|
1. He, Y., T. Shen, and R. Schwarz, Bulk amorphous metallic alloys: synthesis by fluxing techniques and properties. Metallurgical and Materials Transactions A, 1998. 29(7): pp. 1795-1804. 2. Inoue, A., Bulk Amorphous Alloys, Vol. 2. Trans Tech Publications, Zurich, 1999: pp. 28-35. 3. Inoue, A. and J.S. Gook, Multicomponent Fe-based glassy alloys with wide supercooled liquid region before crystallization. Materials Transactions, JIM, 1995. 36(10): pp. 1282-1285. 4. Inoue, A., et al., An amorphous La55Al25Ni20 alloy prepared by water quenching. Materials Transactions, JIM, 1989. 30(9): pp. 722-725. 5. Inoue, A., et al., Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1992. 33(10): pp. 937-945. 6. Inoue, A., et al., Bulky La–Al–TM (TM= transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1993. 34(4): pp. 351-358. 7. Inoue, A. and N. Nishiyama, Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys. Materials Science and Engineering: A, 1997. 226: pp. 401-405. 8. Inoue, A., N. Nishiyama, and H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions, JIM, 1997. 38(2): pp. 179-183. 9. Inoue, A., N. Nishiyama, and T. Matsuda, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Materials Transactions, JIM, 1996. 37(2): pp. 181-184. 10. Inoue, A., et al., New amorphous alloys with good ductility in Al-Ce-M (M= Nb, Fe, Co, Ni or Cu) systems. Japanese Sournal of Applied Physics, 1988. 27(10A): pp. L1796. 11. Inoue, A. and T. Zhang, Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Materials Transactions, JIM, 1996. 37(2): pp. 185-187. 12. Inoue, A., T. Zhang, and T. Masumoto, Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM, 1990. 31(3): pp. 177-183. 13. Inoue, A., et al., Continuous-Cooling-Transformation (CCT) Curves for Zr–Al–Ni–Cu Supercooled Liquids to Amorphous or Crystalline Phase (Rapid Publication). Materials Transactions, JIM, 1995. 36(7): pp. 876-878. 14. Inoue, A., T. Zhang, and A. Takeuchi, Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM= IV–VIII group transition metal) system. Applied Physics Letters, 1997. 71(4): p. 464-466. 15. Masumoto, T., et al., Amorphous alloys having superior processability. 1991, U.S. Patent 5032196. 1991 16. Peker, A. and W.L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5. Applied Physics Letters, 1993. 63(17): pp. 2342-2344. 17. Zhang, T. and A. Inoue, Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization. Materials Transactions, JIM, 1998. 39(10): pp. 1001-1006. 18. Zhang, T. and A. Inoue, Preparation of Ti–Cu–Ni–Si–B amorphous alloys with a large supercooled liquid region. Materials Transactions, JIM, 1999. 40(4): pp. 301-306. 19. Louzguine, D.V. and A. Inoue, Formation of nanocrystalline nuclei in the amorphous phase of Ge55Al30Cr10Y5 alloy. Materials Letters, 1999. 39(4): pp. 211-214. 20. Szewieczek, D., J. Tyrlik-Held, and S. Lesz, Changes of mechanical properties and fracture morphology of amorphous tapes involved by heat treatment. Journal of Materials Processing Technology, 2001. 109(1-2): pp. 190-195. 21. Xing, L., et al., Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties. Materials Science and Engineering: A, 1998. 241(1-2): pp. 216-225. 22. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): pp. 299-303. 23. Cheng, K.-H., et al. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. in Annales de chimie. 2006. Lavoisier. 24. 李立陽, 耐火高熵合金Al-Mo-Nb-Ta-Ti-Zr 添加Si與Ni對微結構及性質影響之研究. 25. 阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討. 26. 洪奕平, Si 添加對 Al-Hf-Nb-Ta-Ti-Zr 耐火高熵合金性質之影響. 27. 張政泓, 耐火高熵合金Mo-Nb-Ti-Zr添加Al、Cr與Si對微結構及性質之影響. 28. 張嘉修, 耐火高熵合金AlxHfNbTaTiZr(x=0, 0.3, 0.5, 0.75, 1.0)之研究. 29. 蔡孟哲, 耐火高熵合金Al-Hf-Mo-Nb-Ta-Ti-Zr添加 Cr與Si對微結構及性質影響之研究. 30. Huang, P.K., et al., Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6(1‐2): pp. 74-78. 31. Geddes, B., H. Leon, and X. Huang, Superalloys: alloying and performance. 2010: Asm International. 32. Perepezko, J.H., The hotter the engine, the better. Science, 2009. 326(5956): pp. 1068-1069. 33. Sims, C.T. and W. Hagel, The Superalloys, J. Wiley and Sons, Inc, 1972. 34. Bewlay, B., et al., A review of very-high-temperature Nb-silicide-based composites. Metallurgical and Materials Transactions A, 2003. 34(10): pp. 2043-2052. 35. Yeh, J.-W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 2004. 35(8): pp. 2533-2536. 36. 蔡哲瑋, CuCoNiCrAlxFe高熵合金加工變形及微結構之探討. 37. 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵氮化物薄膜及其性質探討. 38. 黃炳剛, 多元高熵合金於熱熔射塗層之研究. 39. 賴高廷, 高亂度合金微結構及性質探討. 40. 陳宣佑, Al-Cr-Cu-Fe-Mn-Ni高熵合金變形及退火行為之研究. 41. 郭彥甫, Al-Cr-Fe-Mn-Ni高熵合金變形及退火行為之研究. 42. 鄭耿豪, 利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜. 43. Senkov, O., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): pp. 1758-1765. 44. Senkov, O., et al., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): pp. 698-706. 45. Senkov, O., et al., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): pp. 4062-4074. 46. Senkov, O., et al., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): pp. 6043-6048. 47. Senkov, O. and C. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering: A, 2011. 529: pp. 311-320. 48. Senkov, O., et al., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 2013. 565: pp. 51-62. 49. Senkov, O., et al., Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): pp. 1545-1557. 50. Senkov, O., S. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Materialia, 2014. 68: pp. 214-228. 51. Bianco, R. and R.A. Rapp, Pack cementation diffusion coatings, in Metallurgical and ceramic protective coatings. 1996, Springer. pp. 236-260. 52. Galetz, M.C., Coatings for superalloys, in Superalloys. 2015, InTech. 53. Zhang, P. and X. Guo, A comparative study of two kinds of Y and Al modified silicide coatings on an Nb–Ti–Si based alloy prepared by pack cementation technique. Corrosion Science, 2011. 53(12): pp. 4291-4299. 54. Su, L., et al., An ultra-high temperature Mo–Si–B based coating for oxidation protection of NbSS/Nb5Si3 composites. Applied Surface Science, 2015. 337: p. 38-44. 55. Tsai, C.-W., et al., Isothermal Oxidation of Aluminized Coatings on High-Entropy Alloys. Entropy, 2016. 18(10): pp. 376. 56. Perepezko, J., et al., Oxidation resistant coatings for refractory metal cermets. Surface and Coatings Technology, 2012. 206(19-20): pp. 3816-3822. 57. Douglass, D., The thermal expansion of niobium pentoxide and its effect on the spalling of niobium oxidation films. Journal of the Less Common Metals, 1963. 5(2): pp. 151-157. 58. Tolpygo, V. and H. Grabke, Mechanism of the intergranular disintegration (pest) of the intermetallic compound NbAl3. Scripta Metallurgica et Materialia, 1993. 28(6): pp. 747-752. 59. Brinker, C.J. and G. Scherer, Sol-gel sciences. The Processing and the Chemistry of Sol-Gel Processing, 1990.
|