帳號:guest(3.146.176.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):祝陳德
作者(外文):Chu, Chen-Te
論文名稱(中文):β"-Al2O3於複合式固態電解質與全固態鈉離子電池之研究
論文名稱(外文):Investigation of β"-Al2O3 for Composite Solid Electrolyte and All-Solid-State Sodium Ion Batteries
指導教授(中文):游萃蓉
陳翰儀
指導教授(外文):Yew, Tri-Rung
Chen, Han-Yi
口試委員(中文):蔡哲正
陳盈潔
口試委員(外文):Tsai, Cho-Jen
Chen, Ying-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031531
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:85
中文關鍵詞:β"-Al2O3固態電解質全固態鈉離子電池離子傳導率
外文關鍵詞:β"-Al2O3Solid electrolyteAll-solid-state sodium ion batteriesionic conductivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:488
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要利用高溫固態燒結法 (High Temperature Solid State Sintering) 製備出無毒、對環境友善的β"-Al2O3 (β"-alumina)作為鈉離子固態電解質(Na-ion Solid Electrolyte),並利用β"-Al2O3固態電解質與多金屬氧酸鹽 (Polyoxometalate, Na7H2PV14O42) 陽極材料組合成全固態鈉離子電池。此外本研究亦添加NaI至β"-Al2O3中以形成複合式固態電解質,探討全固態鈉離子電池及複合式固態電解質之可行性。
本研究主要分為三部分,第一部分是探討以不同條件合成β"-Al2O3之結果,並找出成功製作β"-Al2O3之方法。第二部分為探討複合式鈉離子固態電解質作為全固態鈉離子電池之可能性,乃利用第一部分成功合成之β"-Al2O3與NaI依特定重量比混合,經X光繞射分析儀 (X-ray Diffraction) 之結構分析結果得知,NaI與β"- Al2O3之繞射峰共存於XRD分析圖中,並無產生新結構。由交流阻抗分析得知,第一部分合成之β"-Al2O3於室溫下之σtotal (total conductivity) 雖僅約10-8 (S/cm),但tion (ionic transference number)高達0.96,顯示為一離子導體。此外,複合式鈉離子固態電解質於室溫下之σtotal 僅為10-8 – 10-9 (S/cm),tion 僅為0.5 – 0.7,表示其不為一良好離子導體,結果顯示其性質仍需改善以達複合式固態電解質之可行性。第三部分將β"-Al2O3作為固態電解質並搭配多金屬氧酸鹽(Na7H2PV14O42)陽極材料,並組裝成全固態鈉離子電池。由結果顯示電容量與電容量保持率 (Capacity Retention) 未有良好的表現,製程須經優化以提升電性。
In this work, non-toxic and environment-friendly β"-Al2O3 was synthesized by high temperature solid state sintering methods as Na-ion solid electrolyte, and an all-solid-state sodium ion battery (NIB) using β"-Al2O3 and polyoxometalate Na7H2PV14O42 as solid electrolyte and anode active material, respectively, was assembled. Moreover, NaI was added to β"-Al2O3 to prepare composite Na-ion solid electrolyte. The feasibility of its application on all-solid-state NIB and composite Na-ion solid electrolyte were also demostrated.
This study includes three parts. The first part is to investigate the result of synthesizing β"-Al2O3 by different conditions, and find the way to synthesize β"-Al2O3 successfully.
For the second part, composite Na-ion solid electrolytes by mixng β"-Al2O3 and NaI according to a specific weight ratio were investigated. According to the results of X-ray Diffraction (XRD), the diffraction peaks of NaI and β"-Al2O3 coexist in XRD pattern, and no other crystal structures were generated in XRD pattern. According to the results of Electrochemistry Impedance Spectroscopy (EIS), β"-Al2O3 synthesized from the first part shows its σtotal (total conductivity) at room temperature is about 10-8 (S/cm), but tion (ionic transference number) reaches up to 0.96. It reveals that β"-Al2O3 is an ion conductor. Moreover, σtotal at room temperature of composite Na-ion solid electrolytes are about 10-8 - 10-9(S/cm). Otherwise, tion are only 0.5 – 0.7, and it shows they are not good ion conductor. Results show it is needed to improve so as to reach the feasibility of the composite Na-ion solid electrolytes.
For the third part, β"-Al2O3 and Na7H2PV14O42 were used as solid electrolyte and anode active material, respectively, and assemble all-solid-state NIB. The results show that the performance of capacity and capacity retention are not good, and processes must be optimized to improve electrical performance.
摘要...................................Ⅰ
Abstract..............................Ⅲ
誌謝...................................Ⅴ
目錄..................................Ⅷ
圖目錄.................................XI
表目錄.................................XV
第一章 緒論.............................1
第二章 文獻回顧及原理簡介.................2
2.1 全固態鈉離子電池之原理簡介...........2
2.1.1 鈉離子固態電解質之介紹...........3
2.1.2 固態鈉離子電池之組成.............5
2.2 定電壓直流電極化分析 (Wagner’s DC Polarization Technique)...6
2.3 交流阻抗分析原理(Electrochemistry Impedance Spectroscopy)...8
2.3.1 交流阻抗分析之簡介....8
2.3.2 常用等效電路...10
第三章 實驗流程與儀器介紹...11
3.1 β"-Al2O3之製備方式...14
3.1.1 利用高溫燒結合成NaAl5O8及LiAl5O8...14
3.1.2 利用高溫固態燒結法合成β"-Al2O3...17
3.2 製備複合式鈉離子固態電解質...21
3.2.1 計算β"-Al2O3相對含量...21
3.2.2 β"-Al2O3粉末與NaI依不同比例混合及燒結...21
3.3 以β"-Al2O3作為固態電解質並組裝全固態鈉離子電池...24
3.4 實驗儀器介紹...27
3.4.1 X光繞射分析儀 (X-ray Diffractometer, XRD)...27
3.4.2 場發射掃描式電子顯微鏡 (Field emission Scanning Electron Microscope, FE-SEM)...29
3.4.3 薄膜厚度輪廓量測儀 (α-step Stylus Profiler)...31
3.4.4 交流阻抗分析儀 (Electrochemistry Impedance Spectroscopy)....33
3.4.5 定電壓直流電極化測試 (DC Polarization Analysis)...35
3.4.6 循環伏安法 (Cyclic Voltammetry, CV)...37
3.4.7 電池循環壽命測試 (Galvanic Charge Discharge, GCD)...38
第四章 實驗結果與討論...39
4.1 製備β"-Al2O3鈉離子固態電解質...39
4.1.1 以高溫燒結法合成NaAl5O8及LiAl5O8之實驗設計與實驗結果...39
4.1.2 以高溫燒結法合成β"-Al2O3之實驗設計與實驗結果...41
4.1.2.1 以1585 ºC (2 min) 之條件燒結β"-Al2O3...43
4.1.2.2 以1600 ºC (2 hr) 之條件燒結β"-Al2O3...48
4.2 製備複合式鈉離子固態電解質 (β"-Al2O3 + NaI)...61
4.2.1 β"-Al2O3 + NaI之晶體結構分析...61
4.2.2 β"-Al2O3 + NaI之電化學性質...64
4.2.2.1 交流阻抗分析之實驗結果...64
4.2.2.2 定電壓直流電極化技術 (Wagner’s DC Polarization Technique) 之實驗結果...68
4.2.2.3 循環伏安法 (Cyclic Voltammetry, CV)之實驗結果...70
4.2.3 綜合討論...71
4.3 以β"-Al2O3作為固態電解質並組裝成全固態鈉離子電池之實驗結果...73
第五章 結論...78
第六章 未來展望...80
本研究產出之論文發表...82
參考文獻...82
1. Lee, Y., et al., Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. Journal of Power Sources, 2016. 320: pp. 49-58.
2. Hofmann, A., M. Schulz, and T. Hanemann, Effect of Conducting Salts in Ionic Liquid based Electrolytes: Viscosity, Conductivity, and Li-Ion Cell Studies. International Journal of Electrochemical Science, 2013. 8: pp. 10170-10189.
3. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): pp. 3243-3262.
4. Hueso, K.B., M. Armand, and T. Rojo, High temperature sodium batteries: status, challenges and future trends. Energy & Environmental Science, 2013. 6(3): pp. 734-749.
5. Kamaya, N., et al., A lithium superionic conductor. Nature Materials, 2011. 10: pp. 682-686.
6. Goodenough, J.B., H.Y.P. Hong, and J.A. Kafalas, Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976. 11(2): pp. 203-220.
7. Porkodi, P., et al., Synthesis of NASICON—A Molecular Precursor-Based Approach. Chemistry of Materials, 2008. 20(20): pp. 6410-6419.
8. Zhu, Y.S., et al., Na1+xAlxGe2−xP3O12 (x=0.5) glass–ceramic as a solid ionic conductor for sodium ion. Solid State Ionics, 2016. 289: pp. 113-117.
9. Noi, K., A. Hayashi, and M. Tatsumisago, Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling. Journal of Power Sources, 2014. 269: pp. 260-265.
10. Hayashi, A., et al., High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. Journal of Power Sources, 2014. 258: pp. 420-423.
11. Hibi, Y., et al., Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique. Solid State Ionics, 2015. 270: pp. 6-9.
12. Kandagal, V.S., M.D. Bharadwaj, and U.V. Waghmare, Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. Journal of Materials Chemistry A, 2015. 3(24): pp. 12992-12999.
13. Zhang, Z., et al., Na11Sn2PS12: a new solid state sodium superionic conductor. Energy & Environmental Science, 2018. 11(1): pp. 87-93.
14. Yang, Z., et al., Electrochemical Energy Storage for Green Grid. Chemical Reviews, 2011. 111(5): pp. 3577-3613.
15. Hooper, A., A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. Journal of Physics D: Applied Physics, 1977. 10(11): pp. 1487-1496.
16. http://www.ionotec.com/.
17. http://www.ifm.liu.se/compchem/former/nba.html.
18. Lu, X., et al., Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. Journal of Power Sources, 2010. 195(9): pp. 2431-2442.
19. Xiayin, Y., et al., All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B, 2016. 25(1): pp. 018802.
20. Fan, L., et al., Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Advanced Energy Materials, 2018. 8(11): pp. 1702657.
21. Mizuno, F., et al., Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass–ceramic electrolytes. Journal of Power Sources, 2005. 146(1): pp. 711-714.
22. Sakuda, A., T. Takeuchi, and H. Kobayashi, Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S-P2S5 solid electrolytes. Solid State Ionics, 2016. 285: pp. 112-117.
23. Banerjee, A., et al., Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. Angewandte Chemie International Edition, 2016. 128: pp. 9634-9638.
24. Kim, T.W., et al., Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. Journal of Materials Chemistry A, 2018. 6(3): pp. 840-844.
25. Wagner, J.B. and C. Wagner, Electrical Conductivity Measurements on Cuprous Halides. The Journal of Chemical Physics, 1957. 26(6): pp. 1597-1601.
26. Sundari, G., et al., Structural and A.C. Conductivity Studies of (PVdF + NaClO4) Solid Polymer Electrolyte System for an Electrochemical Cell Applications. Asian Journal of Chemistry, 2013. 25: pp. S 459-S463.
27. Huggins, R.A., Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics, 2002. 8(3): pp. 300-313.
28. 史美倫,交流阻抗譜原理及應用,國防工業出版社,北京,(2001)。
29. Lee, K.-M., et al., Phase formation of Na+-beta-aluminas synthesized by double zeta process. Journal of Industrial and Engineering Chemistry, 2013. 19(3): pp. 829-834.
30. Kalsi, H.S., et al., Preparation and characterisation of β"-Al2O3. Bulletin of Materials Science, 1984. 6(6): pp. 979-989.
31. Barison, S., et al., Effect of precursors on β-alumina electrolyte preparation. Journal of the European Ceramic Society, 2015. 35(7): pp. 2099-2107.
32. Birnie, D.P., On the Structural Integrity of the Spinel Block in the β″-Alumina Structure. Acta Crystallographica Section B, 2012. 68: pp. 118-122.
33. Virkar Anil, V., R. Miller Gerald, and S. Gordon Ronald, Resistivity-Microstructure Relations in Lithia-Stabilized Polycrystalline β″-Alumina. Journal of the American Ceramic Society, 1978. 61(5‐6): pp. 250-252.
34. Youngblood G, E., R. Miller G, and S. Gordon R, Relative Effects of Phase Conversion and Grain Size on Sodium Ion Conduction in Polycrystalline, Lithia-Stabilized β-Alumina. Journal of the American Ceramic Society, 1978. 61(1‐2): pp. 86-87.
35. Xu, D., et al., Synthesis and characterization of Y2O3 doped Na–β"-Al2O3 solid electrolyte by double zeta process. Ceramics International, 2015. 41(4): pp. 5355-5361.
36. Pekarsky, A. and P.S. Nicholson, The relative stability of spray-frozen/freeze-dried β"-Al2O3 powders. Materials Research Bulletin, 1980. 15(10): pp. 1517-1524.
37. Chen, G., et al., Solid-state synthesis of high performance Na-β"-Al2O3 solid electrolyte doped with MgO. Ceramics International, 2016. 42(14): pp. 16055-16062.
38. Tatsumisago, M. and A. Hayashi, Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries. International Journal of Applied Glass Science, 2014. 5(3): pp. 226-235.
39. Chen, C., H. Katsui, and T. Goto, Synthesis of sodium beta alumina films by heat treatment of sodium aluminum oxides. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016. 31(1): pp. 6-10.
40. Chen, K., et al., Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. Electrochimica Acta, 2012. 80: pp. 133-139.
41. Zhu, C., J. Xue, and G. Ji, Effect of Na2O content on properties of beta alumina solid electrolytes. Materials Science in Semiconductor Processing, 2015. 31: pp. 487-492.
42. Gao, Z., Y. Zhang, and G. Wang, Electrochemistry of a Thin Cobalt(II)-Heptacyanonitrosylferrate Film Modified Glassy Carbon Electrode. Analytical Sciences, 1998. 14(6): pp. 1053-1058.
43. Lin, C.-C., et al., Mechanism of Sodium Ion Storage in Na7[H2PV14O42] Anode for Sodium-Ion Batteries. Advanced Materials Interfaces, 2018. 5(15): pp. 1800491.
44. Liu, L., et al., Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2016. 8(48): pp. 32631-32636.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *