帳號:guest(18.222.22.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪雅敏
作者(外文):Hung, Ya-Min
論文名稱(中文):氧化石墨烯/鑽石/碳化矽複合材料於不同黏結劑下的熱傳導性質研究
論文名稱(外文):Investigation on the Thermal Properties of Graphene Oxide/Diamond/Silicon Carbide Composites Using Different Binders
指導教授(中文):李紫原
戴念華
指導教授(外文):Lee, Chi-Young
Tai, Nyan-Hwa
口試委員(中文):葉孟考
徐文光
口試委員(外文):Yeh, Meng-Kao
Hsu, Wen-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031521
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:95
中文關鍵詞:石墨烯鑽石碳化矽熱傳導係數
外文關鍵詞:graphenediamondsilicon carbidethermal conductivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:94
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
科技產業發展快速,電子元件之微型化是必然的,散熱問題亦備受重視,本研究的目的在於製備一種具有良好導熱效率之複合材料,並期藉由調整材料的組成比例,形成緊密結構並增加熱傳遞路徑,以應用於熱管理相關領域。
本研究利用Modified Hummers method製備氧化石墨烯(GO)並將其冷凍乾燥處理,並進一步製備出含氧化石墨烯(GO)、鑽石(D)、碳化矽(SiC)及矽膠(PDMS)之複合材料(GO/D/SiC/PDMS)與包含上述三種添加物及麵粉(flour)之複合材料(GO/D/SiC/flour),並利用雷射閃光法量測熱傳導係數與相關熱傳導性質。本研究探討大粒徑鑽石及雙粒徑碳化矽的添加對複合材料之熱傳性質的影響,並比較不同GO添加量對導熱性質的改變,接著再將複合材料置於不同溫度下量測其熱傳性質,以探討變溫下熱傳導性質的變化。
實驗結果顯示,大粒徑鑽石與雙粒徑碳化矽的添加可使複合材料形成緊密結構,有利於聲子傳遞,且提升熱傳導性能;此外,GO的添加扮演很重要的角色,其用來作為不同添加物間的橋樑且使結構更緊密,亦提供更快更有效率的聲子傳遞路徑。因為材料間的協同效應,在25C下,含有100 mg GO之100GO/D/SiC/PDMS及100GO/D/SiC/flour,其熱傳導係數值分別為2.560 W/mK 和 3.977 W/mK。然而,當GO添加量增加時,由於GO的團聚現象,熱傳導係數隨之漸減。在25C下,當GO/D/SiC/PDMS複合材料內GO含量由100 mg增加至250 mg時,K由2.560 W/mK下降至1.211 W/mK;同樣地,當GO/D/SiC/flour複合材料內GO含量由100 mg增加至250 mg時,K由3.977 W/mK下降至1.856W/mK。當溫度上升時,含有100 mg GO之GO/D/SiC/PDMS及GO/D/SiC/flour複合材料之K分別提升至2.990 W/mK 與4.650 W/mK。由此可知,本實驗所製備之複合膜材料即使在高溫下仍具良好導熱性,故能滿足熱界面材料的需求且在熱管理的應用上是有前途的。
Owing to the advancement of miniaturization of electronic devices, effective thermal management becomes an important issue to keep the devices from overheating. Thus, fabrication of composites with high thermal conductivities attracts much attention to the researcher.
In this study, we synthesized graphene oxide (GO) by using the Modified Hummers method and fabricated GO/diamond/silicon carbide/polydimethylsiloxane (GO/D/SiC/PDMS) and GO/D/SiC/flour composites using GO as filler. The thermal conductivities were measured by the laser flash method to better understand how the addition of diamond (D) and SiC of different sizes, the amount of GO, and temperature affected the thermal properties of the composites.
The results showed that the addition of diamond and silicon carbide of different sizes could enhance composite density, which is favorable for phonon transport, and thus increased the thermal properties. Besides, the addition of GO played an important role in bridging the particle to form more compact structure, and offer effective and faster pathways for phonon transport. Because of synergistic effects of diamond, SiC and GO, the 100GO/D/SiC/PDMS and 100GO/D/SiC/flour possess the thermal conductivities of 2.560 W/mK and 3.977 W/mK, respectively. However, as the amount of GO increased, the thermal conductivity was decreased due to the formation of GO clusters, and thermal conductivity was decreased from 2.560 W/mK for 100GO/D/SiC/PDMS to 1.211 W/mK for 250GO/D/SiC/PDMS at 25C. Similarly, thermal conductivity was decreased from 3.977 W/mK for 100GO/D/SiC/flour to 1.856 W/mK for 250GO/D/SiC/flour. When temperature increased, the thermal conductivity of 100GO/D/SiC/PDMS and 100GO/D/SiC/flour were increased to 2.990 W/mK and 4.650 W/mK, respectively. Possessing high thermal conductivities at high temperature, the composites were believed to fulfill the requirement for thermal interface materials and promising for heat management.
目錄

摘要 I
Abstract II
目錄 IV
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 石墨烯的簡介 3
2.1.1 石墨烯之特性和結構 4
2.1.2 石墨烯之製備方法 5
2.2鑽石的簡介 8
2.2.1 鑽石之特性和結構 8
2.2.2 鑽石之製備方法 9
2.3 碳化矽的簡介 11
2.3.1 碳化矽之特性和結構 11
2.3.2 碳化矽之製備方法 12
2.4 熱傳導性質的簡介 13
2.4.1 熱傳遞原理 13
2.4.2 熱傳導係數之量測方法 15
2.4.3 碳材料之熱傳導性質 18
2.4.4 複合材料之熱傳導性質 20
第三章 實驗方法與分析 32
3.1 實驗用化學藥品及設備 32
3.1.1 實驗用化學藥品 32
3.1.2 電磁攪拌加熱器 33
3.1.3 高速離心機 33
3.1.4 超音波震盪機 33
3.1.5 熱壓機 34
3.1.6 冷凍乾燥機 34
3.2 實驗步驟及方法 35
3.2.1 氧化石墨烯的製備 35
3.2.2 冷凍乾燥氧化石墨烯的製備 36
3.2.3 氧化石墨烯/鑽石/碳化矽/矽膠複合材料的製備 36
3.2.4 氧化石墨烯/鑽石/碳化矽/麵粉複合材料的製備 39
3.3 性質分析 40
3.3.1 場發射掃描式電子顯微鏡 40
3.3.2 X光繞射分析儀 41
3.3.3 拉曼光譜儀 41
3.3.4 傅立葉轉換紅外光譜儀 42
3.3.5 雷射閃光法熱擴散係數分析儀 42
3.3.6 四點探針量測儀 44
4.1 石墨烯之分析 48
4.1.1 掃描式電子顯微鏡之形貌觀察 48
4.1.2 X光繞射光譜分析 49
4.1.3 拉曼光譜分析 49
4.2 鑽石之分析 50
4.2.1 掃描式電子顯微鏡之形貌觀察 50
4.2.2 X光繞射光譜分析 50
4.3 碳化矽之分析 51
4.3.1 掃描式電子顯微鏡之形貌觀察 51
4.3.2 X光繞射光譜分析 51
4.4 氧化石墨烯/鑽石/碳化矽/矽膠複合材料 52
4.4.1 掃描式電子顯微鏡之形貌觀察 52
4.4.2 X光繞射光譜分析 52
4.4.3 熱傳導性質之分析 53
4.4.3.1 鑽石添加對熱傳導係數之影響 53
4.4.3.2不同尺寸碳化矽添加量對鑽石/碳化矽/矽膠複合材料的熱傳導係數之影響 54
4.4.3.3 添加氧化石墨烯對氧化石墨烯/鑽石/碳化矽/矽膠複合材料的熱傳導係數之影響 55
4.4.3.4 溫度對熱傳導係數之影響 56
4.4.4 片電阻之量測 57
4.5 氧化石墨烯/鑽石/碳化矽/麵粉複合材料 57
4.5.1 掃描式電子顯微鏡之形貌觀察 57
4.5.2 X光繞射光譜分析 58
4.5.3 熱傳導性質之分析 59
4.5.3.1 添加氧化石墨烯對氧化石墨烯/鑽石/碳化矽/麵粉複合材料的熱傳導係數之影響 59
4.5.3.2 麵粉對熱傳導係數之影響 59
4.5.3.3 溫度對熱傳導係數之影響 60
4.5.4 片電阻之量測 61
第五章 結論 89
參考文獻 91




[1] D. Chung, Materials for thermal conduction, 2001.
[2] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Materials 10 (2011) 569.
[3] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183.
[4] M.I. Katsnelson, K.S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics, Solid State Communications 143(1) (2007) 3-13.
[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306(5696) (2004) 666.
[6] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-Based Ultracapacitors, Nano Letters 8(10) (2008) 3498-3502.
[7] R.G. Yazdi, T. Iakimov, R. Yakimova, Epitaxial Graphene on SiC: A Review of Growth and Characterization, Crystals 6(5) (2016).
[8] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science 320(5881) (2008) 1308.
[9] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321(5887) (2008) 385.
[10] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3 (2008) 206.
[11] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146(9) (2008) 351-355.
[12] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8(3) (2008) 902-907.
[13] L. Wei, P.K. Kuo, R.L. Thomas, T.R. Anthony, W.F. Banholzer, Thermal conductivity of isotopically modified single crystal diamond, Physical Review Letters 70(24) (1993) 3764-3767.
[14] K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192.
[15] A.d.H. Walt, B. Claire, W. Xiaosong, S. Mike, H. Yike, R. Ming, A.S. Joseph, N.F. Phillip, H. Robert, P. Benjamin, F. Clément, P. Marek, M. Jeong-Sun, Epitaxial graphene electronic structure and transport, Journal of Physics D: Applied Physics 43(37) (2010) 374007.
[16] A.J. Van Bommel, J.E. Crombeen, A. Van Tooren, LEED and Auger electron observations of the SiC(0001) surface, 1975.
[17] A.J. Strudwick, N.E. Weber, M.G. Schwab, M. Kettner, R.T. Weitz, J.R. Wünsch, K. Müllen, H. Sachdev, Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres, ACS Nano 9(1) (2015) 31-42.
[18] R. Kumar Singh, D.R. Kumar, D. Singh, Graphene Oxide: Strategies for Synthesis, Reduction and Frontier Applications, 2016.
[19] S.J. Rowley-Neale, E.P. Randviir, A.S. Abo Dena, C.E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms, Applied Materials Today 10 (2018) 218-226.
[20] S. Rella, A. Giuri, C.E. Corcione, M.R. Acocella, S. Colella, G. Guerra, A. Listorti, A. Rizzo, C. Malitesta, X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method, Vacuum 119 (2015) 159-162.
[21] O. Compton, S. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, 2010.
[22] B.C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London 149 (1859) 249-259.
[23] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society 80(6) (1958) 1339-1339.
[24] S. Stankovich, D. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen, R. Ruoff, Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, 2007.
[25] J.H. Williams, Giant covalent structures: diamond and graphite, Crystal Engineering, Morgan & Claypool Publishers, 2017, pp. 9-1-9-7.
[26] M. Schwander, K. Partes, A review of diamond synthesis by CVD processes, Diamond and Related Materials 20(9) (2011) 1287-1301.
[27] Y.-l. Li, Y. Liang, F. Zheng, Z.-q. Hu, Carbon Dioxide laser Synthesis of Ultrafine Silicon Carbide Powders from Diethoxydimethylsilane, Journal of the American Ceramic Society 77(6) (1994) 1662-1664.
[28] U. Forsberg, CVD Growth of Silicon Carbide for High Frequency Applications, 2018.
[29] U. Schubert, N. Hüsing, Synthesis of Inorganic Materials, Wiley-VCH2000.
[30] T.K. P.Friedrichs, L.Ley, G.Pensl, Silicon carbide Berlin:Wiley-VCH2009.
[31] S. Kou, Transport phenomena and materials processing, J. Wiley1996.
[32] J.P. Holman, Heat Transfer 10th ed, McGraw-Hill publications2000.
[33] D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials, Journal of Electronic Packaging 138(4) (2016) 040802-040802-19.
[34] T. Log, S.E. Gustafsson, Transient plane source (TPS) technique for measuring thermal transport properties of building materials, Fire and Materials 19(1) (1995) 43-49.
[35] S. A. Al-Ajlan, Measurements of thermal properties of insulation materials by using transient plane source technique, 2006.
[36] N. Yüksel, The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials, 2016.
[37] G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids: A review, Renewable and Sustainable Energy Reviews 14(7) (2010) 1913-1924.
[38] D. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, R. Pohl, Thermal Conductivity of Thin Film Measurements and Understanding, 1989.
[39] A. Zhou, W. Wang, B. Yang, J. Li, Q. Zhao, Thermal conductivity study of micrometer-thick thermoelectric films by using three-omega methods, Applied Thermal Engineering 98 (2016) 683-689.
[40] W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Journal of Applied Physics 32(9) (1961) 1679-1684.
[41] D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids, Diamond and Related Materials 18(2) (2009) 177-180.
[42] W. Seog Ryu, D. Gyu Park, U. Sup Song, J. Park, S. Bok Ahn, Effects of irradiation on thermal conductivity of alloy 690 at low neutron fluence, 2013.
[43] H. Malekpour, A. Balandin Alexander, Raman-based technique for measuring thermal conductivity of graphene and related materials, Journal of Raman Spectroscopy 49(1) (2017) 106-120.
[44] Q.-Y. Li, K. Xia, J. Zhang, Y. Zhang, Q. Li, K. Takahashi, X. Zhang, Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method, Nanoscale 9(30) (2017) 10784-10793.
[45] W. Feng, M. Qin, Y. Feng, Toward highly thermally conductive all-carbon composites: Structure control, 2016.
[46] E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bulletin 37(12) (2012) 1273-1281.
[47] Q.-Q. Kong, Z. Liu, J.-G. Gao, C.-M. Chen, Q. Zhang, G. Zhou, Z.-C. Tao, X.-H. Zhang, M.-Z. Wang, F. Li, R. Cai, Hierarchical Graphene–Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader, Advanced Functional Materials 24(27) (2014) 4222-4228.
[48] Y.-J. Chen, D.-D. Nguyen, M.-Y. Shen, M.-C. Yip, N.-H. Tai, Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites, Composites Part A: Applied Science and Manufacturing 44 (2013) 40-46.
[49] F.-L. Guan, C.-X. Gui, H.-B. Zhang, Z.-G. Jiang, Y. Jiang, Z.-Z. Yu, Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide, Composites Part B: Engineering 98 (2016) 134-140.
[50] Y.-H. Zhao, Y.-F. Zhang, S.-L. Bai, High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam, Composites Part A: Applied Science and Manufacturing 85 (2016) 148-155.
[51] Y.-H. Zhao, Y.-F. Zhang, Z.-K. Wu, S.-L. Bai, Synergic enhancement of thermal properties of polymer composites by graphene foam and carbon black, Composites Part B: Engineering 84 (2016) 52-58.
[52] H.-E. Chou, S.-R. Yang, S.-F. Wang, J.C. Sung, Thermal Conductivity of Diamond-Containing Grease, Journal of Electronic Packaging 132(4) (2010) 041015-041015-7.
[53] H. Chen, V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications, 2016.
[54] W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, L. Chen, Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina, International Journal of Thermal Sciences 91 (2015) 76-82.
[55] J. Gu, Q. Zhang, J. Dang, C. Yin, S. Chen, Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites, Journal of Applied Polymer Science 124(1) (2011) 132-137.
[56] W. Yu, Y. Qi, Y. Zhou, L. Chen, H. Du, H. Xie, Synergistic improvement of thermal transport properties for thermoplastic composites containing mixed alumina and graphene fillers, Journal of Applied Polymer Science 133(13) (2015).
[57] Polymer Data Handbook, 2nd ed, Journal of the American Chemical Society 131(44) (2009) 16330-16330.
[58] F. Ortolan, J. Steel Caroline, Protein Characteristics that Affect the Quality of Vital Wheat Gluten to be Used in Baking: A Review, Comprehensive Reviews in Food Science and Food Safety 16(3) (2017) 369-381.
[59] M.G. Lomelí-Ramírez, S.G. Kestur, R. Manríquez-González, S. Iwakiri, G.B. de Muniz, T.S. Flores-Sahagun, Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties, Carbohydrate Polymers 102 (2014) 576-583.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *