
[54] M. Lin, P. Xia, L. Zhang, B. Cheng, and J. Yu, “Enhanced photocatalytic H2‑production activity of g‑C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst,” ACS Sustainable Chem. Eng., 2018, 6, 10472-10480
[55] D.E. Eastman, “Photoelectric work functions of transition, rare-earth, and noble metals,” Phys. Rev. B, 1970, 2, 1-2.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *