帳號:guest(18.118.162.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周冠廷
作者(外文):Chou, Kuan-Ting
論文名稱(中文):銀奈米粒子細胞毒性對紅血球細胞骨架結構與彈性模數影響之研究
論文名稱(外文):Cytotoxicity of Silver Nanoparticles on Cytoskeleton Structure and Elastic Modulus of Red Blood Cells
指導教授(中文):張守一
指導教授(外文):Chang, Shou-Yi
口試委員(中文):鄭憲清
陳柏宇
口試委員(外文):Cheng, Hsien-Ching
Chen, Po-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031513
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:159
中文關鍵詞:銀奈米粒子細胞毒性紅血球細胞骨架彈性模數原子力顯微鏡
外文關鍵詞:silver nanoparticlecytotoxicityred blood cellcytoskeletonelastic modulusatomic force microscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:326
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
紅血球 (Red Blood Cell, Erythrocyte) 是人體中極為重要的細胞,主要負責攜帶氧氣至全身各處細胞並代謝二氧化碳。而奈米粒子 (特別是銀奈米粒子) 則因為具有特殊的物理及化學特性,如今廣泛應用於抗菌產品、細胞標定及藥物載體等生醫用途,因此釐清銀奈米粒子對紅血球細胞的外觀、細胞骨架結構與機械性質的影響是十分重要的課題。本研究利用銀奈米粒子對大鼠紅血球細胞作用,輔以光學顯微鏡、原子力顯微鏡與穿透式電子顯微鏡觀察紅血球外觀的改變情形;並利用原子力顯微鏡及電子顯微鏡觀察紅血球細胞骨架結構變化情形;最後以原子力顯微鏡量測紅血球彈性模數的變化,釐清銀奈米粒子對紅血球骨架與血球機械性質的影響。
研究發現,銀奈米粒子作用後的紅血球,外觀由正常的雙凹圓盤狀變成棘刺狀並且伴隨溶血現象發生;細胞骨架則會從正常的均勻分佈,轉為聚集且骨架直徑增加。由原子力顯微鏡量測紅血球的機械性質,發現在銀奈米粒子作用後,紅血球的彈性模數明顯高於正常的紅血球。由實驗結果得知,紅血球受到銀奈米粒子作用後,其細胞骨架將產生聚集且變粗,導致血球的彈性模數上升,進而影響血球的變形能力,於使用時須加以注意。
Erythrocytes (red blood cells, RBCs) are important cells in human bodies, and they are responsible for transporting oxygen and metabolizing carbon dioxide. Besides, nanoparticles (NPs) (especially Ag NPs) are widely applied to biomedical fields such as anti-bacteria products, cell labeling, and drug carriers because of their special physical and chemical properties. It is an important issue to clarify how Ag NPs affects the morphology, cytoskeleton structure and mechanical property of RBCs. Hence in this study, the morphology of RBCs under the influence of Ag NPs was observed using an optical microscope (OM), an atomic force microscope (AFM), and a transmission electron microscope (TEM). The cytoskeleton structure was observed by AFM and TEM. The mechanical behavior was characterized by Bio-AFM. The correlation between the change in cytoskeletal and the difference in mechanical behavior was examined. Experimental results indicated that Ag-NP-affected RBCs became echinocyte-like rather than biconcave and were accompanied with hemolysis. The crosslinking density and diameter of cytoskeleton increased and the cytoskeleton structure became more agglomerated. The AFM indentation indicated that Ag-NP-affected RBCs had an increased elastic modulus. In summary, under the influence of Ag NPs, the stiffness of RBCs increases and the deformability decreases in consequence of cytoskeleton aggregation and thickening that is concerned with the use of Ag NPs.
摘要..............................................................I
Abstract........................................................II
誌謝............................................................III
壹、前言..........................................................1
貳、文獻回顧......................................................2
2-1 紅血球與細胞骨架...........................................2
2-1-1 紅血球 (Erythrocytes).....................................2
2-1-2 細胞骨架 (Cytoskeleton)...................................6
2-1-3 細胞骨架聚合解聚...........................................9
2-1-4 細胞骨架與細胞受力變形....................................14
2-1-5 影響紅血球的因素.........................................19
2-2 奈米粒子.................................................25
2-2-1 奈米粒子對細胞作用........................................29
2-2-2 奈米粒子對細胞骨架的影響...................................33
2-2-3 銀奈米粒子對紅血球的細胞毒性...............................38
2-2-4 銀奈米粒子對紅血球外觀的影響...............................41
2-2-5 銀奈米粒子對紅血球細胞骨架的影響...........................44
2-2-6 銀奈米粒子對紅血球機械性質的影響...........................47
2-3 紅血球與細胞骨架形貌觀察...................................49
2-3-1 原子力顯微鏡 (AFM).......................................53
2-3-2 穿透式電子顯微鏡 (TEM)....................................58
2-4 細胞機械行為分析..........................................64
2-5 研究目的.................................................75
參、實驗步驟.....................................................76
3-1 實驗流程.................................................76
3-2 紅血球溶液製備............................................78
3-2-1 磷酸鹽緩衝溶液............................................78
3-2-2 紅血球溶液製備............................................78
3-2-3 甲醛固定液...............................................79
3-2-4 四氧化鋨固定液............................................79
3-3 紅血球試片製備............................................79
3-3-1 紅血球形貌觀察............................................79
3-3-2 紅血球組織固定、脫水......................................80
3-3-3 原子力顯微鏡試片..........................................81
3-3-4 穿透式電子顯微鏡試片......................................82
3-4 分析儀器.................................................83
3-4-1 倒立式光學顯微鏡 (OM).....................................83
3-4-2 氣相原子力顯微鏡 (AFM in air).............................83
3-4-3 液相原子力顯微鏡 (AFM in fluid)...........................84
3-4-4 生物型穿透式電子顯微鏡 (Bio-TEM)..........................84
3-4-5 場發射穿透式電子顯微鏡 (FE-TEM)...........................85
3-4-6 微量離心機 (Microcentrifuge).............................85
3-5 原子力顯微鏡實驗參數......................................85
3-5-1 原子力顯微鏡氣相掃描......................................85
3-5-2 原子力顯微鏡液相掃描......................................86
3-5-3 原子力顯微鏡機械性質量測...................................86
肆、結果與討論....................................................88
4-1 紅血球形貌觀察............................................88
4-1-1 OM觀察紅血球形貌..........................................88
4-1-2 AFM氣相觀察紅血球形貌.....................................90
4-1-3 AFM液相觀察紅血球形貌.....................................97
4-1-4 TEM液相觀察紅血球形貌....................................104
4-2 紅血球細胞骨架觀察.......................................107
4-2-1 AFM氣相觀察紅血球細胞骨架................................107
4-2-2 AFM液相觀察紅血球細胞骨架................................121
4-2-3 TEM液相觀察紅血球細胞骨架................................134
4-3 紅血球機械性質量測.......................................138
4-3-1 AFM液相量測紅血球機械性質................................138
4-3-2 AFM、Nanoindenter、微吸管量測紅血球機械性質比較...........146
伍、結論........................................................150
陸、參考文獻....................................................152
[1] 血液學 Textbook of hematology 第二版,何敏夫,合記出版社。
[2] L. K. Riley and J. Rupert, "Evaluation of Patients with Leukocytosis," American family physician, vol. 92, 2015.
[3] O. Hekele, C. G. Goesselsberger, and I. C. Gebeshuber, "Nanodiagnostics performed on human red blood cells with atomic force microscopy," Materials Science and Technology, vol. 24, pp. 1162-1165, 2008.
[4] N. Mohandas and P. G. Gallagher, "Red cell membrane: past, present, and future," Blood, vol. 112, pp. 3939-3948, 2008.
[5] L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J.-M. Fromental, V. Claveria, et al., "Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions," Proceedings of the National Academy of Sciences, p. 201608074, 2016.
[6] L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, and J. Plastino, "Actin dynamics, architecture, and mechanics in cell motility," Physiological reviews, vol. 94, pp. 235-263, 2014.
[7] H. Herrmann, H. Bär, L. Kreplak, S. V. Strelkov, and U. Aebi, "Intermediate filaments: from cell architecture to nanomechanics," Nature Reviews Molecular Cell Biology, vol. 8, p. 562, 2007.
[8] J. J. Ipsaro, S. L. Harper, T. E. Messick, R. Marmorstein, A. Mondragón, and D. W. Speicher, "Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex," Blood, vol. 115, pp. 4843-4852, 2010.
[9] M. Salomao, X. Zhang, Y. Yang, S. Lee, J. H. Hartwig, J. A. Chasis, et al., "Protein 4.1 R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane," Proceedings of the National Academy of Sciences, vol. 105, pp. 8026-8031, 2008.
[10] S.-C. Liu, L. H. Derick, and J. Palek, "Visualization of the hexagonal lattice in the erythrocyte membrane skeleton," The Journal of cell biology, vol. 104, pp. 527-536, 1987.
[11] M. Murrell, P. W. Oakes, M. Lenz, and M. L. Gardel, "Forcing cells into shape: the mechanics of actomyosin contractility," Nature Reviews Molecular Cell Biology, vol. 16, p. 486, 2015.
[12] D. A. Fletcher and R. D. Mullins, "Cell mechanics and the cytoskeleton," Nature, vol. 463, p. 485, 2010.
[13] J. Alvarado, M. Sheinman, A. Sharma, F. C. MacKintosh, and G. H. Koenderink, "Molecular motors robustly drive active gels to a critically connected state," Nature Physics, vol. 9, p. 591, 2013.
[14] S. Stam, S. L. Freedman, S. Banerjee, K. L. Weirich, A. R. Dinner, and M. L. Gardel, "Filament rigidity and connectivity tune the deformation modes of active biopolymer networks," Proceedings of the National Academy of Sciences, p. 201708625, 2017.
[15] G. Foffano, N. Levernier, and M. Lenz, "The dynamics of filament assembly define cytoskeletal network morphology," Nature communications, vol. 7, p. 13827, 2016.
[16] P. Bieling, J. Weichsel, R. McGorty, P. Jreij, B. Huang, D. A. Fletcher, et al., "Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks," Cell, vol. 164, pp. 115-127, 2016.
[17] Y. Qiang, J. Liu, and E. Du, "Dynamic fatigue measurement of human erythrocytes using dielectrophoresis," Acta biomaterialia, vol. 57, pp. 352-362, 2017.
[18] H. Ito, R. Murakami, S. Sakuma, C.-H. D. Tsai, T. Gutsmann, K. Brandenburg, et al., "Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling," Scientific reports, vol. 7, p. 43134, 2017.
[19] O. Chaudhuri, S. H. Parekh, and D. A. Fletcher, "Reversible stress softening of actin networks," Nature, vol. 445, p. 295, 2007.
[20] N. Bonakdar, R. Gerum, M. Kuhn, M. Spörrer, A. Lippert, W. Schneider, et al., "Mechanical plasticity of cells," Nature materials, vol. 15, p. 1090, 2016.
[21] M. G. Millholland, R. Chandramohanadas, A. Pizzarro, A. Wehr, H. Shi, C. Darling, et al., "The malaria parasite progressively dismantles the host erythrocyte cytoskeleton for efficient egress," Molecular & Cellular Proteomics, vol. 10, p. M111. 010678, 2011.
[22] C. T. Lim and A. Li, "Mechanopathology of red blood cell diseases—Why mechanics matters," Theoretical and Applied Mechanics Letters, vol. 1, 2011.
[23] E. S. Zuccala and J. Baum, "Cytoskeletal and membrane remodelling during malaria parasite invasion of the human erythrocyte," British journal of haematology, vol. 154, pp. 680-689, 2011.
[24] M. Dearnley, T. Chu, Y. Zhang, O. Looker, C. Huang, N. Klonis, et al., "Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages," Proceedings of the National Academy of Sciences, vol. 113, pp. 4800-4805, 2016.
[25] N. V. Repin, E. N. Bobrova, and S. V. Repina, "Thermally induced transformation of mammalian red blood cells during hyperthermia," Bioelectrochemistry, vol. 73, pp. 101-105, 2008.
[26] C.-C. Yao and Z.-g. Zha, "Effects of incubation pH on the membrane deformation of a single living human red blood cell," Current Applied Physics, vol. 7, pp. e11-e14, 2007.
[27] M. Gedde, E. Yang, and W. Huestis, "Shape response of human erythrocytes to altered cell pH," Blood, vol. 86, pp. 1595-1599, 1995.
[28] V. Masilamani, K. AlZahrani, S. Devanesan, H. AlQahtani, and M. S. AlSalhi, "Smoking induced Hemolysis: Spectral and microscopic investigations," Scientific reports, vol. 6, p. 21095, 2016.
[29] P. Asharani, S. Sethu, S. Vadukumpully, S. Zhong, C. T. Lim, M. P. Hande, et al., "Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles," Advanced Functional Materials, vol. 20, pp. 1233-1242, 2010.
[30] S. P. Foy and V. Labhasetwar, "Oh the irony: iron as a cancer cause or cure?," Biomaterials, vol. 32, pp. 9155-9158, 2011.
[31] S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, "Loading history determines the velocity of actin-network growth," Nature cell biology, vol. 7, p. 1219, 2005.
[32] M. E. Davis and D. M. Shin, "Nanoparticle therapeutics: an emerging treatment modality for cancer," Nature reviews Drug discovery, vol. 7, p. 771, 2008.
[33] Y. Yang and P. Westerhoff, "Presence in, and release of, nanomaterials from consumer products," in Nanomaterial, ed: Springer, 2014, pp. 1-17.
[34] A. Nel, T. Xia, L. Mädler, and N. Li, "Toxic potential of materials at the nanolevel," science, vol. 311, pp. 622-627, 2006.
[35] I. Canton and G. Battaglia, "Endocytosis at the nanoscale," Chemical Society Reviews, vol. 41, pp. 2718-2739, 2012.
[36] S. Elmore, "Apoptosis: a review of programmed cell death," Toxicologic pathology, vol. 35, pp. 495-516, 2007.
[37] M. Horie, H. Kato, K. Fujita, S. Endoh, and H. Iwahashi, "In vitro evaluation of cellular response induced by manufactured nanoparticles," Chemical research in toxicology, vol. 25, pp. 605-619, 2011.
[38] D. He, A. M. Jones, S. Garg, A. N. Pham, and T. D. Waite, "Silver nanoparticle− reactive oxygen species interactions: application of a charging− discharging model," The Journal of Physical Chemistry C, vol. 115, pp. 5461-5468, 2011.
[39] Y. Yang, Y. Qu, and X. Lü, "Global gene expression analysis of the effects of gold nanoparticles on human dermal fibroblasts," Journal of biomedical nanotechnology, vol. 6, pp. 234-246, 2010.
[40] A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, "Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress," Scientific reports, vol. 5, p. 9768, 2015.
[41] N. Pernodet, X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, et al., "Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts," Small, vol. 2, pp. 766-773, 2006.
[42] A. M. Schrand, L. K. Braydich-Stolle, J. J. Schlager, L. Dai, and S. M. Hussain, "Can silver nanoparticles be useful as potential biological labels?," Nanotechnology, vol. 19, p. 235104, 2008.
[43] T. R. Pisanic II, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, "Nanotoxicity of iron oxide nanoparticle internalization in growing neurons," Biomaterials, vol. 28, pp. 2572-2581, 2007.
[44] Y. Ma, Z. Dai, Y. Gao, Z. Cao, Z. Zha, X. Yue, et al., "Liposomal architecture boosts biocompatibility of nanohybrid cerasomes," Nanotoxicology, vol. 5, pp. 622-635, 2011.
[45] X. Huang, X. Teng, D. Chen, F. Tang, and J. He, "The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function," Biomaterials, vol. 31, pp. 438-448, 2010.
[46] C. Y. Tay, P. Cai, M. I. Setyawati, W. Fang, L. P. Tan, C. H. Hong, et al., "Nanoparticles strengthen intracellular tension and retard cellular migration," Nano letters, vol. 14, pp. 83-88, 2013.
[47] 謝玉瑩, "金及銀奈米顆粒對大鼠紅血球細胞毒性及機械性質影響之研究," 中興大學材料科學與工程學系所學位論文, pp. 1-126, 2012.
[48] 陳彥中, "銀奈米顆粒細胞毒性對大鼠紅血球骨架結構影響之研究," 中興大學材料科學與工程學系所學位論文, pp. 1-129, 2013.
[49] 蔡睿義, "銀奈米粒子細胞毒性對紅血球細胞骨架與機械行為影響之研究," 中興大學材料科學與工程學系所學位論文, pp. 1-147, 2014.
[50] D. Discher, N. Mohandas, and E. Evans, "Molecular maps of red cell deformation: hidden elasticity and in situ connectivity," Science, vol. 266, pp. 1032-1035, 1994.
[51] H. Shi, Z. Liu, A. Li, J. Yin, A. G. Chong, K. S. Tan, et al., "Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes," PLoS One, vol. 8, p. e61170, 2013.
[52] K. Terasawa, T. Taguchi, R. Momota, I. Naito, T. Murakami, and A. Ohtsuka, "Human erythrocytes possess a cytoplasmic endoskeleton containing β-actin and neurofilament protein," Archives of histology and cytology, vol. 69, pp. 329-340, 2006.
[53] S.-C. Liu, L. H. Derick, P. Agre, and J. Palek, "Alteration of the erythrocyte membrane skeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis," Blood, vol. 76, pp. 198-205, 1990.
[54] F. M. Ross, "Opportunities and challenges in liquid cell electron microscopy," Science, vol. 350, p. aaa9886, 2015.
[55] P. Eaton and P. West, "Atomic Force Microscopy," ed: Oxford University Press 2010.
[56] G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Physical Review Letters, vol. 56, pp. 930-933, 1986.
[57] P. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, et al., "Tapping mode atomic force microscopy in liquids," Applied Physics Letters, vol. 64, pp. 1738-1740, 1994.
[58] E. Usukura, A. Narita, A. Yagi, S. Ito, and J. Usukura, "An unroofing method to observe the cytoskeleton directly at molecular resolution using atomic force microscopy," Scientific reports, vol. 6, p. 27472, 2016.
[59] Q. Li, G. Lee, C. Ong, and C. Lim, "AFM indentation study of breast cancer cells," Biochemical and biophysical research communications, vol. 374, pp. 609-613, 2008.
[60] Y. Fang, C. Y. Iu, C. N. Lui, Y. Zou, C. K. Fung, H. W. Li, et al., "Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration," Scientific reports, vol. 4, p. 7074, 2014.
[61] D. B. Peckys and N. de Jonge, "Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy," Nano letters, vol. 11, pp. 1733-1738, 2011.
[62] Q. Chen, J. M. Smith, J. Park, K. Kim, D. Ho, H. I. Rasool, et al., "3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy," Nano letters, vol. 13, pp. 4556-4561, 2013.
[63] D. B. Peckys, P. Mazur, K. L. Gould, and N. de Jonge, "Fully hydrated yeast cells imaged with electron microscopy," Biophysical journal, vol. 100, pp. 2522-2529, 2011.
[64] E. S. Pohlmann, K. Patel, S. Guo, M. J. Dukes, Z. Sheng, and D. F. Kelly, "Real-time visualization of nanoparticles interacting with glioblastoma stem cells," Nano letters, vol. 15, pp. 2329-2335, 2015.
[65] N. de Jonge and D. B. Peckys, "Live cell electron microscopy is probably impossible," ACS nano, vol. 10, pp. 9061-9063, 2016.
[66] C. Wang, Q. Qiao, T. Shokuhfar, and R. F. Klie, "High‐Resolution Electron Microscopy and Spectroscopy of Ferritin in Biocompatible Graphene Liquid Cells and Graphene Sandwiches," Advanced Materials, vol. 26, pp. 3410-3414, 2014.
[67] J. Park, H. Park, P. Ercius, A. F. Pegoraro, C. Xu, J. W. Kim, et al., "Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy," Nano Letters, vol. 15, pp. 4737-4744, 2015.
[68] S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, et al., "Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria," Acta biomaterialia, vol. 1, pp. 15-30, 2005.
[69] S. Vedula, E. Mendoz, W. Sun, T. Lim, A. Li, Q. Li, et al., "Human cell as a structure and machine–an engineering perspective," The IES Journal Part A: Civil & Structural Engineering, vol. 2, pp. 153-160, 2009.
[70] Y. Zhang, C. Huang, S. Kim, M. Golkaram, M. W. Dixon, L. Tilley, et al., "Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite," Proceedings of the National Academy of Sciences, vol. 112, pp. 6068-6073, 2015.
[71] A. Vinckier and G. Semenza, "Measuring elasticity of biological materials by atomic force microscopy," FEBS letters, vol. 430, pp. 12-16, 1998.
[72] A. R. Harris and G. Charras, "Experimental validation of atomic force microscopy-based cell elasticity measurements," Nanotechnology, vol. 22, p. 345102, 2011.
[73] Y.-W. Chiou, H.-K. Lin, M.-J. Tang, H.-H. Lin, and M.-L. Yeh, "The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment," PLoS One, vol. 8, p. e77384, 2013.
[74] L. Costa, M. S. Rodrigues, N. Benseny-Cases, V. Mayeux, J. Chevrier, and F. Comin, "Spectroscopic investigation of local mechanical impedance of living cells," PloS one, vol. 9, p. e101687, 2014.
[75] A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, "Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy," ACS nano, vol. 10, pp. 3365-3374, 2016.
[76] G. Ciasca, M. Papi, S. Di Claudio, M. Chiarpotto, V. Palmieri, G. Maulucci, et al., "Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level," Nanoscale, vol. 7, pp. 17030-17037, 2015.
[77] Y. Zheng, J. Wen, J. Nguyen, M. A. Cachia, C. Wang, and Y. Sun, "Decreased deformability of lymphocytes in chronic lymphocytic leukemia," Scientific reports, vol. 5, p. 7613, 2015.
[78] T. Lanzicher, V. Martinelli, L. Puzzi, G. Del Favero, B. Codan, C. S. Long, et al., "The cardiomyopathy lamin A/C D192G mutation disrupts whole-cell biomechanics in cardiomyocytes as measured by atomic force microscopy loading-unloading curve analysis," Scientific reports, vol. 5, p. 13388, 2015.
[79] 陳家全、李家維、楊瑞森,「生物電子顯微鏡書」,行政院國家科學委員會精密儀器發展中心編印。
[80] I. N. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," International journal of engineering science, vol. 3, pp. 47-57, 1965.
[81] R. King, "Elastic analysis of some punch problems for a layered medium," International Journal of Solids and Structures, vol. 23, pp. 1657-1664, 1987.
[82] L. Pan, R. Yan, W. Li, and K. Xu, "Super-Resolution Microscopy Reveals the Native Ultrastructure of the Erythrocyte Cytoskeleton," Cell reports, vol. 22, pp. 1151-1158, 2018.
[83] C. Le Grimellec, E. Lesniewska, C. Cachia, J. Schreiber, F. De Fornel, and J. Goudonnet, "Imaging of the membrane surface of MDCK cells by atomic force microscopy," Biophysical journal, vol. 67, pp. 36-41, 1994.
[84] J. P. Hale, C. P. Winlove, and P. G. Petrov, "Effect of hydroperoxides on red blood cell membrane mechanical properties," Biophysical journal, vol. 101, pp. 1921-1929, 2011.
[85] L. Snyder, N. Fortier, J. Trainor, J. Jacobs, L. Leb, B. Lubin, et al., "Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking," The Journal of clinical investigation, vol. 76, pp. 1971-1977, 1985.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *