帳號:guest(52.15.200.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張善修
作者(外文):Chang, Shan-Hsiu
論文名稱(中文):探討元素添加對高熵形狀記憶合金影響
論文名稱(外文):Shape memory effect of multi-elements on the high-entropy alloys
指導教授(中文):蔡哲瑋
指導教授(外文):Tsai, Che-Wei
口試委員(中文):葉均蔚
蔡銘洪
口試委員(外文):Yeh, Jien-Wei
Tsai, Ming-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031537
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:121
中文關鍵詞:高熵合金形狀記憶合金高溫形狀記憶合金
外文關鍵詞:high-entropy alloyshape memory alloyhigh temperature shape memory alloy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:319
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
形狀記憶合金具有兩大特性,形狀記憶效應和超彈性效應,目前應用最多且性質最好的形狀記憶合金為鎳鈦合金 (Nitinol),但其相轉換溫度僅在室溫,故侷限其應用環境。為了使形狀記憶合金能應用廣泛,展開對高溫形狀記憶合金的研究發展。
本研究致力於發展高溫形狀記憶合金,藉由添加額外元素達到提升相轉換溫度的效果,形成高溫形狀記憶合金,但由於文獻研究之高溫形狀記憶合金的成形性和加工性差,且其機械性質不佳。所以,本研究以高熵合金的設計概念,探討高溫高熵形狀記憶合金,利用高熵合金的特殊性質,提升其機械性質並同時提升相轉換溫度,亦即發展出可應用於高溫的形狀記憶合金,並展現高熵效應之獨特性。
Shape memory alloys own two effects: shape memory effect and pseudo-elasticity. And so far, Nitinol is the widely used shape memory alloy which demonstrates good ductility and strength. However, Nitinol only has a limited range of martensitic transformation temperature from 0℃ to 100℃. In order to expand the applications of shape memory alloys in temperatures above 100℃, the research field of high temperature shape memory alloys become highly desirable. Currently, high temperature shape memory alloys have shown poor ductility and workability. So this study aims to develop a new high temperature shape memory alloy with good ductility. Additionally, this new alloy is combined with the concept of high-entropy alloys to enhance its ductility and strength at the same time.
壹、 前言 1
貳、 文獻回顧 4
2-1 高熵合金概念 4
2-2 高熵形狀記憶合金概念 5
2-3 形狀記憶合金 8
2-3.1 超彈性 9
2-3.2 形狀記憶效應 10
2-3.3 遲滯區間 (Hysteresis) 13
2-4 麻田散體相變化 (Martensitic transformation) 14
2-5 形狀記憶效應的優劣 16
2-6 高溫形狀記憶合金 18
2-7 Ni-Ti 形狀記憶合金的晶體結構 19
2-8 Ni-Ti 形狀記憶合金的拉伸性質 22
2-9 Ni-Ti 形狀記憶合金的detwinning過程在拉伸和壓縮的異向性 24
2-10 形狀記憶效應試驗 27
2-10.1 試驗方法 27
2-10.2 回復量與不可回復量 28
2-11 雙向形狀記憶效應 31
2-12 Hf 和 Zr 添加的影響 34
2-12.1 提升相轉換溫度 34
2-12.2 添加 Hf 和 Z r之缺點 36
2-12.3 Ni-Ti-Hf-Zr 四元高溫形狀記憶合金 38
2-13 應力對相轉換溫度的影響 39
參、 實驗步驟 41
3-1 實驗流程簡介 41
3-2 實驗流程 46
3-3 試片編號 46
3-3.1 第一系列 46
3-3.2 第二系列 46
3-3.3 第三系列 47
3-3.4 第四系列 47
3-4 高熵合金相預測和模擬 47
3-4.1 混和熵 (ΔSmix) 47
3-4.2 混和焓 (ΔHmix) 48
3-4.3 原子尺寸差異 (δ) 48
3-5 真空電弧熔煉 (Vacuum Arc Melting, VAM) 49
3-6 X-ray 晶體繞射分析 (X-ray Diffraction, XRD) 49
3-7 高溫 X-ray 晶體繞射 (High-temperature X-ray Diffraction) 50
3-8 X-ray繞射分析方法 50
3-9 熱膨脹分析儀 (Dilatometer, DIL) 51
3-10 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 52
3-11 熱式差掃描量測儀 (Differential scanning , DSC) 52
3-12 壓縮試驗 53
3-13 形狀記憶效應測試法 53
3-13.1 實驗方法 53
3-13.2 實際實驗流程 54
肆、 實驗結果 58
4-1 高熵合金相模擬預測 58
4-2 第一系列 59
4-2.1 鑄造性質與微結構 59
4-2.2 壓縮機械性質 62
4-2.3 相轉換溫度 62
4-3 第二系列 63
4-3.1 鑄造性質與微結構 63
4-3.2 X-ray 繞射分析 64
4-4 第三系列 66
4-4.1 熱膨脹試驗 (DIL) 67
4-4.2 室溫 X-ray 繞射分析 69
4-4.3 高溫 X-ray 繞射分析 71
4-4.4 微結構 73
4-4.5 壓縮試驗 75
4-5 第四系列 76
4-5.1 熱膨脹試驗 (DIL) 76
4-5.2 熱式差掃描試驗 (DSC) 78
4-5.3 熱循環試驗 (DIL) 81
4-5.4 微結構 83
4-5.5 室溫 X-ray 繞射分析和高溫 X-ray 繞射分析 84
4-5.6 壓縮試驗 91
4-5.7 形狀記憶效應試驗和相轉換溫度 93
伍、 實驗結果討論 102
5-1 麻田散體和沃氏田體相變化之體積變化 102
5-2 麻田散體相變化溫度 103
5-3 Co元素的添加影響 104
5-4 Cu 添加的影響 106
5-4.1 對晶體結構與晶格常數之影響 106
5-4.2 對相轉換溫度之影響 108
5-4.3 對機械性質之影響 109
5-5 添加 Hf 和 Zr 之影響 110
5-5.1 對晶體結構和晶格常數之影響 110
5-5.2 對壓縮性質的影響 111
5-6 施加應力對相變化溫度的影響 112
5-7 雙向形狀記憶效應 113
5-8 高熵形狀記憶合金 114
陸、 結論 115
柒、 本研究之貢獻 117
7-1 對形狀記憶合金領域 117
7-2 對高性能合金實驗室 117
捌、 參考文獻 118

1. Yeh, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
2. Yeh, J.W., Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux, 2006. 31(6): p. 633-648.
3. Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science, 2005. 50(5): p. 511-678.
4. Firstov, G.S., et al., High Entropy Shape Memory Alloys. Materials Today: Proceedings, 2015. 2: p. 499-503.
5. Firstov, G.S., et al., Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials? Shape Memory and Superelasticity, 2015. 1(4): p. 400-407.
6. Guo, S. and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science-Materials International, 2011. 21(6): p. 433-446.
7. Nespoli, A., et al., The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sensors and Actuators a-Physical, 2010. 158(1): p. 149-160.
8. Hu, J.W. and M.H. Noh, Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions. Advances in Materials Science and Engineering, 2015: p. 17.
9. Gonzalez, C.H., et al., Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals. Materials Research, 2004. 7(2): p. 305-311.
10. AbuZaiter, A., et al., Development of Miniature Stewart Platform Using TiNiCu Shape-Memory-Alloy Actuators. Advances in Materials Science and Engineering, 2015.
11. Seo, J., Y.C. Kim, and J.W. Hu, Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA) Bending Bars Used for Seismic Restrainers. Applied Sciences-Basel, 2015. 5(3): p. 187-208.
12. Olson, G. and M. Cohen, Thermoelastic behavior in martensitic transformations. Scripta Metallurgica, 1975. 9(11): p. 1247-1254.
13. Rehman, S.U., et al., Improvement in the Mechanical Properties of High Temperature Shape Memory Alloy (Ti50Ni25Pd25) by Copper Addition. Advances in Materials Science and Engineering, 2015: p. 7.
14. Ramesh, G. and N.K. Prabhu, Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment. Nanoscale Research Letters, 2011. 6.
15. Ma, J., I. Karaman, and R.D. Noebe, High temperature shape memory alloys. International Materials Reviews, 2013. 55(5): p. 257-315.
16. Wojcik, C.C., Properties and Heat Treatment of High Transition Temperature Ni-Ti-Hf Alloys. Journal of Materials Engineering and Performance, 2009. 18(5-6): p. 511-516.
17. Besseghini, S., E. Villa, and A. Tuissi, Ni-Ti-Hf shape memory alloy: effect of aging and thermal cycling. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 390-394.
18. Angst, D.R., P.E. Thoma, and M.Y. Kao, Proceedings ICOMAT-95. J. Phys. IV, 1995. 5: p. C8-747.
19. Philip, T.V. and P.A. Beck, CSCL-TYPE ORDERED STRUCTURES IN BINARY ALLOYS OF TRANSITION ELEMENTS. Transactions of the American Institute of Mining and Metallurgical Engineers, 1957. 209: p. 1269-1271.
20. Chauhan, A., et al., A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities. MRS Energy & Sustainability, 2015. 2.
21. Hehemann, R. and G. Sandrock, Relations between the premartensitic instability and the martensite structure in TiNi. Scripta Metallurgica, 1971. 5(9): p. 801-805.
22. Michal, G.M. and R. Sinclair, THE STRUCTURE OF TINI MARTENSITE. Acta Crystallographica Section B-Structural Science, 1981. 37(OCT): p. 1803-1807.
23. Kudoh, Y., et al., Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metallurgica, 1985. 33(11): p. 2049-2056.
24. Liu, Y., Detwinning process and its anisotropy in shape memory alloys, in Smart Materials, A.R. Wilson and H. Asanuma, Editors. 2001, Spie-Int Soc Optical Engineering: Bellingham. p. 82-93.
25. Stoeckel, D. and T. Waram. Use of Ni-Ti shape memory alloys for thermal sensor-actuators. in Active and Adaptive Optical Components. 1992. International Society for Optics and Photonics.
26. Liu, Y., et al., Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Materialia, 1998. 46(12): p. 4325-4338.
27. Firstov, G., J. Van Humbeeck, and Y.N. Koval, Comparison of high temperature shape memory behaviour for ZrCu-based, Ti–Ni–Zr and Ti–Ni–Hf alloys. Scripta materialia, 2004. 50(2): p. 243-248.
28. J. Pu, Z., H.-K. Tseng, and K.-H. Wu, Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys. 1995.
29. Meng, X.L., et al., Two-way shape memory effect induced by martensite deformation and stabilization of martensite in T36Ni69Hf15 high temperature shape memory alloy. Materials Letters, 2003. 57(26-27): p. 4206-4211.
30. Angst, D., P. Thoma, and M. Kao, The Effect of Hafnium Content on the Transformation Temperatures of Ni49Ti51-xHfx. Shape Memory Alloys. Journal de physique IV, 1995. 5(C8): p. C8-747-C8-752.
31. Hsieh, S.F. and S.K. Wu, A study on ternary Ti-rich TiNiZr shape memory alloys. Materials Characterization, 1998. 41(4): p. 151-162.
32. Wang, Y.Q., et al., The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scripta Materialia, 1999. 40(12): p. 1327-1331.
33. Hsieh, S. and S. Wu, Martensitic transformation of quaternary Ti50. 5− XNi49. 5ZrX/2HfX/2 (X= 0–20 at.%) shape memory alloys. Materials characterization, 2000. 45(2): p. 143-152.
34. Hong, S.H., et al., Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys. Journal of Alloys and Compounds, 2017. 692: p. 77-85.
35. Patel, J. and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metallurgica, 1953. 1(5): p. 531-538.
36. Van Humbeeck, J., High temperature shape memory alloys. Journal of Engineering Materials and Technology-Transactions of the Asme, 1999. 121(1): p. 98-101.
37. Thoma, P.E. and J.J. Boehm, Effect of composition on the amount of second phase and transformation temperatures of Ni(x)Ti(90-x)Hf(10) shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 385-389.
38. Zhang, Y., et al., Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538.
39. Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238.
40. Guo, S., et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of applied physics, 2011. 109(10): p. 103505.
41. Young, R.A., The rietveld method. Vol. 5. 1993: International union of crystallography.
42. Lin, H.C. and S.K. Wu, STRENGTHENING EFFECT ON SHAPE RECOVERY CHARACTERISTIC OF THE EQUIATOMIC TINI ALLOY. Scripta Metallurgica Et Materialia, 1992. 26(1): p. 59-62.
43. Denowh, C.M. and D.A. Miller, Thermomechanical training and characterization of Ni-Ti-Hf and Ni-Ti-Hf-Cu high temperature shape memory alloys. Smart Materials and Structures, 2012. 21(6): p. 8.
44. Park, H.J., et al., Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys. Metals and Materials International, 2016. 22(4): p. 551-556.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *