帳號:guest(3.145.164.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳則安
作者(外文):Chen, Tse-An
論文名稱(中文):超穎材料結構之光學應用研究
論文名稱(外文):Metamaterial Structures for Optical Applications
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):陳力俊
果尚志
陳貞夙
呂宥蓉
口試委員(外文):CHEN, LIH-JUANN
GWO, SHANGJR
Chen, Jen-Sue
Lu, Yu-jung
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031518
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:90
中文關鍵詞:超穎材料雙曲面超材料完美吸收體會更斯超穎介面
外文關鍵詞:MetamaterialsHyperbolic MetamaterialsPerfect AbsorberHuygens' Surface
相關次數:
  • 推薦推薦:0
  • 點閱點閱:162
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,超穎材料被廣泛的運用在光電領域。藉由選用的材料以及經過設計的次波長週期結構,可精準的調控電磁波的偏振、振幅與相位等特性。隨著微影製程技術的成熟,無塵室製程可以輕易地製作出奈米元件,這也增廣了超材料的應用,例如完美吸收體、超穎透鏡、全像投影等等。
第一個研究主題是利用電漿子能帶理論解析之雙曲超材料,雙曲超材料具有特別的電磁特性,可實現廣泛的應用,例如超分辨率和自發輻射。在預測和分析雙曲超材料的這些光學特性時,大多數研究人員採用有效介質理論。然而,該理論僅適用於長波長和無限堆疊層。為了探測表面狀態並驗證光學拓撲轉變,我們製作了由MgF2/Ag 交互堆疊而成的多層膜雙曲超材料。我們所有的分析、數值計算和實驗測量表明,多層膜雙曲超材料的表面態色散曲線上的“過渡點” 僅取決於金屬層和介電層的厚度比。這的預測結果較傳統的有效介質理論準確。電漿子能帶理論的結果提供了更準確的預測,並可利用於的雙曲超材料的應用。
第二個研究主題是超寬頻類黑體完美吸收體,過去幾年,電漿子共振的完美吸收體廣泛的運用在各種應用,例如生物感測器、非線性光學、濾波器和熱發射器。大多數的電漿子完美吸收體都是藉由電子束微影所製作而成,然而,電子束微影成本高昂,限制了這些設備的大規模生產和實際應用性。因此,我們提出了一個多層膜的結構,不需要藉由微影製程就可製作的結構。此多層膜可以同時再横磁模式以及横電模式近乎完美吸收波長900奈米到1900奈米的光。此外,此結構對於入射角度有很高的容忍度,在入射角小於70度時,可以吸收80%以上的電磁波。換句話說,我們成功的開發出一個寬頻且對於任意極化角以及任意入射角均可以完美吸收的類黑體完美吸收體。
第三個研究主題是惠更斯超穎平面光偏折元件,在這項工作中,我們提出了由二氧化鈦奈米圓盤陣列組成的超穎介面。首先,材料的選擇,二氧化鈦有優異的高介電常數 (εreal≅ 6) 和低損耗 (εimag≅ 0)適合運用在此工作波段。藉由重疊奈米圓盤的電和磁共振以同時實現100%的穿透以及完整的 2π 相位。在本論文中,超穎介面構成的惠更斯模擬達近90%的穿透率。在實驗上,惠更斯超穎介面來穿透率和以及光偏折效率,分別為 80% 和 15%。我們相信,所提議的惠更斯超穎平面光偏折元件將成為平面光學設備的新典範,包括超透鏡、全息和光束整形設備。
In recent years, metamaterials have been widely used in the field of optoelectronics. With the selected materials and the designed sub-wavelength periodic structure, the polarization, amplitude, and phase characteristics of electromagnetic waves can be precisely controlled. With the maturity of the lithography process technology, nano-components can be easily produced by the clean room process, which also expands the application of metamaterials, such as perfect absorbers, meta lenses, holographic projection, and so on.
The first research topic is “the plasmonic band structure theory for 1D-HMMs”. Hyperbolic metamaterials (HMMs) possess marvelous and considerable applications: hyperlens, spontaneous emission engineering and nonlinear optics. Conventionally, effective medium theory, which is only valid for long wavelength limit, was used to predict and analyze the optical properties and applications. In our previous works, we considered a binary 1DHMM which consists of alternative metallic and dielectric layers, and rigorously demonstrated the existence of surface states and bulk-interface correspondence with the plasmonic band theory from the coupled surface plasmon point of view. In the plasmonic band structure, we can classify 1DHMMs into two classes: metallic-like and dielectric-like, depending on the formation of the surface states with dielectric and metallic material, respectively. Band crossing exists only when the dielectric layers are thicker than the metallic ones, which is independent from the dielectric constants. Furthermore, the 1DHMMs are all metallic-like without band crossing. On the other hand, the 1DHMMs with band crossing are metal-like before the band crossing point, while they are dielectric-like after the band crossing point. In this work, we measure the surface states formed by dielectric material and 1DHMMs with band crossing in Otto configuration. With white light source and sweeping the incident angle, we measure the reflectance to investigate the existence of the surface states of 1DHMMs with various thickness ratio of metallic to dielectric layers. Conclusively, we can clear observe the transition point via experimental set up. The disappearance of the surface states indicates the topological phase transition of 1DHMMs. Our experimental results will benefit new applications for manipulating light on the surface of hyperbolic metamaterials.
The second research topic is “Ultra-broadband blackbody-like perfect absorber”. Perfect absorbers based on enabled by plasmonic resonance are attracting interest for various applications, such as biosensors, nonlinearity, filters, and thermal emitters. However, electron beam (EB) lithography is often used to fabricate such devices. EB lithography is costly, which places limits on the mass production and practical application of these devices. We have designed a perfect broadband absorber with impressive oblique angle tolerance. Its multilayered structure consists of magnesium fluoride (MgF2) and chromium (Cr) layers, and device fabrication does not require EB lithography. The device absorbs more than 90% of light in the 900–1900-nm range. Ultra-broadband absorption is unaffected by the polarization and incidence angle of light up to 70°. The performance of the optimized device is in good agreement with predictions based on the transfer matrix method (TMM) calculations and Comsol Multiphysics 5.3a simulations. Thin-film coatings are of considerable importance for the realization of high-performance planar blackbody infrared absorbers, and our simple design is practical for industrial production.
The third research topic is “Huygens’ surface based light bending device”. We proposed an all-dielectric Huygens’ metasurface composed of TiO2 nano-disks and consequently constructed a beam bending device through the metasurface for the demonstration of phase manipulation within near-UV regime. First of all, the titanium dioxide was chosen due to its superior high dielectric constant (εreal≅ 6) and low losses (εimag≅ 0) compared to other candidates, for example, aluminum or silicon in this frequency range. Then, the near-UV Huygens’ metasurface is realized by spectrally overlapping nano-disks’ electric and magnetic resonances of the equal amplitudes to achieve unity transmission and a full 2π phase coverage, simultaneously. Finally, the near-UV all-dielectric Huygens’ metasurface are employed to experimentally realize unity transmittance and beam-bending with an experimental efficiency of 80% and 15 %, respectively. We believe that the proposed near-UV all-dielectric Huygens’ metasurfaces would be a new paragon for flat optical devices, including metalenses, holography and beam-shaping devices.
Abstract i
摘要 iv
致謝 vi
Content vii
Chapter 1: Introduction 1
1.1 Introduction to Metamaterial 1
1.2 Introduction to Hyperbolic Metamaterials 2
1.3 Introduction to Nonresonant Type Perfect Absorber 6
1.4 Introduction to Huygens’ Surface 9
Chapter 2: Literature Review and Theory 12
2.1 One Dimensional Hyperbolic Metamaterials 12
2.1.1 Surface Plasmon Polariton 12
2.1.2 Otto and Kretschmann Configuration 15
2.1.3 Effective Medium Theory (EMT) 17
2.1.4 Band Structure Theory 17
2.1.5 Band Cross Behavior 19
2.2 Nonresonant Type Perfect Absorber 21
2.2.1 Conventional Perfect Absorber 21
2.2.2 Metamaterial Based Resonance Perfect Absorber 24
2.3 Huygens’ Surface 31
2.3.1 The Origin of the Huygens’ Surface 31
2.3.2 Phase Accumulation – Gap Plasmon 32
2.3.3 Phase Accumulation - Pancharatnam–Berry Phase 34
2.3.4 Phase Accumulation – Waveguide-like Resonance 37
Chapter 3: Design and Simulation 41
3.1 One Dimensional Hyperbolic Metamaterials 41
3.1.1 Motivation and Design 41
3.1.2 Calculation 44
3.2 Nonresonant Type Perfect Absorber 49
3.2.1 Motivation and Design 49
3.2.2 Calculation and Simulation 50
3.3 Huygens’ Surface 59
3.3.1 Motivation and Design 59
3.3.2 Simulation 61
Chapter 4: Fabrication, Measurement and Discussion 67
4.1 One Dimensional Hyperbolic Metamaterials 67
4.1.1 Fabrication 67
4.1.2 Experimental Setup and Measurement Results 68
4.2 Nonresonant Type Perfect Absorber 71
4.2.1 Fabrication 71
4.2.2 Experimental Setup and Measurement Results 71
4.3 Huygens’ Surface 74
4.3.1 Fabrication 74
4.3.2 Experimental Setup and Measurement Results 74
Chapter 5: Conclusions and Future Prospects 79
5.1 One Dimensional Hyperbolic Metamaterials 79
5.2 Nonresonant Type Perfect Absorber 79
5.3 Huygens’ Surface 81
References 83
(1) Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nature Photonics 2013, 7 (12), 948-957, DOI: 10.1038/nphoton.2013.243.
(2) Ferrari, L.; Lu, D.; Lepage, D.; Liu, Z. Enhanced spontaneous emission inside hyperbolic metamaterials. Opt. Express 2014, 22 (4), 4301-4306, DOI: 10.1364/OE.22.004301.
(3) Lu, D.; Kan, J. J.; Fullerton, E. E.; Liu, Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nature Nanotechnology 2014, 9, 48, DOI: 10.1038/nnano.2013.276
https://www.nature.com/articles/nnano.2013.276#supplementary-information.
(4) Roth, D. J.; Krasavin, A. V.; Wade, A.; Dickson, W.; Murphy, A.; Kéna-Cohen, S.; Pollard, R.; Wurtz, G. A.; Richards, D.; Maier, S. A.; Zayats, A. V. Spontaneous Emission inside a Hyperbolic Metamaterial Waveguide. ACS Photonics 2017, 4 (10), 2513-2521, DOI: 10.1021/acsphotonics.7b00767.
(5) Shen, K.-C.; Hsieh, C.; Cheng, Y.-J.; Tsai, D. P. Giant enhancement of emission efficiency and light directivity by using hyperbolic metacavity on deep-ultraviolet AlGaN emitter. Nano Energy 2018, 45, 353-358, DOI: https://doi.org/10.1016/j.nanoen.2018.01.020.
(6) Sreekanth, K. V.; Krishna, K. H.; De Luca, A.; Strangi, G. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Scientific Reports 2014, 4, 6340, DOI: 10.1038/srep06340
https://www.nature.com/articles/srep06340#supplementary-information.
(7) Argyropoulos, C.; Estakhri, N. M.; Monticone, F.; Alù, A. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt. Express 2013, 21 (12), 15037-15047, DOI: 10.1364/OE.21.015037.
(8) Eleftheriades, G. V.; Siddiqui, O. F. Negative refraction and focusing in hyperbolic transmission-line periodic grids. IEEE Transactions on Microwave Theory and Techniques 2005, 53 (1), 396-403, DOI: 10.1109/TMTT.2004.839944.
(9) Guan, S.; Huang, S. Y.; Yao, Y.; Yang, S. A. Tunable hyperbolic dispersion and negative refraction in natural electride materials. Physical Review B 2017, 95 (16), 165436, DOI: 10.1103/PhysRevB.95.165436.
(10) Sreekanth, K. V.; De Luca, A.; Strangi, G. Negative refraction in graphene-based hyperbolic metamaterials. Applied Physics Letters 2013, 103 (2), 023107, DOI: 10.1063/1.4813477.
(11) Sreekanth, K. V.; Simpson, R. E. Super-collimation and negative refraction in hyperbolic Van der Waals superlattices. Optics Communications 2019, 440, 150-154, DOI: https://doi.org/10.1016/j.optcom.2019.02.020.
(12) Chern, R.-L. Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials. Opt. Express 2013, 21 (14), 16514-16527, DOI: 10.1364/OE.21.016514.
(13) Savoia, S.; Castaldi, G.; Galdi, V. Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices. Physical Review B 2013, 87 (23), 235116, DOI: 10.1103/PhysRevB.87.235116.
