|
[1] 血液學 Textbook of hematology 第二版,何敏夫,合記出版社。 [2] L. K. Riley and J. Rupert, "Evaluation of Patients with Leukocytosis," American family physician, vol. 92, 2015. [3] O. Hekele, C. G. Goesselsberger, and I. C. Gebeshuber, "Nanodiagnostics performed on human red blood cells with atomic force microscopy," Materials Science and Technology, vol. 24, pp. 1162-1165, 2008. [4] N. Mohandas and P. G. Gallagher, "Red cell membrane: past, present, and future," Blood, vol. 112, pp. 3939-3948, 2008. [5] L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J.-M. Fromental, V. Claveria, et al., "Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions," Proceedings of the National Academy of Sciences, p. 201608074, 2016. [6] L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, and J. Plastino, "Actin dynamics, architecture, and mechanics in cell motility," Physiological reviews, vol. 94, pp. 235-263, 2014. [7] H. Herrmann, H. Bär, L. Kreplak, S. V. Strelkov, and U. Aebi, "Intermediate filaments: from cell architecture to nanomechanics," Nature Reviews Molecular Cell Biology, vol. 8, p. 562, 2007. [8] J. J. Ipsaro, S. L. Harper, T. E. Messick, R. Marmorstein, A. Mondragón, and D. W. Speicher, "Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex," Blood, vol. 115, pp. 4843-4852, 2010. [9] M. Salomao, X. Zhang, Y. Yang, S. Lee, J. H. Hartwig, J. A. Chasis, et al., "Protein 4.1 R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane," Proceedings of the National Academy of Sciences, vol. 105, pp. 8026-8031, 2008. [10] S.-C. Liu, L. H. Derick, and J. Palek, "Visualization of the hexagonal lattice in the erythrocyte membrane skeleton," The Journal of cell biology, vol. 104, pp. 527-536, 1987. [11] M. Murrell, P. W. Oakes, M. Lenz, and M. L. Gardel, "Forcing cells into shape: the mechanics of actomyosin contractility," Nature Reviews Molecular Cell Biology, vol. 16, p. 486, 2015. [12] D. A. Fletcher and R. D. Mullins, "Cell mechanics and the cytoskeleton," Nature, vol. 463, p. 485, 2010. [13] J. Alvarado, M. Sheinman, A. Sharma, F. C. MacKintosh, and G. H. Koenderink, "Molecular motors robustly drive active gels to a critically connected state," Nature Physics, vol. 9, p. 591, 2013. [14] S. Stam, S. L. Freedman, S. Banerjee, K. L. Weirich, A. R. Dinner, and M. L. Gardel, "Filament rigidity and connectivity tune the deformation modes of active biopolymer networks," Proceedings of the National Academy of Sciences, p. 201708625, 2017. [15] G. Foffano, N. Levernier, and M. Lenz, "The dynamics of filament assembly define cytoskeletal network morphology," Nature communications, vol. 7, p. 13827, 2016. [16] P. Bieling, J. Weichsel, R. McGorty, P. Jreij, B. Huang, D. A. Fletcher, et al., "Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks," Cell, vol. 164, pp. 115-127, 2016. [17] Y. Qiang, J. Liu, and E. Du, "Dynamic fatigue measurement of human erythrocytes using dielectrophoresis," Acta biomaterialia, vol. 57, pp. 352-362, 2017. [18] H. Ito, R. Murakami, S. Sakuma, C.-H. D. Tsai, T. Gutsmann, K. Brandenburg, et al., "Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling," Scientific reports, vol. 7, p. 43134, 2017. [19] O. Chaudhuri, S. H. Parekh, and D. A. Fletcher, "Reversible stress softening of actin networks," Nature, vol. 445, p. 295, 2007. [20] N. Bonakdar, R. Gerum, M. Kuhn, M. Spörrer, A. Lippert, W. Schneider, et al., "Mechanical plasticity of cells," Nature materials, vol. 15, p. 1090, 2016. [21] M. G. Millholland, R. Chandramohanadas, A. Pizzarro, A. Wehr, H. Shi, C. Darling, et al., "The malaria parasite progressively dismantles the host erythrocyte cytoskeleton for efficient egress," Molecular & Cellular Proteomics, vol. 10, p. M111. 010678, 2011. [22] C. T. Lim and A. Li, "Mechanopathology of red blood cell diseases—Why mechanics matters," Theoretical and Applied Mechanics Letters, vol. 1, 2011. [23] E. S. Zuccala and J. Baum, "Cytoskeletal and membrane remodelling during malaria parasite invasion of the human erythrocyte," British journal of haematology, vol. 154, pp. 680-689, 2011. [24] M. Dearnley, T. Chu, Y. Zhang, O. Looker, C. Huang, N. Klonis, et al., "Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages," Proceedings of the National Academy of Sciences, vol. 113, pp. 4800-4805, 2016. [25] N. V. Repin, E. N. Bobrova, and S. V. Repina, "Thermally induced transformation of mammalian red blood cells during hyperthermia," Bioelectrochemistry, vol. 73, pp. 101-105, 2008. [26] C.-C. Yao and Z.-g. Zha, "Effects of incubation pH on the membrane deformation of a single living human red blood cell," Current Applied Physics, vol. 7, pp. e11-e14, 2007. [27] M. Gedde, E. Yang, and W. Huestis, "Shape response of human erythrocytes to altered cell pH," Blood, vol. 86, pp. 1595-1599, 1995. [28] V. Masilamani, K. AlZahrani, S. Devanesan, H. AlQahtani, and M. S. AlSalhi, "Smoking induced Hemolysis: Spectral and microscopic investigations," Scientific reports, vol. 6, p. 21095, 2016. [29] P. Asharani, S. Sethu, S. Vadukumpully, S. Zhong, C. T. Lim, M. P. Hande, et al., "Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles," Advanced Functional Materials, vol. 20, pp. 1233-1242, 2010. [30] S. P. Foy and V. Labhasetwar, "Oh the irony: iron as a cancer cause or cure?," Biomaterials, vol. 32, pp. 9155-9158, 2011. [31] S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, "Loading history determines the velocity of actin-network growth," Nature cell biology, vol. 7, p. 1219, 2005. [32] M. E. Davis and D. M. Shin, "Nanoparticle therapeutics: an emerging treatment modality for cancer," Nature reviews Drug discovery, vol. 7, p. 771, 2008. [33] Y. Yang and P. Westerhoff, "Presence in, and release of, nanomaterials from consumer products," in Nanomaterial, ed: Springer, 2014, pp. 1-17. [34] A. Nel, T. Xia, L. Mädler, and N. Li, "Toxic potential of materials at the nanolevel," science, vol. 311, pp. 622-627, 2006. [35] I. Canton and G. Battaglia, "Endocytosis at the nanoscale," Chemical Society Reviews, vol. 41, pp. 2718-2739, 2012. [36] S. Elmore, "Apoptosis: a review of programmed cell death," Toxicologic pathology, vol. 35, pp. 495-516, 2007. [37] M. Horie, H. Kato, K. Fujita, S. Endoh, and H. Iwahashi, "In vitro evaluation of cellular response induced by manufactured nanoparticles," Chemical research in toxicology, vol. 25, pp. 605-619, 2011. [38] D. He, A. M. Jones, S. Garg, A. N. Pham, and T. D. Waite, "Silver nanoparticle− reactive oxygen species interactions: application of a charging− discharging model," The Journal of Physical Chemistry C, vol. 115, pp. 5461-5468, 2011. [39] Y. Yang, Y. Qu, and X. Lü, "Global gene expression analysis of the effects of gold nanoparticles on human dermal fibroblasts," Journal of biomedical nanotechnology, vol. 6, pp. 234-246, 2010. [40] A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, "Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress," Scientific reports, vol. 5, p. 9768, 2015. [41] N. Pernodet, X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, et al., "Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts," Small, vol. 2, pp. 766-773, 2006. [42] A. M. Schrand, L. K. Braydich-Stolle, J. J. Schlager, L. Dai, and S. M. Hussain, "Can silver nanoparticles be useful as potential biological labels?," Nanotechnology, vol. 19, p. 235104, 2008. [43] T. R. Pisanic II, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, "Nanotoxicity of iron oxide nanoparticle internalization in growing neurons," Biomaterials, vol. 28, pp. 2572-2581, 2007. [44] Y. Ma, Z. Dai, Y. Gao, Z. Cao, Z. Zha, X. Yue, et al., "Liposomal architecture boosts biocompatibility of nanohybrid cerasomes," Nanotoxicology, vol. 5, pp. 622-635, 2011. [45] X. Huang, X. Teng, D. Chen, F. Tang, and J. He, "The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function," Biomaterials, vol. 31, pp. 438-448, 2010. [46] C. Y. Tay, P. Cai, M. I. Setyawati, W. Fang, L. P. Tan, C. H. Hong, et al., "Nanoparticles strengthen intracellular tension and retard cellular migration," Nano letters, vol. 14, pp. 83-88, 2013. [47] 謝玉瑩, "金及銀奈米顆粒對大鼠紅血球細胞毒性及機械性質影響之研究," 中興大學材料科學與工程學系所學位論文, pp. 1-126, 2012. [48] 陳彥中, "銀奈米顆粒細胞毒性對大鼠紅血球骨架結構影響之研究," 中興大學材料科學與工程學系所學位論文, pp. 1-129, 2013. [49] 蔡睿義, "銀奈米粒子細胞毒性對紅血球細胞骨架與機械行為影響之研究," 中興大學材料科學與工程學系所學位論文, pp. 1-147, 2014. [50] D. Discher, N. Mohandas, and E. Evans, "Molecular maps of red cell deformation: hidden elasticity and in situ connectivity," Science, vol. 266, pp. 1032-1035, 1994. [51] H. Shi, Z. Liu, A. Li, J. Yin, A. G. Chong, K. S. Tan, et al., "Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes," PLoS One, vol. 8, p. e61170, 2013. [52] K. Terasawa, T. Taguchi, R. Momota, I. Naito, T. Murakami, and A. Ohtsuka, "Human erythrocytes possess a cytoplasmic endoskeleton containing β-actin and neurofilament protein," Archives of histology and cytology, vol. 69, pp. 329-340, 2006. [53] S.-C. Liu, L. H. Derick, P. Agre, and J. Palek, "Alteration of the erythrocyte membrane skeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis," Blood, vol. 76, pp. 198-205, 1990. [54] F. M. Ross, "Opportunities and challenges in liquid cell electron microscopy," Science, vol. 350, p. aaa9886, 2015. [55] P. Eaton and P. West, "Atomic Force Microscopy," ed: Oxford University Press 2010. [56] G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Physical Review Letters, vol. 56, pp. 930-933, 1986. [57] P. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, et al., "Tapping mode atomic force microscopy in liquids," Applied Physics Letters, vol. 64, pp. 1738-1740, 1994. [58] E. Usukura, A. Narita, A. Yagi, S. Ito, and J. Usukura, "An unroofing method to observe the cytoskeleton directly at molecular resolution using atomic force microscopy," Scientific reports, vol. 6, p. 27472, 2016. [59] Q. Li, G. Lee, C. Ong, and C. Lim, "AFM indentation study of breast cancer cells," Biochemical and biophysical research communications, vol. 374, pp. 609-613, 2008. [60] Y. Fang, C. Y. Iu, C. N. Lui, Y. Zou, C. K. Fung, H. W. Li, et al., "Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration," Scientific reports, vol. 4, p. 7074, 2014. [61] D. B. Peckys and N. de Jonge, "Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy," Nano letters, vol. 11, pp. 1733-1738, 2011. [62] Q. Chen, J. M. Smith, J. Park, K. Kim, D. Ho, H. I. Rasool, et al., "3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy," Nano letters, vol. 13, pp. 4556-4561, 2013. [63] D. B. Peckys, P. Mazur, K. L. Gould, and N. de Jonge, "Fully hydrated yeast cells imaged with electron microscopy," Biophysical journal, vol. 100, pp. 2522-2529, 2011. [64] E. S. Pohlmann, K. Patel, S. Guo, M. J. Dukes, Z. Sheng, and D. F. Kelly, "Real-time visualization of nanoparticles interacting with glioblastoma stem cells," Nano letters, vol. 15, pp. 2329-2335, 2015. [65] N. de Jonge and D. B. Peckys, "Live cell electron microscopy is probably impossible," ACS nano, vol. 10, pp. 9061-9063, 2016. [66] C. Wang, Q. Qiao, T. Shokuhfar, and R. F. Klie, "High‐Resolution Electron Microscopy and Spectroscopy of Ferritin in Biocompatible Graphene Liquid Cells and Graphene Sandwiches," Advanced Materials, vol. 26, pp. 3410-3414, 2014. [67] J. Park, H. Park, P. Ercius, A. F. Pegoraro, C. Xu, J. W. Kim, et al., "Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy," Nano Letters, vol. 15, pp. 4737-4744, 2015. [68] S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, et al., "Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria," Acta biomaterialia, vol. 1, pp. 15-30, 2005. [69] S. Vedula, E. Mendoz, W. Sun, T. Lim, A. Li, Q. Li, et al., "Human cell as a structure and machine–an engineering perspective," The IES Journal Part A: Civil & Structural Engineering, vol. 2, pp. 153-160, 2009. [70] Y. Zhang, C. Huang, S. Kim, M. Golkaram, M. W. Dixon, L. Tilley, et al., "Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite," Proceedings of the National Academy of Sciences, vol. 112, pp. 6068-6073, 2015. [71] A. Vinckier and G. Semenza, "Measuring elasticity of biological materials by atomic force microscopy," FEBS letters, vol. 430, pp. 12-16, 1998. [72] A. R. Harris and G. Charras, "Experimental validation of atomic force microscopy-based cell elasticity measurements," Nanotechnology, vol. 22, p. 345102, 2011. [73] Y.-W. Chiou, H.-K. Lin, M.-J. Tang, H.-H. Lin, and M.-L. Yeh, "The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment," PLoS One, vol. 8, p. e77384, 2013. [74] L. Costa, M. S. Rodrigues, N. Benseny-Cases, V. Mayeux, J. Chevrier, and F. Comin, "Spectroscopic investigation of local mechanical impedance of living cells," PloS one, vol. 9, p. e101687, 2014. [75] A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, "Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy," ACS nano, vol. 10, pp. 3365-3374, 2016. [76] G. Ciasca, M. Papi, S. Di Claudio, M. Chiarpotto, V. Palmieri, G. Maulucci, et al., "Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level," Nanoscale, vol. 7, pp. 17030-17037, 2015. [77] Y. Zheng, J. Wen, J. Nguyen, M. A. Cachia, C. Wang, and Y. Sun, "Decreased deformability of lymphocytes in chronic lymphocytic leukemia," Scientific reports, vol. 5, p. 7613, 2015. [78] T. Lanzicher, V. Martinelli, L. Puzzi, G. Del Favero, B. Codan, C. S. Long, et al., "The cardiomyopathy lamin A/C D192G mutation disrupts whole-cell biomechanics in cardiomyocytes as measured by atomic force microscopy loading-unloading curve analysis," Scientific reports, vol. 5, p. 13388, 2015. [79] 陳家全、李家維、楊瑞森,「生物電子顯微鏡書」,行政院國家科學委員會精密儀器發展中心編印。 [80] I. N. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," International journal of engineering science, vol. 3, pp. 47-57, 1965. [81] R. King, "Elastic analysis of some punch problems for a layered medium," International Journal of Solids and Structures, vol. 23, pp. 1657-1664, 1987. [82] L. Pan, R. Yan, W. Li, and K. Xu, "Super-Resolution Microscopy Reveals the Native Ultrastructure of the Erythrocyte Cytoskeleton," Cell reports, vol. 22, pp. 1151-1158, 2018. [83] C. Le Grimellec, E. Lesniewska, C. Cachia, J. Schreiber, F. De Fornel, and J. Goudonnet, "Imaging of the membrane surface of MDCK cells by atomic force microscopy," Biophysical journal, vol. 67, pp. 36-41, 1994. [84] J. P. Hale, C. P. Winlove, and P. G. Petrov, "Effect of hydroperoxides on red blood cell membrane mechanical properties," Biophysical journal, vol. 101, pp. 1921-1929, 2011. [85] L. Snyder, N. Fortier, J. Trainor, J. Jacobs, L. Leb, B. Lubin, et al., "Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking," The Journal of clinical investigation, vol. 76, pp. 1971-1977, 1985.
|