|
1. Lee, Y., et al., Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. Journal of Power Sources, 2016. 320: pp. 49-58. 2. Hofmann, A., M. Schulz, and T. Hanemann, Effect of Conducting Salts in Ionic Liquid based Electrolytes: Viscosity, Conductivity, and Li-Ion Cell Studies. International Journal of Electrochemical Science, 2013. 8: pp. 10170-10189. 3. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): pp. 3243-3262. 4. Hueso, K.B., M. Armand, and T. Rojo, High temperature sodium batteries: status, challenges and future trends. Energy & Environmental Science, 2013. 6(3): pp. 734-749. 5. Kamaya, N., et al., A lithium superionic conductor. Nature Materials, 2011. 10: pp. 682-686. 6. Goodenough, J.B., H.Y.P. Hong, and J.A. Kafalas, Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976. 11(2): pp. 203-220. 7. Porkodi, P., et al., Synthesis of NASICON—A Molecular Precursor-Based Approach. Chemistry of Materials, 2008. 20(20): pp. 6410-6419. 8. Zhu, Y.S., et al., Na1+xAlxGe2−xP3O12 (x=0.5) glass–ceramic as a solid ionic conductor for sodium ion. Solid State Ionics, 2016. 289: pp. 113-117. 9. Noi, K., A. Hayashi, and M. Tatsumisago, Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling. Journal of Power Sources, 2014. 269: pp. 260-265. 10. Hayashi, A., et al., High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. Journal of Power Sources, 2014. 258: pp. 420-423. 11. Hibi, Y., et al., Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique. Solid State Ionics, 2015. 270: pp. 6-9. 12. Kandagal, V.S., M.D. Bharadwaj, and U.V. Waghmare, Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. Journal of Materials Chemistry A, 2015. 3(24): pp. 12992-12999. 13. Zhang, Z., et al., Na11Sn2PS12: a new solid state sodium superionic conductor. Energy & Environmental Science, 2018. 11(1): pp. 87-93. 14. Yang, Z., et al., Electrochemical Energy Storage for Green Grid. Chemical Reviews, 2011. 111(5): pp. 3577-3613. 15. Hooper, A., A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. Journal of Physics D: Applied Physics, 1977. 10(11): pp. 1487-1496. 16. http://www.ionotec.com/. 17. http://www.ifm.liu.se/compchem/former/nba.html. 18. Lu, X., et al., Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. Journal of Power Sources, 2010. 195(9): pp. 2431-2442. 19. Xiayin, Y., et al., All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B, 2016. 25(1): pp. 018802. 20. Fan, L., et al., Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Advanced Energy Materials, 2018. 8(11): pp. 1702657. 21. Mizuno, F., et al., Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass–ceramic electrolytes. Journal of Power Sources, 2005. 146(1): pp. 711-714. 22. Sakuda, A., T. Takeuchi, and H. Kobayashi, Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S-P2S5 solid electrolytes. Solid State Ionics, 2016. 285: pp. 112-117. 23. Banerjee, A., et al., Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. Angewandte Chemie International Edition, 2016. 128: pp. 9634-9638. 24. Kim, T.W., et al., Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. Journal of Materials Chemistry A, 2018. 6(3): pp. 840-844. 25. Wagner, J.B. and C. Wagner, Electrical Conductivity Measurements on Cuprous Halides. The Journal of Chemical Physics, 1957. 26(6): pp. 1597-1601. 26. Sundari, G., et al., Structural and A.C. Conductivity Studies of (PVdF + NaClO4) Solid Polymer Electrolyte System for an Electrochemical Cell Applications. Asian Journal of Chemistry, 2013. 25: pp. S 459-S463. 27. Huggins, R.A., Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics, 2002. 8(3): pp. 300-313. 28. 史美倫,交流阻抗譜原理及應用,國防工業出版社,北京,(2001)。 29. Lee, K.-M., et al., Phase formation of Na+-beta-aluminas synthesized by double zeta process. Journal of Industrial and Engineering Chemistry, 2013. 19(3): pp. 829-834. 30. Kalsi, H.S., et al., Preparation and characterisation of β"-Al2O3. Bulletin of Materials Science, 1984. 6(6): pp. 979-989. 31. Barison, S., et al., Effect of precursors on β-alumina electrolyte preparation. Journal of the European Ceramic Society, 2015. 35(7): pp. 2099-2107. 32. Birnie, D.P., On the Structural Integrity of the Spinel Block in the β″-Alumina Structure. Acta Crystallographica Section B, 2012. 68: pp. 118-122. 33. Virkar Anil, V., R. Miller Gerald, and S. Gordon Ronald, Resistivity-Microstructure Relations in Lithia-Stabilized Polycrystalline β″-Alumina. Journal of the American Ceramic Society, 1978. 61(5‐6): pp. 250-252. 34. Youngblood G, E., R. Miller G, and S. Gordon R, Relative Effects of Phase Conversion and Grain Size on Sodium Ion Conduction in Polycrystalline, Lithia-Stabilized β-Alumina. Journal of the American Ceramic Society, 1978. 61(1‐2): pp. 86-87. 35. Xu, D., et al., Synthesis and characterization of Y2O3 doped Na–β"-Al2O3 solid electrolyte by double zeta process. Ceramics International, 2015. 41(4): pp. 5355-5361. 36. Pekarsky, A. and P.S. Nicholson, The relative stability of spray-frozen/freeze-dried β"-Al2O3 powders. Materials Research Bulletin, 1980. 15(10): pp. 1517-1524. 37. Chen, G., et al., Solid-state synthesis of high performance Na-β"-Al2O3 solid electrolyte doped with MgO. Ceramics International, 2016. 42(14): pp. 16055-16062. 38. Tatsumisago, M. and A. Hayashi, Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries. International Journal of Applied Glass Science, 2014. 5(3): pp. 226-235. 39. Chen, C., H. Katsui, and T. Goto, Synthesis of sodium beta alumina films by heat treatment of sodium aluminum oxides. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016. 31(1): pp. 6-10. 40. Chen, K., et al., Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. Electrochimica Acta, 2012. 80: pp. 133-139. 41. Zhu, C., J. Xue, and G. Ji, Effect of Na2O content on properties of beta alumina solid electrolytes. Materials Science in Semiconductor Processing, 2015. 31: pp. 487-492. 42. Gao, Z., Y. Zhang, and G. Wang, Electrochemistry of a Thin Cobalt(II)-Heptacyanonitrosylferrate Film Modified Glassy Carbon Electrode. Analytical Sciences, 1998. 14(6): pp. 1053-1058. 43. Lin, C.-C., et al., Mechanism of Sodium Ion Storage in Na7[H2PV14O42] Anode for Sodium-Ion Batteries. Advanced Materials Interfaces, 2018. 5(15): pp. 1800491. 44. Liu, L., et al., Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2016. 8(48): pp. 32631-32636.
|