(14) Wells, B.; Kudyshev, Z. A.; Litchinitser, N.; Podolskiy, V. A. Nonlocal Effects in Transition Hyperbolic Metamaterials. ACS Photonics 2017, 4 (10), 2470-2478, DOI: 10.1021/acsphotonics.7b00690.
(15) Yan, W.; Asger Mortensen, N.; Wubs, M. Hyperbolic metamaterial lens with hydrodynamic nonlocal response. Opt. Express 2013, 21 (12), 15026-15036, DOI: 10.1364/OE.21.015026.
(16) Cheng, B. H.; Chen, H. W.; Chang, K. J.; Lan, Y.-C.; Tsai, D. P. Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution. Scientific Reports 2015, 5, 18172, DOI: 10.1038/srep18172
https://www.nature.com/articles/srep18172#supplementary-information.
(17) Cheng, B. H.; Lan, Y.-C.; Tsai, D. P. Breaking Optical diffraction limitation using Optical Hybrid-Super-Hyperlens with Radially Polarized Light. Opt. Express 2013, 21 (12), 14898-14906, DOI: 10.1364/OE.21.014898.
(18) Li, T.; Nagal, V.; Gracias, D. H.; Khurgin, J. B. Limits of imaging with multilayer hyperbolic metamaterials. Opt. Express 2017, 25 (12), 13588-13601, DOI: 10.1364/OE.25.013588.
(19) Wang, Y. T.; Cheng, B. H.; Ho, Y. Z.; Lan, Y.-C.; Luan, P.-G.; Tsai, D. P. Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging. Opt. Express 2012, 20 (20), 22953-22960, DOI: 10.1364/OE.20.022953.
(20) Tang, S.; Fang, Y.; Zhou, L.; Liu, Z.; Mei, Y. Anomalous scaling laws of hyperbolic metamaterials in a tubular geometry. J. Opt. Soc. Am. B 2018, 35 (2), 391-395, DOI: 10.1364/JOSAB.35.000391.
(21) Yang, X.; Yao, J.; Rho, J.; Yin, X.; Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature Photonics 2012, 6, 450, DOI: 10.1038/nphoton.2012.124
https://www.nature.com/articles/nphoton.2012.124#supplementary-information.
(22) Un, I.-W.; Yen, T.-J. Interface States and Interface-Bulk Correspondence of One-dimensional Hyperbolic Metamaterials. Scientific Reports 2017, 7, 43392, DOI: 10.1038/srep43392
https://www.nature.com/articles/srep43392#supplementary-information.
(23) Castellanos-Beltran, M. A.; Irwin, K. D.; Hilton, G. C.; Vale, L. R.; Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Physics 2008, 4 (12), 929-931, DOI: 10.1038/nphys1090.
(24) Chen, H.; Wu, B.-I.; Ran, L.; Grzegorczyk, T. M.; Kong, J. A. Controllable left-handed metamaterial and its application to a steerable antenna. Applied Physics Letters 2006, 89 (5), 053509, DOI: 10.1063/1.2335382.
(25) Schurig, D.; Mock, J. J.; Justice, B. J.; Cummer, S. A.; Pendry, J. B.; Starr, A. F.; Smith, D. R. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 2006, 314 (5801), 977, DOI: 10.1126/science.1133628.
(26) Choi, W.; Shin, J.; Song, T.; Lee, W.; Lee, W.; Kim, C. Design of broadband microwave absorber using honeycomb structure. Electronics Letters 2014, 50 (4), 292-293, DOI: 10.1049/el.2013.3968.
(27) ElKabbash, M.; Sreekanth, K. V.; Alapan, Y.; Kim, M.; Cole, J.; Fraiwan, A.; Letsou, T.; Li, Y.; Guo, C.; Sankaran, R. M.; Gurkan, U. A.; Hinczewski, M.; Strangi, G. Hydrogen Sensing Using Thin-Film Perfect Light Absorber. ACS Photonics 2019, DOI: 10.1021/acsphotonics.9b00764.
(28) Tittl, A.; Michel, A.-K. U.; Schäferling, M.; Yin, X.; Gholipour, B.; Cui, L.; Wuttig, M.; Taubner, T.; Neubrech, F.; Giessen, H. A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability. Advanced Materials 2015, 27 (31), 4597-4603, DOI: 10.1002/adma.201502023.
(29) Wu, D.; Liu, Y.; Li, R.; Chen, L.; Ma, R.; Liu, C.; Ye, H. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. Nanoscale Research Letters 2016, 11 (1), 483, DOI: 10.1186/s11671-016-1705-1.
(30) Argyropoulos, C.; Le, K. Q.; Mattiucci, N.; D’Aguanno, G.; Alù, A. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Physical Review B 2013, 87 (20), 205112, DOI: 10.1103/PhysRevB.87.205112.
(31) Du, K.-K.; Li, Q.; Lyu, Y.-B.; Ding, J.-C.; Lu, Y.; Cheng, Z.-Y.; Qiu, M. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science & Applications 2017, 6 (1), e16194-e16194, DOI: 10.1038/lsa.2016.194.
(32) Li, W.; Valentine, J. Metamaterial Perfect Absorber Based Hot Electron Photodetection. Nano Letters 2014, 14 (6), 3510-3514, DOI: 10.1021/nl501090w.
(33) Lu, X.; Vaillancourt, J.; Gu, G. A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency. Journal of Physics D: Applied Physics 2017, 50 (13), 135101, DOI: 10.1088/1361-6463/aa5126.
(34) Yu, P.; Wu, J.; Ashalley, E.; Govorov, A.; Wang, Z. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. Journal of Physics D: Applied Physics 2016, 49 (36), 365101, DOI: 10.1088/0022-3727/49/36/365101.
(35) Chang, W.-S.; Ha, J. W.; Slaughter, L. S.; Link, S. Plasmonic nanorod absorbers as orientation sensors. Proceedings of the National Academy of Sciences 2010, 107 (7), 2781, DOI: 10.1073/pnas.0910127107.
(36) Moreau, A.; Ciracì, C.; Mock, J. J.; Hill, R. T.; Wang, Q.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012, 492 (7427), 86-89, DOI: 10.1038/nature11615.
(37) Wang, B.-X.; Huang, W.-Q.; Wang, L.-L. Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications. RSC Advances 2017, 7 (68), 42956-42963, DOI: 10.1039/C7RA08413G.
(38) Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature communications 2011, 2 (1), 1-7.
(39) Azad, A. K.; Kort-Kamp, W. J.; Sykora, M.; Weisse-Bernstein, N. R.; Luk, T. S.; Taylor, A. J.; Dalvit, D. A.; Chen, H.-T. Metasurface broadband solar absorber. Scientific reports 2016, 6, 20347.
(40) Duan, X.; Chen, S.; Liu, W.; Cheng, H.; Li, Z.; Tian, J. Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime. Journal of Optics 2014, 16 (12), 125107.
(41) Lu, X.; Zhang, L.; Zhang, T. Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt. Express 2015, 23 (16), 20715-20720.
(42) Ming, X.; Tan, Q. Design method of a broadband wide-angle plasmonic absorber in the visible range. Plasmonics 2017, 12 (1), 117-124.
(43) Mudachathi, R.; Tanaka, T. Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications. Advances in Natural Sciences: Nanoscience and Nanotechnology 2018, 9 (1), 015010.
(44) Nielsen, M. G.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S. I. Efficient absorption of visible radiation by gap plasmon resonators. Opt. Express 2012, 20 (12), 13311-13319.
(45) Amir, G.; Hodjat, H.; Murat, G.; Bayram, B.; Ekmel, O. Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics 2019, 8 (5), 823-832, DOI: https://doi.org/10.1515/nanoph-2018-0217.
(46) Ding, F.; Mo, L.; Zhu, J.; He, S. Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber. Applied Physics Letters 2015, 106 (6), 061108, DOI: 10.1063/1.4908182.
(47) Ghobadi, A.; Hajian, H.; Rashed, A. R.; Butun, B.; Ozbay, E. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photon. Res. 2018, 6 (3), 168-176, DOI: 10.1364/PRJ.6.000168.
(48) Kajtár, G.; Kafesaki, M.; Economou, E.; Soukoulis, C. Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum. Journal of Physics D: Applied Physics 2016, 49, 055104, DOI: 10.1088/0022-3727/49/5/055104.
(49) Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Materials 2013, 12 (1), 20-24, DOI: 10.1038/nmat3443.
(50) Li, Z.; Butun, S.; Aydin, K. Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics 2015, 2 (2), 183-188, DOI: 10.1021/ph500410u.
(51) Lien, S.-Y.; Wuu, D.-S.; Yeh, W.-C.; Liu, J. C. Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Solar Energy Materials and Solar Cells 2006, 90, 2710-2719, DOI: 10.1016/j.solmat.2006.04.001.
(52) Nair, P. K.; Nair, M. T. S.; Garcı́a, V. M.; Arenas, O. L.; Peña, A. C. Y.; Ayala, I. T.; Gomezdaza, O.; Sánchez, A.; Campos, J.; Hu, H.; Suárez, R.; Rincón, M. E. Semiconductor thin films by chemical bath deposition for solar energy related applications. Solar Energy Materials and Solar Cells 1998, 52 (3), 313-344, DOI: https://doi.org/10.1016/S0927-0248(97)00237-7.
(53) Song, H.; Guo, L.; Liu, Z.; Liu, K.; Zeng, X.; Ji, D.; Zhang, N.; Hu, H. F.; Jiang, S.; Gan, Q. Nanocavity Enhancement for Ultra-Thin Film Optical Absorber. Advanced materials (Deerfield Beach, Fla.) 2014, 26, DOI: 10.1002/adma.201305793.
(54) Azzam, S. I.; Shalaev, V. M.; Boltasseva, A.; Kildishev, A. V. Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems. Physical Review Letters 2018, 121 (25), 253901, DOI: 10.1103/PhysRevLett.121.253901.
(55) Howes, A.; Zhu, Z.; Curie, D.; Avila, J. R.; Wheeler, V. D.; Haglund, R. F.; Valentine, J. G. Optical Limiting Based on Huygens’ Metasurfaces. Nano Letters 2020, DOI: 10.1021/acs.nanolett.0c01574.
(56) Song, X.; Huang, L.; Tang, C.; Li, J.; Li, X.; Liu, J.; Wang, Y.; Zentgraf, T. Selective Diffraction with Complex Amplitude Modulation by Dielectric Metasurfaces. Advanced Optical Materials 2018, 6 (4), 1701181, DOI: https://doi.org/10.1002/adom.201701181.
(57) Zhang, J.; Wei, X.; Rukhlenko, I. D.; Chen, H.-T.; Zhu, W. Electrically Tunable Metasurface with Independent Frequency and Amplitude Modulations. ACS Photonics 2020, 7 (1), 265-271, DOI: 10.1021/acsphotonics.9b01532.
(58) Guo, X.; Ding, Y.; Duan, Y.; Ni, X. Nonreciprocal Metasurface with Space–Time Phase Modulation. Light: Science & Applications 2019, 8 (1), 1-9.
(59) Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F. Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging. Science 2016, 352 (6290), 1190-1194, DOI: 10.1126/science.aaf6644.
(60) Khorasaninejad, M.; Shi, Z.; Zhu, A. Y.; Chen, W. T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Letters 2017, 17 (3), 1819-1824, DOI: 10.1021/acs.nanolett.6b05137.
(61) Kim, Y.; Wu, P. C.; Sokhoyan, R.; Mauser, K.; Glaudell, R.; Kafaie Shirmanesh, G.; Atwater, H. A. Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. Nano Letters 2019, 19 (6), 3961-3968.
(62) Liang, H.; Lin, Q.; Xie, X.; Sun, Q.; Wang, Y.; Zhou, L.; Liu, L.; Yu, X.; Zhou, J.; Krauss, T. F.; Li, J. Ultrahigh Numerical Aperture Metalens at Visible Wavelengths. Nano Letters 2018, 18 (7), 4460-4466, DOI: 10.1021/acs.nanolett.8b01570.
(63) Miao, Z.; Wu, Q.; Li, X.; He, Q.; Ding, K.; An, Z.; Zhang, Y.; Zhou, L. Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces. Physical Review X 2015, 5 (4), 041027, DOI: 10.1103/PhysRevX.5.041027.
(64) Wang, S.; Wu, P. C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H. Y.; Chen, B. H.; Chen, Y. H.; Huang, T.-T.; Wang, J.-H.; Lin, R.-M.; Kuan, C.-H.; Li, T.; Wang, Z.; Zhu, S.; Tsai, D. P. A broadband achromatic metalens in the visible. Nature Nanotechnology 2018, 13 (3), 227-232, DOI: 10.1038/s41565-017-0052-4.
(65) Wang, S.; Wu, P. C.; Su, V.-C.; Lai, Y.-C.; Hung Chu, C.; Chen, J.-W.; Lu, S.-H.; Chen, J.; Xu, B.; Kuan, C.-H.; Li, T.; Zhu, S.; Tsai, D. P. Broadband Achromatic Optical Metasurface Devices. Nature Communications 2017, 8 (1), 187, DOI: 10.1038/s41467-017-00166-7.
(66) Guo, Y.; Pu, M.; Zhao, Z.; Wang, Y.; Jin, J.; Gao, P.; Li, X.; Ma, X.; Luo, X. Merging Geometric Phase and Plasmon Retardation Phase in Continuously Shaped Metasurfaces for Arbitrary Orbital Angular Momentum Generation. Acs Photonics 2016, 3 (11), 2022-2029.
(67) Wu, P. C.; Tsai, W.-Y.; Chen, W. T.; Huang, Y.-W.; Chen, T.-Y.; Chen, J.-W.; Liao, C. Y.; Chu, C. H.; Sun, G.; Tsai, D. P. Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. Nano Letters 2017, 17 (1), 445-452, DOI: 10.1021/acs.nanolett.6b04446.
(68) Zhao, Y.; Alù, A. Manipulating Light Polarization with Ultrathin Plasmonic Metasurfaces. Physical Review B 2011, 84 (20), 205428, DOI: 10.1103/PhysRevB.84.205428.
(69) Chen, W. T.; Zhu, A. Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A Broadband Achromatic Metalens for Focusing and Imaging in the Visible. Nature Nanotechnology 2018, 13 (3), 220-226.
(70) Sell, D.; Yang, J.; Wang, E. W.; Phan, T.; Doshay, S.; Fan, J. A. Ultra-High-Efficiency Anomalous Refraction with Dielectric Metasurfaces. ACS Photonics 2018, 5 (6), 2402-2407, DOI: 10.1021/acsphotonics.8b00183.
(71) Sun, S.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W. T.; Liao, C. Y.; He, Q.; Xiao, S.; Kung, W.-T.; Guo, G.-Y.; Zhou, L.; Tsai, D. P. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Letters 2012, 12 (12), 6223-6229, DOI: 10.1021/nl3032668.
(72) Tang, K.; Qiu, C.; Ke, M.; Lu, J.; Ye, Y.; Liu, Z. Anomalous Refraction of Airborne Sound Through Ultrathin Metasurfaces. Scientific Reports 2014, 4 (1), 6517, DOI: 10.1038/srep06517.
(73) Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.-W.; Qiu, C.-W.; Li, J.; Zentgraf, T.; Zhang, S. Three-Dimensional Optical Holography Using a Plasmonic Metasurface. Nature Communications 2013, 4 (1), 2808, DOI: 10.1038/ncomms3808.
(74) Huang, Y.-W.; Chen, W. T.; Tsai, W.-Y.; Wu, P. C.; Wang, C.-M.; Sun, G.; Tsai, D. P. Aluminum Plasmonic Multicolor Meta-Hologram. Nano Letters 2015, 15 (5), 3122-3127, DOI: 10.1021/acs.nanolett.5b00184.
(75) Li, X.; Chen, L.; Li, Y.; Zhang, X.; Pu, M.; Zhao, Z.; Ma, X.; Wang, Y.; Hong, M.; Luo, X. Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation. Science Advances 2016, 2 (11), e1601102.
(76) Wan, W.; Gao, J.; Yang, X. Full-Color Plasmonic Metasurface Holograms. ACS Nano 2016, 10 (12), 10671-10680, DOI: 10.1021/acsnano.6b05453.
(77) Wang, B.; Dong, F.; Li, Q.-T.; Yang, D.; Sun, C.; Chen, J.; Song, Z.; Xu, L.; Chu, W.; Xiao, Y.-F. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. Nano Letters 2016, 16 (8), 5235-5240.
(78) Chen, C.-F.; Ku, C.-T.; Tai, Y.-H.; Wei, P.-K.; Lin, H.-N.; Huang, C.-B. Creating Optical Near-Field Orbital Angular Momentum in a Gold Metasurface. Nano Letters 2015, 15 (4), 2746-2750, DOI: 10.1021/acs.nanolett.5b00601.
(79) Lin, J.; Genevet, P.; Kats, M. A.; Antoniou, N.; Capasso, F. Nanostructured Holograms for Broadband Manipulation of Vector Beams. Nano Letters 2013, 13 (9), 4269-4274, DOI: 10.1021/nl402039y.
(80) Yu, N.; Aieta, F.; Genevet, P.; Kats, M. A.; Gaburro, Z.; Capasso, F. A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Letters 2012, 12 (12), 6328-6333, DOI: 10.1021/nl303445u.
(81) Zhao, Y.; Alù, A. Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates. Nano Letters 2013, 13 (3), 1086-1091, DOI: 10.1021/nl304392b.
(82) Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-Index Meta-Surfaces as a Bridge Linking Propagating Waves and Surface Waves. Nature materials 2012, 11 (5), 426-431.
(83) Yu, N.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334 (6054), 333-337, DOI: 10.1126/science.1210713.
(84) Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C. A Generalized Kerker Condition for Highly Directive Nanoantennas. Opt. Lett. 2015, 40 (11), 2645-2648, DOI: 10.1364/OL.40.002645.
(85) Chen, M.; Kim, M. S.; Wong, A.; Eleftheriades, G. V. Huygens' metasurfaces from microwaves to optics: A review, 2018; Vol. 7.
(86) Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D. N.; Brener, I.; Pertsch, T.; Kivshar, Y. S. High-Efficiency Dielectric Huygens’ Surfaces. Advanced Optical Materials 2015, 3 (6), 813-820, DOI: 10.1002/adom.201400584.
(87) Fan, K.; Zhang, J.; Liu, X.; Zhang, G. F.; Averitt, R.; Padilla, W. Phototunable Dielectric Huygens' Metasurfaces. Advanced Materials 2018, 30, DOI: 10.1002/adma.201800278.
(88) Howes, A.; Wang, W.; Kravchenko, I.; Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 2018, 5 (7), 787-792, DOI: 10.1364/OPTICA.5.000787.
(89) Liu, S.; Vaskin, A.; Campione, S.; Wolf, O.; Sinclair, M. B.; Reno, J.; Keeler, G. A.; Staude, I.; Brener, I. Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators. Nano Letters 2017, 17 (7), 4297-4303, DOI: 10.1021/acs.nanolett.7b01301.
(90) Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. nature 2003, 424 (6950), 824-830.
(91) Pitarke, J.; Silkin, V.; Chulkov, E.; Echenique, P. Theory of surface plasmons and surface-plasmon polaritons. Reports on progress in physics 2006, 70 (1), 1.
(92) Zayats, A. V.; Smolyaninov, I. I. Near-field photonics: surface plasmon polaritons and localized surface plasmons. Journal of Optics A: Pure and Applied Optics 2003, 5 (4), S16.
(93) Salisbury, W. W., Absorbent body for electromagnetic waves. Google Patents: 1952.
(94) Chambers, B. Optimum design of a Salisbury screen radar absorber. Electronics Letters 1994, 30 (16), 1353-1354.
(95) Knott, E.; Lunden, C. The two-sheet capacitive Jaumann absorber. IEEE Transactions on Antennas and Propagation 1995, 43 (11), 1339-1343.
(96) Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect Metamaterial Absorber. Physical Review Letters 2008, 100 (20), 207402, DOI: 10.1103/PhysRevLett.100.207402.
(97) Chen, S.; Cheng, H.; Yang, H.; Li, J.; Duan, X.; Gu, C.; Tian, J. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Applied Physics Letters 2011, 99 (25), 253104.
(98) Huygens, C. Traité de la lumière, chez Pierre vander Aa, marchand libraire: 1920.
(99) Love, A. E. H. Philos. Trans. R. Soc. London A 197.
(100) Pors, A.; Albrektsen, O.; Radko, I. P.; Bozhevolnyi, S. I. Gap plasmon-based metasurfaces for total control of reflected light. Scientific reports 2013, 3 (1), 1-6.
(101) Huang, L.; Chen, X.; Mühlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Dispersionless phase discontinuities for controlling light propagation. Nano letters 2012, 12 (11), 5750-5755.
(102) Arbabi, A.; Horie, Y.; Ball, A. J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications 2015, 6 (1), 7069, DOI: 10.1038/ncomms8069.
(103) Li, Z.; Cheng, H.; Liu, Z.; Chen, S.; Tian, J. Plasmonic Airy Beam Generation by Both Phase and Amplitude Modulation with Metasurfaces. Advanced Optical Materials 2016, 4 (8), 1230-1235, DOI: https://doi.org/10.1002/adom.201600108.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *