帳號:guest(18.191.239.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝佩璇
作者(外文):Hsieh, Pei-Hsuan
論文名稱(中文):具雙重敏感性之多胜肽奈米藥物載體經由循序漸進崩解方式消弭腫瘤微環境基質異常增生之研究
論文名稱(外文):Dual-responsive Polypeptide Nanoparticles Attenuating Tumor-associated Stromal Desmoplasia through Programming Dissociation
指導教授(中文):王子威
指導教授(外文):Wang, Tzu-Wei
口試委員(中文):楊台鴻
林文貞
劉澤英
口試委員(外文):Yang, Tai-Horng
Lin, Wen-Jen
Liu, Tse-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031532
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:74
中文關鍵詞:多胜肽內源性刺激腫瘤基質增生程序性藥物傳遞
外文關鍵詞:polypeptidetumor desmoplasiaprogrammableendogenous stimulidrug release
相關次數:
  • 推薦推薦:0
  • 點閱點閱:478
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
敏感性高分子載體常用於攜帶多種治療因子來進行有效的運送並達到最佳的協 同治療功效。然而,近年來研究中發現腫瘤自身微環境的構造與機制,例如: 緻密的細 胞外基質、不規則的血管網路分佈與異常提升的細胞間質液體壓力等原因,造成搭載 之藥物不易傳遞至固體腫瘤的核心進行治療,因而容易有癌症復發與癌轉移的風險。 為了解決上述之問題,本研究開發出以氨基酸為基底並具雙硫鍵還原性、基質酵素蛋 白酶和組織蛋白酶 B 敏感性的藥物載體,其可經由循序漸進崩解之過程以達到腫瘤重 整與治療效果。另一方面,此奈米載體分別由兩條具雙親性之氨基酸序列組成,兩者 皆包含 10 個半胱氨酸,10 個組氨酸和 10 個亮氨酸等特殊設計之氨基酸序列:半胱氨 酸上的硫醇基團形成可逆的雙硫鍵保護殼層,組氨酸展現質子化海綿效應幫助藥物逃 脫出胞內體和溶酶體,亮氨酸上的疏水基團則可使氨基酸序列具雙親性的特質並能幫 助刺蝟信號路徑抑制劑(Vismodegib)包覆於藥物載體中;主動標靶分子 tLyP-1 可用來 辨認與腫瘤相關的血管與細胞,而藥物載體的表面則以親水性的聚乙二醇修飾,避免 被網狀內皮系統吞噬和增加載體於血流的循環時間。此奈米載體的大小約為 220 奈米 左右,隨著 NRP-1 受體於細胞膜上的表現多寡,奈米載體展現高度的專一性,其中, 載體在 MDA-MB-231 乳癌細胞上的療效可匹配於單純施予抗癌藥物之組別。在立體細 胞球模型中,Vismodegib 的添加可與 Doxorubicin 展現良好的協同效果,進一步有效抑 制癌細胞增生且提升藥物在腫瘤內的穿透深度。此內源性刺激奈米載體在經過腫瘤微 環境因子層層把關後,能夠更安全地進行藥物傳遞,並期望在未來有潛力應用於各式 固態腫瘤的治療。
Stimuli-responsive polymeric nanoparticles have exhibited as effective vehicle for escorting chemotherapeutic agents with optimal synergistic effect. However, tumor microenvironment impedes deep drugs transportation due to its dense extracellular matrix, irregular vascular network and elevated interstitial fluid pressure. To address these issues, disulfide bond reductive and dual-enzyme sensitive polypeptide-based nanoparticles with programmable degradation manner are proposed in this study for solid tumor remodeling and anticancer effect. Two different amphiphilic sequences, mPEG-Peptide(LC)-Prodrug and tLyP1- Peptide(SC)-Prodrug, self-assemble into spherical nanoparticle with a diameter of 220 nm in aqueous phase. The peptide sequences are mainly composed of polyCys, polyHis and polyLeu sequences with distinct functions, including protective shell for encapsulated drugs, facilitation of chemotherapeutic agents release and hydrophobic complexation domain for Hedgehog (Hh) signaling inhibitor, respectively. tLyP-1 is selected for active-targeting ligand binding to both tumor-associated vasculature and cells, while the hydrophilic PEG at the corona of the nanoparticles is served to reduce RES system uptake and increase circulation time in blood flow. The sensitive linkages successfully secure drugs from leakage in healthy physiological condition and efficiently promote drugs release by endogenous stimuli rising in tumor site. The nanoparticles exhibited high selectivity, depending on the expression level of NRP-1 receptor. Notably, the anti-cancer effect of nanoparticles was found to be comparable with that of free doxorubicin on MDA-MB-231 breast cancer cells. Moreover, the combination of doxorubicin and vismodegib showed a desirable synergistic effect on the inhibition of cell proliferation in tumor spheroid model and enhanced drug penetration. Overall, the self-assembly polypeptide- based nanoparticles with programmable dissociation characteristic leaded to a prominent therapeutic potency on solid tumor.
Abstract i
摘要 iii
Table of Contents iv
Figure Index vii
Table Index ix
Chapter 1. Introduction 1
1.1 Solid tumor barriers 1
1.2 Functionalized self-assembled polypeptide drug carriers 3
1.3 Endogenous stimuli-responsive system 4
1.4 Targeting mechanism of nanoparticles 6
1.5 Motivation and purpose of this study 8
Chapter 2. Literature Review 12
2.1 Microenvironment in solid tumors 12
2.1.1 Cancer-associated components 12
2.1.2 Hedgehog signaling pathway and its inhibitors 15
2.2 Overview of smart nanoparticles for drug delivery 19
2.2.1 Development of sensitive drug carriers 20
2.2.2 Enzymatic sensitive linkages – MMP-2 and Cat-B 21
2.2.3 Reductive sensitive linkages – disulfide bond 25
2.3 Active targeting ligand (tLyP-1) in cancer therapy 27
2.4 Tailor-designed polypeptide sequence 30
2.4.1 The function of Cysteine (Cys) 30
2.4.2 The function of Histidine (His) 31
Chapter 3. Theoretical Basis 34
3.1 Improvement of drug penetration in solid tumors 34
3.2 Degradation of nanoparticles in sequential manner 35
3.3 Active targeting ligand in cancer therapy 37
Chapter 4. Materials and Methods 38
4.1 Material list 38
4.2 Experimental design 40
4.3 Synthesis of mPEG-Peptide(LC)-Prodrug 40
4.3.1 Synthesis of mPEG-Peptide(LC) 40
4.3.2 Synthesis of mPEG-Peptide(LC)-Prodrug 40
4.4 Synthesis of tLyP1-Peptide(SC)-Prodrug 41
4.4.1 Synthesis of doxorubicin-NHS ester 41
4.4.2 Synthesis of tLyP1-Peptide(SC)-Prodrug 41
4.5 Preparation of Vismodegib encapsulated nanoparticles 42
4.6 Physiochemical properties characterization 43
4.6.1 Proton nuclear magnetic resonance (1H NMR) 43
4.6.2 Fourier transform infrared spectroscopy (FTIR) 43
4.6.3 Matrix Assisted Laser Desorption/Ionization (MALDI-TOF MS) 43
4.6.4 Dynamic light scattering (DLS) 43
4.6.5 Zeta potential 43
4.6.6 Transmission electron microscopy (TEM) 43
4.6.7 Confocal laser scanning microscope 44
4.7 In vitro study (Monolayer) 44
4.7.1 Drug release profiles 44
4.7.2 Intracellular uptake study 45
4.7.3 Cell viability test of monolayer cells 45
4.8 In vitro study (tumor spheroid) 46
4.8.1 Cell viability test of tumor spheroid 46
4.8.2 Nanoparticles penetration in tumor spheroid 47
4.9 Statistical analysis 47
Chapter 5. Results 48
5.1 Characterization of mPEG-Peptide(LC)-Prodrug and tLyP1-Peptide(SC)-Prodrug sequences 48
5.1.1 Structural confirmation by 1H NMR spectrum 48
5.1.2 Chemical structure confirmation by FTIR spectrum 50
5.1.3 Molecular weight confirmation by MALDI-TOF MS 51
5.2 Characterization and physicochemical analysis of the nanoparticles 52
5.2.1 Physical characterization of nanoparticles 52
5.2.2 Dual-stimuli drug release profile 54
5.3 In vitro study (Monolayer) 55
5.3.1 Anti-cancer effect of nanoparticles 55
5.3.2 Cellular uptake and intercellular trafficking of the nanoparticles 62
5.4 In vitro study (Tumor spheroid) 63
5.4.1. Evaluation of therapeutic effect in tumor spheroid 63
5.4.2. Penetrated delivery with the enhancement of nanoparticle accumulation 66
Chapter 6. Discussion 67
6.1. Characterization of multi-sensitive nanoparticles 67
6.2. In vitro drug release trigger by pH, reductive agent and enzyme 67
6.3. In vitro anticancer effect and intracellular uptake study 68
6.4. Establishment of tumor spheroid and its corresponding inhibitory effect after the treatment of nanoparticles 69
Chapter 7. Conclusion 71
References 72
1. Minchinton, A.I. and I.F. Tannock, Drug penetration in solid tumours. Nature Reviews Cancer, 2006. 6(8): p. 583-92.
2. Mitchell, M.J., R.K. Jain, and R. Langer, Engineering and physical sciences in oncology: challenges and opportunities. Nature Reviews Cancer, 2017. 17(11): p. 659-675.
3. Kobayashi, H., R. Watanabe, and P.L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2013. 4(1): p. 81-9.
4. Saggar, J.K., et al., The tumor microenvironment and strategies to improve drug distribution. Frontiers in Oncology, 2013. 3: p. 154.
5. Chauhan, V.P. and R.K. Jain, Strategies for advancing cancer nanomedicine. Nature Materials, 2013. 12(11): p. 958-62.
6. Habibi, N., et al., Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016. 11(1): p. 41-60.
7. Ramasamy, T., et al., Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. Journal of Controlled Release, 2017. 258: p. 226-253.
8. Panda, J.J. and V.S. Chauhan, Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polymer Chemistry, 2014. 5(15): p. 4418-4436.
9. Mura, S., J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013. 12(11): p. 991-1003.
10. Danhier, F., O. Feron, and V. Préat, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010. 148(2): p. 135-146.
11. Teesalu, T., K.N. Sugahara, and E. Ruoslahti, Tumor-penetrating peptides. Frontiers in Oncology, 2013. 3: p. 216.
12. Ruoslahti, E., Tumor penetrating peptides for improved drug delivery. Advanced Drug Delivery Reviews, 2017. 110-111: p. 3-12.
13. Wilhelm, S., et al., Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016. 1: p. 16014.
14. Insua-Rodriguez, J. and T. Oskarsson, The extracellular matrix in breast cancer. Advanced Drug Delivery Reviews, 2016. 97: p. 41-55.
15. Mason, S.D. and J.A. Joyce, Proteolytic networks in cancer. Trends in Cell Biology, 2011. 21(4): p. 228-37.
16. Kalluri, R., The biology and function of fibroblasts in cancer. Nature Reviews Cancer, 2016. 16(9): p. 582-98.
17. Kalluri, R. and M. Zeisberg, Fibroblasts in cancer. Nature Reviews Cancer, 2006. 6(5): p. 392-401.
18. Hanna, A. and L.A. Shevde, Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Molecular Cancer, 2016. 15(1): p. 24.
19. Hu, L., et al., An overview of hedgehog signaling in fibrosis. Molecular Pharmacology, 2015. 87(2): p. 174-82.
20. Rudin, C.M., Vismodegib. Clinical Cancer Research, 2012. 18(12): p. 3218-22.
21. Mpekris, F., et al., Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. Journal of Controlled Release, 2017. 261: p. 105-112.
22. Karaca, M., et al., Micelle Mixtures for Coadministration of Gemcitabine and GDC-0449 To Treat Pancreatic Cancer. Molecular Pharmacology, 2016. 13(6): p. 1822-32.
23. Park, K., Controlled drug delivery systems: past forward and future back. Journal of Controlled Release, 2014. 190: p. 3-8.
24. Radisky, E.S. and D.C. Radisky, Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Frontier in Bioscience, 2015. 20: p. 1144-63.
25. Choi, K.Y., et al., Protease-activated drug development. Theranostics, 2012. 2(2): p. 156-78.
26. Zhu, L., P. Kate, and V.P. Torchilin, Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano, 2012. 6(4): p. 3491-8.
27. Aggarwal, N. and B.F. Sloane, Cathepsin B: multiple roles in cancer. Proteomics Clinical Applications, 2014. 8(5-6): p. 427-37.
28. Gondi, C.S. and J.S. Rao, Cathepsin B as a cancer target. Expert Opinion on Therapeutic Targets, 2013. 17(3): p. 281-91.
29. Zhong, Y.J., L.H. Shao, and Y. Li, Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). International Journal of Oncology, 2013. 42(2): p. 373-83.
30. Wen, H., Li, Y., Redox Sensitive Nanoparticles with Disulfide Bond Linked Sheddable Shell for Intracellular Drug Delivery. Medicinal Chemistry, 2014. 4(11): p. 748-55.
31. Liou, G.-Y. and P. Storz, Reactive oxygen species in cancer: A Dance with the Devil. Free radical research, 2010. 44(5): p. 156-7.
32. Traverso, N., et al., Role of glutathione in cancer progression and chemoresistance. Oxidative Medicine and Cellular Longevity, 2013. p. 972913.
33. Dai, J., et al., Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angewante Chemie International Edition England, 2011. 50(40): p. 9404-8.
34. Ellis, L.M., The role of neuropilins in cancer. Molecular Cancer Therapeutics, 2006. 5(5): p. 1099-107.
35. Bielenberg, D.R., et al., Neuropilins in neoplasms: expression, regulation, and function. Experimental Cell Research, 2006. 312(5): p. 584-93.
36. Roth, L., et al., Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012. 31(33): p. 3754-63.
37. Saha, A., et al., Targeted delivery of a novel peptide–docetaxel conjugate to MCF-7 cells through neuropilin-1 receptor: reduced toxicity and enhanced efficacy of docetaxel. RSC Advances, 2015. 5(112): p. 92596-601.
38. Bang, E.-K., et al., Poly(disulfide)s. Chemical Science, 2012. 3(6): p. 1752-1763.
39. Park, J.S., et al., N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. Journal of Controlled Release, 2006. 115(1): p. 37-45.
40. Sun, P., et al., siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. International Journal of Nanomedicine, 2017. 12: p. 3221-34.
41. Sutradhar, K.B. and C.D. Sumi, Implantable microchip: the futuristic controlled drug delivery system. Drug Delivery, 2016. 23(1): p. 1-11.
42. Fan, L., et al., Stimuli-free programmable drug release for combination chemo-therapy. Nanoscale, 2016. 8(25): p. 12553-9.
43. Stejskalova, A., M.T. Kiani, and B.D. Almquist, Programmable biomaterials for dynamic and responsive drug delivery. Experimental Biology and Medicine, 2016. 241(10): p. 1127-37.
44. Kamaly, N., et al., Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016. 116(4): p. 2602-63.
45. T., T., et al., C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration, Proceedings of the National Academy of Sciences, 2009. 106(38): p. 16157-62.
46. Janes, K.A., et al., Identifying single-cell molecular programs by stochastic profiling. Nature Methods, 2010. 7(4): p. 311-7.
47. Debnath, J., S.K. Muthuswamy, and J.S. Brugge, Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods, 2003. 30(3): p. 256-68.
48. Luo, M., et al., VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-κB and β-catenin. Cancer Letters, 2016. 373(1): p. 1-11.
49. Costa, E.C., et al., 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnology Advances, 2016. 34(8): p. 1427-41.
50. Sant, S. and P.A. Johnston, The production of 3D tumor spheroids for cancer drug discovery. Drug Discovery Today: Technologies, 2017. 23: p. 27-36.
51. Santo, V.E., et al., Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs. Biotechnol Journal, 2017. 12(1): p. 1600505.
52. Dyson, H.J., P.E. Wright, and H.A. Scheraga, The role of hydrophobic interactions in initiation and propagation of protein folding. Proceedings of the National Academy of Sciences, 2006. 103(35): p. 13057.
53. Wang, T.W., et al., Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Acta Biomateralia, 2017. 58: p. 54-66.
54. Swierczewska, M., K.C. Lee, and S. Lee, What is the future of PEGylated therapies? Expert opinion on emerging drugs, 2015. 20(4): p. 531-36.
55. Suk, J.S., et al., PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 2016. 99: p. 28-51.
56. Li, S. and M. Hong, Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-Angle-Spinning Solid-State NMR. Journal of the American Chemical Society, 2011. 133(5): p. 1534-1544.
57. Giusti, I., et al., Cathepsin B Mediates the pH-Dependent Proinvasive Activity of Tumor-Shed Microvesicles. Neoplasia, 2008. 10(5): p. 481-488.
58. Thomson, A.H., et al., Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. British journal of cancer, 1999. 81(1): p. 99-107.
59. Zhang, J., et al., Experimental evidence of good efficacy and reduced toxicity with peptide-doxorubicin to treat gastric cancer. Oncotarget, 2017. 9(2): p. 1957-68.
60. Varkouhi, A.K., et al., Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 2011. 151(3): p. 220-8.
61. Cao, J., et al., A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomaterials Science, 2015. 3(12): p. 1545-54.
62. Su, Y.-L., et al., The Penetrated Delivery of Drug and Energy to Tumors by Lipo-Graphene Nanosponges for Photolytic Therapy. ACS Nano, 2016. 10(10): p. 9420-33.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Investigation of Mechanical Tension on Neurite Outgrowth and Axon Elongation with Micropatterned Stretching System
2. 開發HDI-PF127/HA溫感性注射式水膠系統作為抗癌藥物載體之研究
3. Electrical stimulation via carbon nanotube rope promotes the differentiation and maturity of neural stem cells
4. 藉由調控3D基材的軟硬度來誘導間葉幹細胞朝向神經細胞系之分化
5. 發展生物可降解之聚己内酯-聚乙二醇形狀記憶雙重藥物釋放血管支架
6. 開發還原及酸鹼敏感性透明質酸─聚乙烯亞胺奈米顆粒包覆抑制血管新生質體作為幹細胞基因治療之研究
7. 具自我聚合能力的功能性奈米胜肽材料於再生醫學上的應用
8. 膠原蛋白-透明質酸複合電紡奈米纖維包覆多種可階段性釋放之血管生長因子應用於慢性傷口修復
9. 開發結合神經滋養因子梯度與許旺氏細胞的微米圖貌培養裝置應用於神經組織工程
10. 開發具主動標靶與多重酸敏感性的自組裝多胜肽奈米藥物載體應用於癌症藥物傳輸及腫瘤轉移抑制
11. 結合神經滋養因子梯度與奈米形貌之多孔道明膠支架作為神經導管應用於神經再生修復
12. 開發功能性自我聚合奈米胜肽材料應用於受損腦組織的血管再生修復
13. 糖胺聚醣複合水膠搭載聚電解複合奈米粒子應用於內源性幹細胞調控與中樞神經系統再生
14. 生物啟發自聚合奈米胜肽水膠搭載糖胺聚醣輔助生長因子釋放與血管新生之研究
15. 自我聚合核酸水膠搭載多重抗癌分子控制釋放應用於抗藥性癌症治療
 
* *