帳號:guest(18.118.137.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):范馨心
作者(外文):Fan, Hsin-Hsin
論文名稱(中文):花狀氧化銅奈米線陣列結構電極於非酵素型葡萄糖感測器之應用
論文名稱(外文):Flower-like Cu/CuxO Nanowire Array Electrodes for Non-enzymatic Glucose Sensing
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):陳林祈
李紫原
口試委員(外文):Chen, Lin-Chi
Lee, Chi-Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031515
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:62
中文關鍵詞:非酵素型葡萄糖感測器氧化銅銅奈米線電化學循環伏安法
外文關鍵詞:non-enzymatic glucose sensorcopper oxideCu nanowireelectrochemicalcyclic voltammetry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:254
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在過去數十年以來,由於醫療診斷的大量需求,許多團隊都致力於開發高性能葡萄糖感測器。在所有可製備葡萄糖感測器的材料中,銅氧化物(氧化銅/氧化亞銅)因具有低成本、容易合成、催化能力佳等優點而受到矚目。本研究透過控制循環電位掃描法的參數調整,成功製備出具有高表面積的花狀氧化銅(Cu/CuxO)奈米線陣列結構,此試片本身即為可導電的電極,無需將氧化銅奈米線移轉至玻璃碳電極。經由電子顯微鏡的觀測顯示花狀氧化銅(Cu/CuxO)奈米線之中心為純銅線、中間層為氧化亞銅(Cu2O)相,最外層則為花狀的氧化銅(CuO)相。這種花狀結構可大幅增加奈米線陣列結構的表面積,有利於葡萄糖在電極表面行電化學氧化反應。本研究使用循環電位掃描法所得到的花狀氧化銅(Cu/CuxO)奈米線陣列結構電極比用恆電壓法製備之Cu/Cu2O奈米線電極具備更佳之葡萄糖感測效能。藉由改變花狀氧化銅(Cu/CuxO)奈米線的長度可改變其葡萄糖偵測敏度,並在線長為0.88 μm時達到最高的敏度。此外,氧化銅(Cu/CuxO)奈米線的外層結構,則會隨著電解液氫氧化鈉濃度的提高而由花狀轉為片狀結構。本研究所製備的花狀氧化銅(Cu/CuxO)奈米線陣列結構電極具有高敏度(~ 1200 μA∙mM^(-1)∙cm^(-2)),大範圍線性區間(10 μM ~ 7 mM),以及短反應時間(< 1 sec)等優點。
The development of high-performance glucose sensors has attracted particular attention because of increasing needs in biological sensing and medical diagnostics over the past decades. Due to the advantages of low cost and outstanding catalytic ability, copper oxide modified electrodes are extensively investigated for non-enzymatic glucose sensing applications. We have successfully fabricated a self-supporting flower-like Cu/CuxO nanowire array electrode by a potential cycling method. The flower-like Cu/CuxO structure was identified to be a pure Cu core wrapped with a layer of Cu2O and decorated by petal-like CuO in the outermost layer according to transmission electron microscopy (TEM) analysis. The nanoflower-like structure provides a large electrochemically active surface area for glucose sensing reaction. The sensing performance of the flower-like Cu/CuxO nanowires obtained by the potential cycling method is superior to that of the Cu/Cu2O nanowires obtained by the potential static method. The glucose sensing properties of flower-like Cu/CuxO nanowire array electrode can be modulated by changing the nanowire length and reaches a maximum value at 0.88 μm. Moreover, the flower-like oxide will turn into plate-like nanostructure with the increase of NaOH concentration in electrolyte. The modified flower-like Cu/CuxO nanowire array electrode shows a high glucose sensing sensitivity (up to ~ 1200 μA∙mM^(-1)∙cm^(-2)), wide linear range (10 μM ~ 7 mM) and fast response time (< 1 sec).
摘要 I
Abstract II
誌謝 III
Contents V
List of Figures VIII
List of Tables XIII
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Thesis guide 2
Chapter 2 Literature Review 1
2.1 Anodic aluminum oxide (AAO) template 1
2.1.1 Formation mechanism of AAO template 1
2.1.2 Two-step anodization process of AAO template 3
2.1.3 AAO template assisted nanowires preparation 4
2.2 Glucose Sensor 5
2.2.1 Development of glucose sensor 5
2.2.2 Metal oxide-based electrode for non-enzymatic glucose sensor 8
2.3 Copper oxide-based electrode for non-enzymatic glucose sensor 9
2.3.1 Glucose detection mechanism of copper oxide modified electrode 9
2.3.2 Fabrication and characterization of copper oxide-based glucose sensors 11
Chapter 3 Experimental Procedure 14
3.1 Experimental process flow 14
3.2 Experimental reagents and apparatuses 15
3.2.1 Chemicals and reagents 15
3.2.2 Experimental apparatuses 16
3.3 Fabrication of AAO template 17
3.4 Electrodeposition of Cu nanowires 18
3.5 Preparation of Cu/Cu2O and Cu/CuxO nanowire array electrode 18
3.5.1 Preparation of Cu/Cu2O nanowire array electrode using a potential static method 18
3.5.2 Preparation of flower-like Cu/CuxO nanowire array electrode using a potential cycling method 19
3.6 Microstructure characteristic and glucose sensing performance test of copper/copper oxide nanowire array electrodes 19
3.6.1 X-ray diffractometry (XRD) analysis 19
3.6.2 Cold field-emission scanning electron microscope (CFE-SEM) analysis 21
3.6.3 Transmission electron microscope (TEM) analysis 21
3.6.4 Cyclic voltammetry (CV) 22
3.6.5 Amperometric response 24
Chapter 4 Results and Discussion 26
4.1 Fabrication and characterization of Cu/CuxO nanowire array 26
4.1.1 Microstructure of Cu/CuxO nanowires 26
4.1.2 Growth mechanism of flower-like Cu/CuxO NWs 30
4.2 Effect of electrochemical parameters on microstructure of Cu/CuxO NW array 37
4.2.1 Scan rate of potential cycling treatment 37
4.2.2 NaOH concentration in electrolyte 42
4.2.3 Cu NWs length 46
4.3 Glucose sensing performance of Cu/CuxO NW array electrode 49
4.3.1 Cu/Cu2O and flower-like Cu/CuxO NW array electrodes 49
4.3.2 Cu/CuxO NW array electrodes prepared with different potential scan rates 53
4.3.3 Cu/CuxO NW array electrodes prepared with different NaOH concentrations 54
4.3.4 Cu/CuxO NW array electrodes prepared with different NW lengths 56
Chapter 5 Conclusion 58
Reference 59

1. W. Lee, in Nanoporous Alumina: Fabrication, Structure, Properties and Applications, D. Losic, A. Santos, Eds. (Springer International Publishing, Cham %@ 978-3-319-20334-8, 2015), pp. 107-153.
2. H. Masuda, K. Yada, A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Japanese Journal of Applied Physics 37, L1340 (1998).
3. A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. Journal of membrane science 319, 192-198 (2008).
4. R. C. Alkire, Y. Gogotsi, P. Simon, Nanostructured materials in electrochemistry. (John Wiley & Sons, 2008).
5. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466-1468 (1995).
6. M. Mohajeri, H. Akbarpour, Knowledge-based prediction of pore diameter of nanoporous anodic aluminum oxide. J. Electroanal. Chem. 705, 57-63 (2013).
7. J. Yang, L. C. Jiang, W. D. Zhang, S. Gunasekaran, A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82, 25-33 (2010).
8. L. C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci. 102, 29-45 (1962).
9. Y. Holade et al., Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells. Catalysts 7, 31 (2017).
10. H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4, 7333-7349 (2016).
11. Y. Degani, A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J. Phys. Chem. 91, 1285-1289 (1987).
12. A. Heller, Electrical wiring of redox enzymes. Acc. Chem. Res. 23, 128-134 (1990).
13. Z. Zhu et al., A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12, 5996-6022 (2012).
14. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814-825 (2008).
15. E.-H. Yoo, S.-Y. Lee, Glucose biosensors: an overview of use in clinical practice. Sensors 10, 4558-4576 (2010).
16. S. Park, T. D. Chung, H. C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046-3049 (2003).
17. B. K. Jena, C. R. Raj, Enzyme‐Free Amperometric Sensing of Glucose by Using Gold Nanoparticles. Chem. Eur. J. 12, 2702-2708 (2006).
18. J.-S. Ye, C.-W. Chen, C.-L. Lee, Pd nanocube as non-enzymatic glucose sensor. Sens. Actuators, B 208, 569-574 (2015).
19. Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Nonenzymatic glucose detection by using a three‐dimensionally ordered, macroporous platinum template. Chem. Eur. J. 11, 2177-2182 (2005).
20. S. Cherevko, C.-H. Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens. Actuators, B 142, 216-223 (2009).
21. J. Wang, D. F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal. Chem. 80, 997-1004 (2008).
22. F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M= Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24, 3481-3486 (2009).
23. Y. Mu, D. Jia, Y. He, Y. Miao, H.-L. Wu, Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 26, 2948-2952 (2011).
24. W.-Z. Le, Y.-Q. Liu, Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization. Sens. Actuators, B 141, 147-153 (2009).
25. X. J. Zhang et al., Different CuO Nanostructures: Synthesis, Characterization, and Applications for Glucose Sensors. J Phys Chem C 112, 16845-16849 (2008).
26. L. Zhang et al., Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem. Commun. 11, 812-815 (2009).
27. X. Li et al., Nickel/Copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens. Actuators, B 181, 501-508 (2013).
28. Z. Jin, P. Li, B. Zheng, H. Yuan, D. Xiao, CuO–Ag2O nanoparticles grown on a AgCuZn alloy substrate in situ for use as a highly sensitive non-enzymatic glucose sensor. Anal. Methods 6, 2215-2220 (2014).
29. L. Özcan, Y. Şahin, H. Türk, Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt (II) phthalocyanine tetrasulfonate. Biosens. Bioelectron. 24, 512-517 (2008).
30. X. Wang, Y. Zhang, C. E. Banks, Q. Chen, X. Ji, Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes. Colloids Surf., B 78, 363-366 (2010).
31. D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. Acs Nano 3, 2121-2128 (2009).
32. X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143-150 (2007).
33. S. Park, H. Boo, T. D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556, 46-57 (2006).
34. M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, J. J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors (Basel) 10, 4855-4886 (2010).
35. C. Li et al., An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens. Bioelectron. 26, 903-907 (2010).
36. W. Xu et al., Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor. J. Mater. Chem. B 3, 5777-5785 (2015).
37. X. Zhang et al., Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J. Mater. Chem. A 2, 10073-10080 (2014).
38. Y. Zhao et al., Hyper-Branched Cu@Cu2O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection. ACS Appl Mater Interfaces 7, 16802-16812 (2015).
39. C. Li, H. Yamahara, Y. Lee, H. Tabata, J. J. Delaunay, CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology 26, 305503 (2015).
40. P. T. Kissinger, W. R. Heineman, Cyclic voltammetry. J. Chem. Educ. 60, 702-706 (1983).
41. L. G. Sillén, Stability constants of metal-ion complexes. (The Chemical Society, London, 1964).
42. J. Ambrose, R. Barradas, D. Shoesmith, Investigations of copper in aqueous alkaline solutions by cyclic voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 47, 47-64 (1973).
43. Y. Cudennec, A. Lecerf, The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci. 5, 1471-1474 (2003).
44. P. Ni et al., Facile fabrication of CuO nanowire modified Cu electrode for non-enzymatic glucose detection with enhanced sensitivity. RSC Adv. 4, 28842-28847 (2014).
45. Z. Zhuang et al., An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133, 126-132 (2008).
46. H. Wang, M. Jiang, J. Su, Y. Liu, Fabrication of porous CuO nanoplate-films by oxidation-assisted dealloying method. Surf. Coat. Technol. 249, 19-23 (2014).
47. G. Kaur et al., Room temperature growth and field emission characteristics of CuO nanostructures. Vacuum 139, 136-142 (2017).
48. J. Dong et al., Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing. Talanta 132, 719-726 (2015).
49. L. Wang, J. Fu, H. Hou, Y. Song, A facile strategy to prepare Cu2O/Cu electrode as a sensitive enzyme-free glucose sensor. Int J Electrochem Sci 7, 12587-12600 (2012).
50. Y. Zhang et al., CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators, B 191, 86-93 (2014).
51. Z. Zhuang et al., An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133, 126-132 (2008).
52. W. Wang, L. Zhang, S. Tong, X. Li, W. Song, Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens. Bioelectron. 25, 708-714 (2009).
53. K. Li, G. Fan, L. Yang, F. Li, Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films. Sens. Actuators, B 199, 175-182 (2014).
54. F. Y. Fradin, Electronic Structure and Properties: Treatise on Materials Science and Technology. (Elsevier Science, 2016).
55. A. Overhauser, R. Gorman, Resistivity of interstitial atoms and vacancies in copper. Phys. Rev. 102, 676-681 (1956).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *