帳號:guest(18.218.17.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅錦泰
作者(外文):Luo, Jin-Tai
論文名稱(中文):耐火高熵合金高溫抗氧化鍍層之開發研究
論文名稱(外文):Development of oxidation-resistant coating for refractory high-entropy alloys
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien-Wei
口試委員(中文):洪健龍
楊智超
曹春暉
口試委員(外文):Hong, Jian-Long
Yang, Zhi-Chao
Tsau, Chun-Huei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031534
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:221
中文關鍵詞:耐火高熵合金高溫抗氧化鍍層
外文關鍵詞:refractory high-entropy alloysoxidation-resistant coating
相關次數:
  • 推薦推薦:0
  • 點閱點閱:464
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以五元或五元以上等莫耳元素組成之高熵合金設計概念已受國內外矚目,漸漸成為學術界爭相研究的目標。從2010年美國空軍實驗室開始發表一系列耐火高熵合金,第一組 NbTaMoW、VNbTaMoW,具有優異的高溫壓縮強度 (1600 °C 時為 477 MPa),缺點為室溫延性不佳且密度過高,不利於實際應用,隨後又發表第二組耐火高熵合金 HfNbTaTiZr,其室溫壓縮塑性應變量大於50%,具有很好的延性,而在之後研究中,也逐漸提升其在高溫上的使用程度,增加此款合金在航太材料上未來使用的可能性。
本實驗室亦對耐火高熵合金系統做了多年的研究,在中高溫段的合金系統與極高溫段的合金運用領域,在機械性質與高溫強度有了極大的突破,但在抗高溫氧化性質上仍然受到限制,並且合金在中高溫區段會產生氧化物粉末嚴重剝落之蟲咬現象,限制其應用性,並且無法以合金化的方式來進行改良,因其改善效果有限並會對本身合金的基本性質造成影響,因此在合金表面鍍製抗氧化層為較可行之解決方法。
在本次研究中,以張政泓學長所開發改良之 M 合金作為基材,雖然該合金在其應用溫度 700 °C、800 °C、900 °C 氧化 24 小時內即造成嚴重的破壞,但本研究利用新開發的處理製程,可使合金在 700 °C、800 °C、900 °C 氧化經歷 100 小時仍未產生破壞,大幅提升其應用性。此外,本研究亦對原合金及表面處理後的氧化行為及微結構做深入探討,並瞭解其改進的機制。
High-entropy alloys (HEAs) are defined as the alloys composed of at least five principle elements. Among them, refractory high entropy alloys (RHEAs) are promising candidates for aerospace structural materials due to their superb high-temperature strength and great mechanical property. However, the poor oxidation resistance, mainly owing to the formation of non-protective oxide scale has severely limited the capabilities of these alloys in applications. Furthermore, an accelerated oxidation or more specifically, pesting, in the temperature range of 700-800 °C has been observed for RHEAs, where the oxidation leads the material to catastrophically disintegrate into powders. To improve their oxidation resistance, alloying elements such as Al, Cr, Si in RHEAs has been studied, whereas the improvements are extremely restricted as these alloying elements may lead to deterioration of mechanical property of the alloys. As the result, the protective coating is necessary for their practical application in high temperature.
In this study, various surface treatments are developed for M alloy. The coated specimens have been verified to possess much lower mass gain than the base alloy after exposure of 100 hours at 700, 800 and 900 °C. This significantly improves the oxidation resistance amd let refractory high entropy alloys have potential applications at high tempeartures. In addition, the oxidation behavior and microstructure are studied and the mechanism of oxidation improvement is revealed.
