|
1. Yeh, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303. 2. Yeh, J.W., Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux, 2006. 31(6): p. 633-648. 3. Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science, 2005. 50(5): p. 511-678. 4. Firstov, G.S., et al., High Entropy Shape Memory Alloys. Materials Today: Proceedings, 2015. 2: p. 499-503. 5. Firstov, G.S., et al., Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials? Shape Memory and Superelasticity, 2015. 1(4): p. 400-407. 6. Guo, S. and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science-Materials International, 2011. 21(6): p. 433-446. 7. Nespoli, A., et al., The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sensors and Actuators a-Physical, 2010. 158(1): p. 149-160. 8. Hu, J.W. and M.H. Noh, Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions. Advances in Materials Science and Engineering, 2015: p. 17. 9. Gonzalez, C.H., et al., Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals. Materials Research, 2004. 7(2): p. 305-311. 10. AbuZaiter, A., et al., Development of Miniature Stewart Platform Using TiNiCu Shape-Memory-Alloy Actuators. Advances in Materials Science and Engineering, 2015. 11. Seo, J., Y.C. Kim, and J.W. Hu, Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA) Bending Bars Used for Seismic Restrainers. Applied Sciences-Basel, 2015. 5(3): p. 187-208. 12. Olson, G. and M. Cohen, Thermoelastic behavior in martensitic transformations. Scripta Metallurgica, 1975. 9(11): p. 1247-1254. 13. Rehman, S.U., et al., Improvement in the Mechanical Properties of High Temperature Shape Memory Alloy (Ti50Ni25Pd25) by Copper Addition. Advances in Materials Science and Engineering, 2015: p. 7. 14. Ramesh, G. and N.K. Prabhu, Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment. Nanoscale Research Letters, 2011. 6. 15. Ma, J., I. Karaman, and R.D. Noebe, High temperature shape memory alloys. International Materials Reviews, 2013. 55(5): p. 257-315. 16. Wojcik, C.C., Properties and Heat Treatment of High Transition Temperature Ni-Ti-Hf Alloys. Journal of Materials Engineering and Performance, 2009. 18(5-6): p. 511-516. 17. Besseghini, S., E. Villa, and A. Tuissi, Ni-Ti-Hf shape memory alloy: effect of aging and thermal cycling. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 390-394. 18. Angst, D.R., P.E. Thoma, and M.Y. Kao, Proceedings ICOMAT-95. J. Phys. IV, 1995. 5: p. C8-747. 19. Philip, T.V. and P.A. Beck, CSCL-TYPE ORDERED STRUCTURES IN BINARY ALLOYS OF TRANSITION ELEMENTS. Transactions of the American Institute of Mining and Metallurgical Engineers, 1957. 209: p. 1269-1271. 20. Chauhan, A., et al., A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities. MRS Energy & Sustainability, 2015. 2. 21. Hehemann, R. and G. Sandrock, Relations between the premartensitic instability and the martensite structure in TiNi. Scripta Metallurgica, 1971. 5(9): p. 801-805. 22. Michal, G.M. and R. Sinclair, THE STRUCTURE OF TINI MARTENSITE. Acta Crystallographica Section B-Structural Science, 1981. 37(OCT): p. 1803-1807. 23. Kudoh, Y., et al., Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metallurgica, 1985. 33(11): p. 2049-2056. 24. Liu, Y., Detwinning process and its anisotropy in shape memory alloys, in Smart Materials, A.R. Wilson and H. Asanuma, Editors. 2001, Spie-Int Soc Optical Engineering: Bellingham. p. 82-93. 25. Stoeckel, D. and T. Waram. Use of Ni-Ti shape memory alloys for thermal sensor-actuators. in Active and Adaptive Optical Components. 1992. International Society for Optics and Photonics. 26. Liu, Y., et al., Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Materialia, 1998. 46(12): p. 4325-4338. 27. Firstov, G., J. Van Humbeeck, and Y.N. Koval, Comparison of high temperature shape memory behaviour for ZrCu-based, Ti–Ni–Zr and Ti–Ni–Hf alloys. Scripta materialia, 2004. 50(2): p. 243-248. 28. J. Pu, Z., H.-K. Tseng, and K.-H. Wu, Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys. 1995. 29. Meng, X.L., et al., Two-way shape memory effect induced by martensite deformation and stabilization of martensite in T36Ni69Hf15 high temperature shape memory alloy. Materials Letters, 2003. 57(26-27): p. 4206-4211. 30. Angst, D., P. Thoma, and M. Kao, The Effect of Hafnium Content on the Transformation Temperatures of Ni49Ti51-xHfx. Shape Memory Alloys. Journal de physique IV, 1995. 5(C8): p. C8-747-C8-752. 31. Hsieh, S.F. and S.K. Wu, A study on ternary Ti-rich TiNiZr shape memory alloys. Materials Characterization, 1998. 41(4): p. 151-162. 32. Wang, Y.Q., et al., The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scripta Materialia, 1999. 40(12): p. 1327-1331. 33. Hsieh, S. and S. Wu, Martensitic transformation of quaternary Ti50. 5− XNi49. 5ZrX/2HfX/2 (X= 0–20 at.%) shape memory alloys. Materials characterization, 2000. 45(2): p. 143-152. 34. Hong, S.H., et al., Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys. Journal of Alloys and Compounds, 2017. 692: p. 77-85. 35. Patel, J. and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metallurgica, 1953. 1(5): p. 531-538. 36. Van Humbeeck, J., High temperature shape memory alloys. Journal of Engineering Materials and Technology-Transactions of the Asme, 1999. 121(1): p. 98-101. 37. Thoma, P.E. and J.J. Boehm, Effect of composition on the amount of second phase and transformation temperatures of Ni(x)Ti(90-x)Hf(10) shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 385-389. 38. Zhang, Y., et al., Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538. 39. Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238. 40. Guo, S., et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of applied physics, 2011. 109(10): p. 103505. 41. Young, R.A., The rietveld method. Vol. 5. 1993: International union of crystallography. 42. Lin, H.C. and S.K. Wu, STRENGTHENING EFFECT ON SHAPE RECOVERY CHARACTERISTIC OF THE EQUIATOMIC TINI ALLOY. Scripta Metallurgica Et Materialia, 1992. 26(1): p. 59-62. 43. Denowh, C.M. and D.A. Miller, Thermomechanical training and characterization of Ni-Ti-Hf and Ni-Ti-Hf-Cu high temperature shape memory alloys. Smart Materials and Structures, 2012. 21(6): p. 8. 44. Park, H.J., et al., Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys. Metals and Materials International, 2016. 22(4): p. 551-556.
|