|
[1] M. Broussely, P. Biensan, B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochimica Acta, 45 (1999) 3-22. [2] C.M. Hayner, X. Zhao, H.H. Kung, Materials for rechargeable lithium-ion batteries, Annual review of chemical and biomolecular engineering, 3 (2012) 445-471. [3] M. Wakihara, O. Yamamoto, Lithium ion batteries: fundamentals and performance, John Wiley & Sons2008. [4] A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries, Chemical reviews, 114 (2014) 11751-11787. [5] N. Ding, L. Zhou, C. Zhou, D. Geng, J. Yang, S.W. Chien, Z. Liu, M.-F. Ng, A. Yu, T.A. Hor, Building better lithium-sulfur batteries: from LiNO 3 to solid oxide catalyst, Scientific reports, 6 (2016) 33154. [6] X. Ji, L.F. Nazar, Advances in Li–S batteries, Journal of Materials Chemistry, 20 (2010) 9821-9826. [7] K. Patel, Lithium-Sulfur Battery: Chemistry, Challenges, Cost, and Future, The Journal of Undergraduate Research at the University of Illinois at Chicago, 9 (2016). [8] J.A. Dean, Lange's handbook of chemistry, Material and manufacturing process, 5 (1990) 687-688. [9] H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W.D. Lou, Embedding Sulfur in MOF‐Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries, Chemistry-A European Journal, 19 (2013) 10804-10808. [10] J. Shim, K.A. Striebel, E.J. Cairns, The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance, Journal of the Electrochemical Society, 149 (2002) A1321-A1325. [11] J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries, Nano letters, 11 (2011) 4288-4294. [12] J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries, Angewandte Chemie, 124 (2012) 3651-3655. [13] H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability, Nano letters, 11 (2011) 2644-2647. [14] R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Sulfur‐impregnated activated carbon fiber cloth as a binder‐free cathode for rechargeable Li‐S batteries, Advanced materials, 23 (2011) 5641-5644. [15] Q. Pang, X. Liang, C. Kwok, L.F. Nazar, The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries, Journal of The Electrochemical Society, 162 (2015) A2567-A2576. [16] Q. Pang, D. Kundu, M. Cuisinier, L. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries, Nature communications, 5 (2014) 4759. [17] X. Liang, A. Garsuch, L.F. Nazar, Sulfur Cathodes Based on Conductive Mxene Nanosheets for High‐Performance Lithium–Sulfur Batteries, Angewandte Chemie International Edition, 54 (2015) 3907-3911. [18] S. Evers, T. Yim, L.F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery, The Journal of Physical Chemistry C, 116 (2012) 19653-19658. [19] Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Sulphur–TiO 2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries, Nature communications, 4 (2013) 1331. [20] Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Kinetically-enhanced polysulfide redox reactions by Nb 2 O 5 nanocrystals for high-rate lithium–sulfur battery, Energy & Environmental Science, 9 (2016) 3230-3239. [21] H.J. Peng, G. Zhang, X. Chen, Z.W. Zhang, W.T. Xu, J.Q. Huang, Q. Zhang, Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries, Angewandte Chemie, 128 (2016) 13184-13189. [22] X. Ji, S. Evers, R. Black, L.F. Nazar, Stabilizing lithium–sulphur cathodes using polysulphide reservoirs, Nature communications, 2 (2011) 325. [23] Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg 0.6 Ni 0.4 O composite cathodes for high performance lithium/sulfur batteries, Journal of Materials Chemistry A, 1 (2013) 295-301. [24] A. Yermukhambetova, Z. Bakenov, Y. Zhang, J.A. Darr, D.J. Brett, P.R. Shearing, Examining the effect of nanosized Mg0. 6Ni0. 4O and Al2O3 additives on S/polyaniline cathodes for lithium–sulphur batteries, Journal of Electroanalytical Chemistry, 780 (2016) 407-415. [25] S.L. Gojković, B. Babić, V. Radmilović, N. Krstajić, Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs, Journal of Electroanalytical Chemistry, 639 (2010) 161-166. [26] M. Yang, D. Kim, H. Jha, K. Lee, J. Paul, P. Schmuki, Nb doping of TiO 2 nanotubes for an enhanced efficiency of dye-sensitized solar cells, Chemical Communications, 47 (2011) 2032-2034. [27] N. Elezović, B. Babić, L. Gajić-Krstajić, V. Radmilović, N. Krstajić, L. Vračar, Synthesis, characterization and electrocatalytical behavior of Nb–TiO2/Pt nanocatalyst for oxygen reduction reaction, Journal of Power Sources, 195 (2010) 3961-3968. [28] M. Fehse, S. Cavaliere, P. Lippens, I. Savych, A. Iadecola, L. Monconduit, D. Jones, J. Roziere, F. Fischer, C. Tessier, Nb-doped TiO2 nanofibers for lithium ion batteries, The Journal of Physical Chemistry C, 117 (2013) 13827-13835. [29] E. Dy, R. Hui, J. Zhang, Z.-S. Liu, Z. Shi, Electronic Conductivity and Stability of Doped Titania (Ti1− XMX O2, M= Nb, Ru, and Ta) A Density Functional Theory-Based Comparison, The Journal of Physical Chemistry C, 114 (2010) 13162-13167. [30] C.-X. Zu, H. Li, Thermodynamic analysis on energy densities of batteries, Energy & Environmental Science, 4 (2011) 2614-2624. [31] R. Noorden, A better battery: chemists are reinventing rechargeable cells to drive down costs and boost capacity, Nature, 507 (2014) 26-28. [32] S.C. Jung, Y.-K. Han, Monoclinic sulfur cathode utilizing carbon for high-performance lithium–sulfur batteries, Journal of Power Sources, 325 (2016) 495-500. [33] Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer, Chemical communications, 48 (2012) 8817-8819. [34] C.-N. Lin, W.-C. Chen, Y.-F. Song, C.-C. Wang, L.-D. Tsai, N.-L. Wu, Understanding dynamics of polysulfide dissolution and re-deposition in working lithium–sulfur battery by in-operando transmission X-ray microscopy, Journal of Power Sources, 263 (2014) 98-103. [35] M. Cuisinier, P.-E. Cabelguen, S. Evers, G. He, M. Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian, L.F. Nazar, Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy, The Journal of Physical Chemistry Letters, 4 (2013) 3227-3232. [36] G. Li, Z. Li, B. Zhang, Z. Lin, Developments of electrolyte systems for lithium–sulfur batteries: a review, Frontiers in Energy Research, 3 (2015) 5. [37] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O 2 and Li–S batteries with high energy storage, Nature materials, 11 (2012) 19. [38] Y. Diao, K. Xie, S. Xiong, X. Hong, Shuttle phenomenon–the irreversible oxidation mechanism of sulfur active material in Li–S battery, Journal of Power Sources, 235 (2013) 181-186. [39] A.F. Hofmann, D.N. Fronczek, W.G. Bessler, Mechanistic modeling of polysulfide shuttle and capacity loss in lithium–sulfur batteries, Journal of Power Sources, 259 (2014) 300-310. [40] M.R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner, J. Janek, Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates, Journal of Power Sources, 259 (2014) 289-299. [41] C. Barchasz, J.-C. Leprêtre, F. Alloin, S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell, Journal of Power Sources, 199 (2012) 322-330. [42] S.-E. Cheon, S.-S. Choi, J.-S. Han, Y.-S. Choi, B.-H. Jung, H.S. Lim, Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode, Journal of The Electrochemical Society, 151 (2004) A2067-A2073. [43] H. Zhang, X. Li, H. Zhang, Li-S and Li-O2 Batteries with High Specific Energy, Springer2017. [44] X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nature materials, 8 (2009) 500. [45] B. Zhang, X. Qin, G. Li, X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science, 3 (2010) 1531-1537. [46] G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano letters, 11 (2011) 4462-4467. [47] Z. Xiao, Z. Yang, L. Wang, H. Nie, M.e. Zhong, Q. Lai, X. Xu, L. Zhang, S. Huang, A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long‐life lithium–sulfur batteries, Advanced materials, 27 (2015) 2891-2898. [48] R.F. Bartholomew, D. Frankl, Electrical properties of some titanium oxides, Physical review, 187 (1969) 828. [49] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2, Advanced Materials, 23 (2011) 4248-4253. [50] H. Yang, C.-K. Lan, J.-G. Duh, The power of Nb-substituted TiO2 in Li-ion batteries: Morphology transformation induced by high concentration substitution, Journal of Power Sources, 288 (2015) 401-408. [51] X. Tang, D. Li, Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response, The Journal of Physical Chemistry C, 112 (2008) 5405-5409. [52] X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng, Y. Gan, H. Huang, Y. Xia, C. Liang, W. Zhang, Strong Sulfur Binding with Conducting Magnéli-Phase Ti n O2 n–1 Nanomaterials for Improving Lithium–Sulfur Batteries, Nano letters, 14 (2014) 5288-5294. [53] H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, E. Peled, Lithium sulfur battery oxidation/reduction mechanisms of polysulfides in THF solutions, Journal of the Electrochemical Society, 135 (1988) 1045-1048. [54] Y. Sun, G. Li, Y. Lai, D. Zeng, H. Cheng, High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte, Scientific reports, 6 (2016) 22048. [55] Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading, Journal of The Electrochemical Society, 160 (2013) A553-A558. [56] Y. Zhao, L. Peng, B. Liu, G. Yu, Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries, Nano letters, 14 (2014) 2849-2853. [57] D. Moy, A. Manivannan, S. Narayanan, Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells, Journal of the electrochemical society, 162 (2015) A1-A7. [58] Y.-S. Su, A. Manthiram, Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nature communications, 3 (2012) 1166. [59] J. Ming, M. Li, P. Kumar, L.-J. Li, Multilayer approach for advanced hybrid lithium battery, ACS nano, 10 (2016) 6037-6044.
|