摘要 I
Abstract III
致謝 V
目錄 X
圖目錄 XVII
表目錄 XXXI
壹、 前言 1
貳、 文獻回顧 3
2.1 鎳基超合金發展與應用 3
2.2 耐火合金 5
2.2.1 鈮合金[34] 7
2.3 高熵合金[22] 9
2.3.1 開發背景 9
2.3.2 高熵合金的特性 10
2.3.3 耐火高熵合金 13
2.3.3.1 W-Nb-Ta-Mo, W-Nb-Ta-Mo-V[43, 44] 13
2.3.3.2 Hf-Nb-Ta-Ti-Zr[45, 46] 17
2.3.3.3 NbCrMo0.5Ta0.5TiZr[47] 25
2.3.3.4 CrNbTiVZr[48, 49] 27
2.3.3.5 鋁添加耐火高熵合金[50] 29
2.4 表面處理[51] 31
2.4.1 表面處理之機制[51, 52] 31
2.4.2 表面處理於耐火合金之應用 33
2.4.3 表面處理於高熵合金之應用 40
2.5 本論文研究目的 43
參、 實驗步驟 44
3.1 實驗設計 44
3.2 實驗流程 44
3.2.1 實驗流程圖 44
3.2.2 真空電弧熔煉 44
3.2.3 鍍層製備流程 45
3.2.3.1 基材預處理 46
3.2.3.2 粉末預處理 46
3.2.3.3 表面處理 A、B 流程 46
3.2.4 氧化前試片預處理 47
3.2.4.1 表面處理 C 47
3.2.4.2 表面處理 D 47
3.2.5 氧化增重試驗 47
3.2.6 晶體結構與微結構分析 49
3.2.6.1 XRD 繞射分析 49
3.2.6.2 電子顯微鏡 49
肆、 結果與討論 50
4.1 純合金高溫氧化討論 50
4.1.1 氧化增重數據分析 52
4.1.2 700 C 氧化層分析 59
4.1.2.1 氧化層 XRD 分析 59
4.1.2.2 氧化層微結構 60
4.1.3 800 C 氧化層分析 63
4.1.3.1 氧化層 XRD 分析 63
4.1.3.2 氧化層微結構 64
4.1.4 900 C 氧化層分析 67
4.1.4.1 氧化層 XRD 分析 67
4.1.4.2 氧化層微結構 68
4.2 表面處理 A 參數調控與高溫氧化討論 72
4.2.1 表面處理 A 參數調控 72
4.2.1.1 鍍層 XRD 分析 72
4.2.1.2 鍍層微結構 74
4.2.2 表面處理 A 試片氧化增重數據分析 81
4.2.3 表面處理 A 試片 700 C 氧化層分析 88
4.2.3.1 氧化層 XRD 分析 88
4.2.3.2 氧化層微結構 89
4.2.4 表面處理 A 試片 800 C 氧化層分析 93
4.2.4.1 氧化層 XRD 分析 93
4.2.4.2 氧化層微結構 94
4.2.5 表面處理 A 試片 900 C 氧化層分析 98
4.2.5.1 氧化層 XRD 分析 98
4.2.5.2 氧化層微結構 100
4.2.6 試片失效原因探討 109
4.3 表面處理 B 參數調控與高溫氧化討論 111
4.3.1 表面處理 B 參數調控 111
4.3.1.1 參數甲調控 111
4.3.1.2 參數乙調控 117
4.3.2 表面處理 B 試片氧化增重數據分析 120
4.3.3 表面處理 B 試片 700 C 氧化層分析 127
4.3.3.1 氧化層 XRD 分析 127
4.3.3.2 氧化層微結構 128
4.3.4 表面處理 B 試片 800 C 氧化層分析 131
4.3.4.1 氧化層 XRD 分析 131
4.3.4.2 氧化層微結構 132
4.3.5 表面處理 B 試片 900 C 氧化層分析 136
4.3.5.1 氧化層 XRD 分析 136
4.3.5.2 氧化層微結構 137
4.4 表面處理 C 參數調控與高溫氧化討論 141
4.4.1 表面處理 C 參數調控 141
4.4.2 表面處理 C 試片氧化增重數據分析 146
4.4.3 表面處理 C 試片 700 C氧化層分析 153
4.4.3.1 氧化層 XRD 分析 153
4.4.3.2 氧化層微結構 154
4.4.4 表面處理 C 試片 800 C氧化層分析 160
4.4.4.1 氧化層 XRD 分析 160
4.4.4.2 氧化層微結構 161
4.4.5 表面處理 C 試片 900 C氧化層分析 168
4.4.5.1 氧化層 XRD 分析 168
4.4.5.2 氧化層微結構 169
4.5 表面處理 D 參數調控與高溫氧化討論 173
4.5.1 表面處理 D 處理參數調控 173
4.5.1.1 玻璃基板成膜性測試 173
4.5.1.2 表面處理 D 微結構 176
4.5.2 表面處理 D 試片氧化增重數據分析 181
4.5.2.1 長時間氧化增重測試 181
4.5.2.2 試片氧化增重結果 183
4.5.3 表面處理 D 試片 700 C氧化層分析 189
4.5.3.1 氧化層 XRD 分析 189
4.5.3.2 氧化層微結構 190
4.5.4 表面處理 D 試片 800 C氧化層分析 194
4.5.4.1 氧化層 XRD 分析 194
4.5.4.2 氧化層微結構 195
4.5.5 表面處理 D 試片 900 C氧化層分析 199
4.5.5.1 氧化層 XRD 分析 199
4.5.5.2 氧化層微結構 200
伍、 結論 206
陸、 本研究貢獻及未來工作建議 210
6.1 本研究貢獻 210
6.2 未來工作建議 212
柒、 參考文獻 213

1. He, Y., T. Shen, and R. Schwarz, Bulk amorphous metallic alloys: synthesis by fluxing techniques and properties. Metallurgical and Materials Transactions A, 1998. 29(7): pp. 1795-1804.
2. Inoue, A., Bulk Amorphous Alloys, Vol. 2. Trans Tech Publications, Zurich, 1999: pp. 28-35.
3. Inoue, A. and J.S. Gook, Multicomponent Fe-based glassy alloys with wide supercooled liquid region before crystallization. Materials Transactions, JIM, 1995. 36(10): pp. 1282-1285.
4. Inoue, A., et al., An amorphous La55Al25Ni20 alloy prepared by water quenching. Materials Transactions, JIM, 1989. 30(9): pp. 722-725.
5. Inoue, A., et al., Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1992. 33(10): pp. 937-945.
6. Inoue, A., et al., Bulky La–Al–TM (TM= transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1993. 34(4): pp. 351-358.
7. Inoue, A. and N. Nishiyama, Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys. Materials Science and Engineering: A, 1997. 226: pp. 401-405.
8. Inoue, A., N. Nishiyama, and H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions, JIM, 1997. 38(2): pp. 179-183.
9. Inoue, A., N. Nishiyama, and T. Matsuda, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Materials Transactions, JIM, 1996. 37(2): pp. 181-184.
10. Inoue, A., et al., New amorphous alloys with good ductility in Al-Ce-M (M= Nb, Fe, Co, Ni or Cu) systems. Japanese Sournal of Applied Physics, 1988. 27(10A): pp. L1796.
11. Inoue, A. and T. Zhang, Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Materials Transactions, JIM, 1996. 37(2): pp. 185-187.
12. Inoue, A., T. Zhang, and T. Masumoto, Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM, 1990. 31(3): pp. 177-183.
13. Inoue, A., et al., Continuous-Cooling-Transformation (CCT) Curves for Zr–Al–Ni–Cu Supercooled Liquids to Amorphous or Crystalline Phase (Rapid Publication). Materials Transactions, JIM, 1995. 36(7): pp. 876-878.
14. Inoue, A., T. Zhang, and A. Takeuchi, Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM= IV–VIII group transition metal) system. Applied Physics Letters, 1997. 71(4): p. 464-466.
15. Masumoto, T., et al., Amorphous alloys having superior processability. 1991, U.S. Patent 5032196. 1991
16. Peker, A. and W.L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5. Applied Physics Letters, 1993. 63(17): pp. 2342-2344.
17. Zhang, T. and A. Inoue, Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization. Materials Transactions, JIM, 1998. 39(10): pp. 1001-1006.
18. Zhang, T. and A. Inoue, Preparation of Ti–Cu–Ni–Si–B amorphous alloys with a large supercooled liquid region. Materials Transactions, JIM, 1999. 40(4): pp. 301-306.
19. Louzguine, D.V. and A. Inoue, Formation of nanocrystalline nuclei in the amorphous phase of Ge55Al30Cr10Y5 alloy. Materials Letters, 1999. 39(4): pp. 211-214.
20. Szewieczek, D., J. Tyrlik-Held, and S. Lesz, Changes of mechanical properties and fracture morphology of amorphous tapes involved by heat treatment. Journal of Materials Processing Technology, 2001. 109(1-2): pp. 190-195.
21. Xing, L., et al., Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties. Materials Science and Engineering: A, 1998. 241(1-2): pp. 216-225.
22. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): pp. 299-303.
23. Cheng, K.-H., et al. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. in Annales de chimie. 2006. Lavoisier.
24. 李立陽, 耐火高熵合金Al-Mo-Nb-Ta-Ti-Zr 添加Si與Ni對微結構及性質影響之研究.
25. 阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討.
26. 洪奕平, Si 添加對 Al-Hf-Nb-Ta-Ti-Zr 耐火高熵合金性質之影響.
27. 張政泓, 耐火高熵合金Mo-Nb-Ti-Zr添加Al、Cr與Si對微結構及性質之影響.
28. 張嘉修, 耐火高熵合金AlxHfNbTaTiZr(x=0, 0.3, 0.5, 0.75, 1.0)之研究.
29. 蔡孟哲, 耐火高熵合金Al-Hf-Mo-Nb-Ta-Ti-Zr添加 Cr與Si對微結構及性質影響之研究.
30. Huang, P.K., et al., Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6(1‐2): pp. 74-78.
31. Geddes, B., H. Leon, and X. Huang, Superalloys: alloying and performance. 2010: Asm International.
32. Perepezko, J.H., The hotter the engine, the better. Science, 2009. 326(5956): pp. 1068-1069.
33. Sims, C.T. and W. Hagel, The Superalloys, J. Wiley and Sons, Inc, 1972.
34. Bewlay, B., et al., A review of very-high-temperature Nb-silicide-based composites. Metallurgical and Materials Transactions A, 2003. 34(10): pp. 2043-2052.
35. Yeh, J.-W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 2004. 35(8): pp. 2533-2536.
36. 蔡哲瑋, CuCoNiCrAlxFe高熵合金加工變形及微結構之探討.
37. 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵氮化物薄膜及其性質探討.
38. 黃炳剛, 多元高熵合金於熱熔射塗層之研究.
39. 賴高廷, 高亂度合金微結構及性質探討.
40. 陳宣佑, Al-Cr-Cu-Fe-Mn-Ni高熵合金變形及退火行為之研究.
41. 郭彥甫, Al-Cr-Fe-Mn-Ni高熵合金變形及退火行為之研究.
42. 鄭耿豪, 利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜.
43. Senkov, O., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): pp. 1758-1765.
44. Senkov, O., et al., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): pp. 698-706.
45. Senkov, O., et al., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): pp. 4062-4074.
46. Senkov, O., et al., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): pp. 6043-6048.
47. Senkov, O. and C. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering: A, 2011. 529: pp. 311-320.
48. Senkov, O., et al., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 2013. 565: pp. 51-62.
49. Senkov, O., et al., Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): pp. 1545-1557.
50. Senkov, O., S. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Materialia, 2014. 68: pp. 214-228.
51. Bianco, R. and R.A. Rapp, Pack cementation diffusion coatings, in Metallurgical and ceramic protective coatings. 1996, Springer. pp. 236-260.
52. Galetz, M.C., Coatings for superalloys, in Superalloys. 2015, InTech.
53. Zhang, P. and X. Guo, A comparative study of two kinds of Y and Al modified silicide coatings on an Nb–Ti–Si based alloy prepared by pack cementation technique. Corrosion Science, 2011. 53(12): pp. 4291-4299.
54. Su, L., et al., An ultra-high temperature Mo–Si–B based coating for oxidation protection of NbSS/Nb5Si3 composites. Applied Surface Science, 2015. 337: p. 38-44.
55. Tsai, C.-W., et al., Isothermal Oxidation of Aluminized Coatings on High-Entropy Alloys. Entropy, 2016. 18(10): pp. 376.
56. Perepezko, J., et al., Oxidation resistant coatings for refractory metal cermets. Surface and Coatings Technology, 2012. 206(19-20): pp. 3816-3822.
57. Douglass, D., The thermal expansion of niobium pentoxide and its effect on the spalling of niobium oxidation films. Journal of the Less Common Metals, 1963. 5(2): pp. 151-157.
58. Tolpygo, V. and H. Grabke, Mechanism of the intergranular disintegration (pest) of the intermetallic compound NbAl3. Scripta Metallurgica et Materialia, 1993. 28(6): pp. 747-752.
59. Brinker, C.J. and G. Scherer, Sol-gel sciences. The Processing and the Chemistry of Sol-Gel Processing, 1990.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *