帳號:guest(3.139.86.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳若昀
作者(外文):Chen, Jo-Yun
論文名稱(中文):固態氧化物燃料電池金屬支撐材料與結構開發
論文名稱(外文):Development of metal supporting material and structure for solid oxide fuel cell
指導教授(中文):葉安洲
指導教授(外文):Yeh, An-Chou
口試委員(中文):陳志鵬
康永昌
蔡哲瑋
口試委員(外文):Chen, Chih-Peng
Kang, Yung-Chang
Tsai, Tse-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031511
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:78
中文關鍵詞:金屬支撐型固態氧化物燃料電池金屬支撐元件積層製造選擇性雷射熔融
外文關鍵詞:Metal-supported Solid Oxide Fuel Cellsupporting componentAdditive ManufacturingSelective Laser Melting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:309
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
固態氧化物燃料電池的金屬支撐材料需為多孔透氣的結構,使足夠的燃料氣體通過到達電極,且亦需具備能夠支撐電池的機械強度。本研究運用雷射積層製造技術中的選擇性區域雷射熔融製程,使用調整雷射掃描間距讓熔融軌跡互不重疊的方式產生孔洞,藉由雷射參數的設定來控制金屬基板的孔隙率和透氣率,且能夠直接製作出讓氣體通過的直條通道。此外,根據先前研究成果,針對連接板材料開發的鐵基合金CMH3,其塊材在高溫下具備高抗氧化能力、匹配的熱膨脹係數、高導電能力、低鉻揮發量,因此本研究選擇CMH3作為多孔金屬基板的材料。
使用四種不同的雷射參數製作多孔透氣結構,探討雷射參數對孔隙率、透氣率、三點彎曲強度、熱膨脹係數、抗氧化力、導電性和鉻揮發等性質的影響。研究結果顯示:較寬的掃描間距和較快的掃描速度會增加孔隙率與透氣率,且孔隙不影響材料的熱膨脹變化。選擇三點彎曲強度較高的兩個參數掃描速度400 mm/s與掃描間距150和175 μm,量測高溫長時間氧化增重、面積比電阻和鉻發揮的變化,發現掃描間距150 μm的試片其表面積較大且通道內噴濺粉末較多,因此氧化增重與鉻揮發量較高;而掃描間距175 μm 試片則因其孔隙率較高具有較高的面積比電阻。實際將電極與電解質噴塗於SLM CMH3基板上,發現使用參數400 mm/s-175 μm的CMH3支撐基板的電池性能表現較佳。
Metallic supporting component for Solid Oxide Fuel Cell (SOFC) must be porous and permeable, to provide micro-scale flow channels for fuels (i.e. hydrogen) to reach electrode, and should be rigid to provide a mechanical support to the cell. This research aims to additive-manufacture iron-based substrates which possess sufficient bending strength, high porosity and permeability. The SLM process is capable of fabricating porous structures by increasing the hatch distance, and a novel iron-based alloy (CMH3) whose bulk specimens have exhibited the properties of suitable materials for SOFC component is gas-atomized into powder as the SLM material.
Research results indicate that four grid structures fabricated using constant laser power 100W, scan speed 400 mm/s with three different hatch distances 150 μm, 175 μm and 200 μm, and comparatively fast scan speed 600 mm/s with hatch distance 200 μm are verified to be porous and permeable, and wide hatch distance and fast scan speed can effectively increase porosity and permeability. In addition, thermal expansion behaviors for four grid structures have no difference. Samples built by 400 mm/s scan speed with 150 μm and 175 μm hatch distances are chosen to undergo the oxidation test, ASR measurement, Cr evaporation test and cell performance test due to their high three-point bending strength, 63.29 MPa and 69.41 MPa at 750 ℃. Grid structure with 175 μm hatch exhibits lower Cr evaporation and lower oxidation weight gain than 150 μm due to its less surface area and less spatter particles trapped in flow channels. While, the large porosity of sample with 175 μm hatch leads to relatively high ASR values. The cells supported by the grid substrate with 150 μm and 175 μm hatch can generate power densities of 282.43 mW/cm2 and approximate 650 mW/cm2 respectively at 0.6 V and 750 ℃, which results from the higher fuel permeation of substrates with175 μm hatch distance.
Table of contents
Abstract I
摘要 II
Acknowledgment III
Table of contents IV
List of Figures VI
List of Tables X
1. Introduction 1
2. Literature Review 3
2.1 Fuel Cell 3
2.2 Solid Oxide Fuel Cells (SOFCs) 5
2.2.1 Properties of SOFCs 7
2.2.2 Anode 8
2.2.3 Cathode 9
2.2.4 Electrolyte 10
2.2.5 Interconnect 11
2.2.6 Metal-supported cells (MSC) 12
2.3 Area specific resistance (ASR) and electrical resistivity 16
2.4 Coefficient of thermal expansion (CTE) 18
2.5 Cr evaporation 19
2.6 Selective laser melting (SLM) 21
3. Materials and Methods 25
3.1 Materials 26
3.2 Experimental procedure 28
3.3 Sample preparation and processing parameters 29
3.4 Porosity measurement 31
3.5 Permeability measurement 32
3.6 Three-point bending test 33
3.7 Coefficient thermal expansion measurement 33
3.8 Oxidation test 34
3.9 ASR and electrical resistivity measurement 35
3.10 Cr-evaporation test 36
3.11 Cell performance measurement 37
4. Results and Discussion 39
4.1 Microstructure inspection 39
4.2 Porosity and permeability 42
4.3 Three-point bending strength 43
4.4 Coefficient of thermal expansion (CTE) 48
4.5 Oxidation test 49
4.6 Area specific resistance (ASR) and electrical resistivity 60
4.7 Cr evaporation 62
4.8 Cell performance measurement 64
5. Conclusions 71
6. Future work 73
7. References 74

[1] S. Bilgen, Renewable and Sustainable Energy Reviews 38 (2014) 890-902.
[2] I. Dincer, Renewable and Sustainable Energy Reviews 4 (2000) 157-175.
[3] S. Chu, Y. Cui, N. Liu, Nat Mater 16 (2016) 16-22.
[4] D.J. Murphy, C.A. Hall, Ann N Y Acad Sci 1219 (2011) 52-72.
[5] Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, Energy & Environmental Science 9 (2016) 1602-1644.
[6] S.C. Singhal, Solid State Ionics 135 (2000) 305-313.
[7] V. Liso, A.C. Olesen, M.P. Nielsen, S.K. Kær, Energy 36 (2011) 4216-4226.
[8] R. Taccani, T. Chinese, N. Zuliani, Energy Procedia 126 (2017) 421-428.
[9] L. Barelli, G. Bidini, F. Gallorini, P.A. Ottaviano, International Journal of Hydrogen Energy 38 (2013) 354-369.
[10] P. Blennow, J. Hjelm, T. Klemensø, S. Ramousse, A. Kromp, A. Leonide, A. Weber, Journal of Power Sources 196 (2011) 7117-7125.
[11] M.C. Tucker, Journal of Power Sources 195 (2010) 4570-4582.
[12] C.S. Hwang, C.H. Tsai, T.J. Hwang, C.L. Chang, S.F. Yang, J.K. Lin, Fuel Cells 16 (2016) 244-251.
[13] C.-s. Hwang, C.-H. Tsai, J.-F. Yu, C.-L. Chang, J.-M. Lin, Y.-H. Shiu, S.-W. Cheng, Journal of Power Sources 196 (2011) 1932-1939.
[14] M.-L.F. Y. Larring, Critical Issues of Metal-Supported Fuel Cell, Springer-Verlag, London, 2013.
[15] C.-M. Hsu, A.-C. Yeh, W.-J. Shong, C.-K. Liu, Journal of Alloys and Compounds 656 (2016) 903-911.
[16] C. Klahn, F. Bechmann, S. Hofmann, M. Dinkel, C. Emmelmann, Physics Procedia 41 (2013) 873-880.
[17] S. Zhang, Q. Wei, L. Cheng, S. Li, Y. Shi, Materials & Design 63 (2014) 185-193.
[18] P. Kurzweil, HISTORY | Fuel Cells, in: J. Garche (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 579-595.
[19] P.R.P. M. Warshay, Journal of Power Sources 29 (1990) 193-200.
[20] S.C.D. W. Z. Zhu, Materials Science and Engineering: A 362 (2003) 228-239.
[21] U.S. C. Sun, Jornal of Power Scources 171 (2007) 247-260.
[22] J.A.K. V. Duasastre, Solid State Ionics 126 (1999) 163-174.
[23] M.F.O. O.Z. Sharf, Renewable and Sustainable Energy Reviews 32 (2014 ) 810-853.
[24] N.Q. Minh, J An Ceram Soc. 76 (1993) 563-588.
[25] U.D.o., Energy, Feul Cell Handbook (Seventh Edition), Office of Fossil Energy National Energy Technology Laboratory, Morgantown, West Virginia 26507-0880, November 2004.
[26] A.H. B.C.H. Steele, Nature 414 (2001) 345.
[27] K.S.W. Z.G. Yang, D.M. Paxton, J.W. Stevenson, J Electrochem Soc 150 (2003) A1188-A1201.
[28] I.V. I. Antepara, L.M. Rodriguez-Martinez, N. Lecanda, U. Castro, A. Laresgoiti, J Power Sources 151 (2005) 103-107.
[29] R.A. P. Piccardo, S. Fontana, S. Chevalier, G. Caboches, P. Gannon, J Appl Electrochem 39 (2009).
[30] J.S. H. Taroco, R. Domingues, T. Matencio, Ceramic Materials for Solid Oxide Fuel Cells, INTECH Open Access Publisher, 2011.
[31] S.J.G. J.H. Zhu, D.A. Ballard, International Journal of Hydrogen Energy 32 (2007) 3682-3688.
[32] http://www.osakagas.co.jp/en/rd/fuelcell/sofc/sofc/img/sofc_01_img01.jpg.
[33] S.M.H. Z.P. Shao, Nature 431 (2004) 170-173.
[34] I.S. H.R. Ellamla, P. Bujlo, B.G. Pollet, S. Pasupathi, Jornal of Power Scources 293 (2015) 312-328.
[35] F.T.C. S.P.S. Badwal, Ionics 6 (2000) 1-21.
[36] A.M. Y. Tanaka, K. Kato, A. Negishi, K. Takano, K. Nozaki, T. Kato, Energy Conversion and Management 50 (2009) 458-466.
[37] N.M.S. M. Mogensen, G.A. Tompsett, Solid State Ionics 129 (2000) 63-94.
[38] K. Hassmann, Fuel Cells 1 (2001) 78-84.
[39] M.N. K. Hosoi, ECS Transactions 25 (2009) 11-20.
[40] P.I.C. S. W. Tao, R. Lan, 14-Novel anode materials for solid oxide fuel cells, in: S.J.S. J.A. Kilner, S.J.C. Irvine, P.P. Edwards (Ed.) Functional Materials for Sustainable Energy Applications, Woodhead Publishing, 2012, pp. 445-477.
[41] S.C. S. Jiang, Journal of Material Science 39 (2004) 4405-4439.
[42] Y.H.H. J.B. Goodenough, Journal of Power Sources 173 (2007) 1-10.
[43] J.W. Fergus, Solid State Ionics 177 (2006) 1529-1541.
[44] P.H. J. Richter, T. Graule, T. Nakamura, L. Gauckler, Monatshefte für Chemie - Chemical Monthly 140 (2009) 985-999.
[45] A.B. N. Mahato, A. Gupta, S. Omar, K. Balani, Progress in Materials Science 72 (2015) 141-337.
[46] B.C.H. Steele, Solid State Ionics 86-88, Part2 (1996) 1223-1234.
[47] J.A.K. V. Dusastre, Solid State Ionics 126 (1999) 163-174.
[48] Y.Z. F. Su, M. Ni, C. Xia, International Journal of Hydrogen Energy 39 (2014) 2685-2691.
[49] J.R. S. Hui, S. Yick, X. Zhang, C. Decès-Petit, Y. Xie, R. Maric, D. Ghosh, Journal of Power Sources 172 (2007) 493-502.
[50] F.M.B.M. V.V. Kharton, A. Atkinson, Solid State Ionics 174 (2004) 135-149.
[51] A.R. N. Preux, R.N. Vannier, 12 - Electrolytes and ion conductors for solid oxide fuel cells (SOFCs), in: S.J.S. J.A. Kilner, S.J.C. Irvine, P.P. Edwards (Ed.) Functional Materials for Sustainable Energy Applications, Woodhead Publishing, 2012, pp. 370-401.
[52] K.F. S.P.S. Badwal, Ceramics International 22 (1996) 257-265.
[53] B.C.H. Steele, Solid State Ionics 129 (2000) 95-110.
[54] C.N.C. K.J. Yoon, J.W. Stevenson, O.A. Marina, Journal of Power Sources 195 (2010) 7587-7593.
[55] J.W.S. K.J. Yoon, O.A. Marina, Journal of Power Sources 196 (2011) 8531-8538.
[56] J.W. Fergus, Materials Science and Engineering: A 397 (2005) 271-283.
[57] J.P.-A. W.J. Quadakkers, V. Shemet, L. Singheiser, Mater High Temp 20 (2003) 115-127.
[58] H.L.F. F. Greco, A. Nakajo, M.F. Madsen, J. Van herle, Journal of the European Ceramic Society 34 (2014) 2695-2704.
[59] C.-K.L. Y.-T. Chiu, J.-C. Wu, Journal of Power Sources 196 (2011) 2005-2012.
[60] D.E.A. P.D. Jablonski, International Journal of Hydrogen Energy 32 (2007) 3705-3712.
[61] G.-G.X. Z. Yang, J.W. Stevenson, Journal of Power Sources 160 (2006) 1104-1110.
[62] C.-K.L. Y.-T. Chiu, Journal of Power Sources 198 (2012) 149-157.
[63] M.S. R. Sachitanand, J.-E. Svensson, J. Froitzheim, International Journal of Hydrogen Energy 38 (2013) 15328-15334.
[64] M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, A. Rafique, A. Ali, M. Kaleem Ullah, A. Usman, Applied Sciences 6 (2016) 75.
[65] S. Molin, M. Gazda, P. Jasinski, Solid State Ionics 181 (2010) 1214-1220.
[66] Z.Y.J.S. S. F. Yang, C. S. Hwang, C. H. Tsai, C. L. Chang, T. J. Huang, R. Y. Lee, ECS Transactions 68 (2015) 1849-1855.
[67] E. Sarasketa-Zabala, L. Otaegi, L.M. Rodriguez-Martinez, M.A. Alvarez, N. Burgos, F. Castro, I. Villarreal, Solid State Ionics 222-223 (2012) 16-22.
[68] R. Hui, J.O. Berghaus, C. Decès-Petit, W. Qu, S. Yick, J.-G. Legoux, C. Moreau, Journal of Power Sources 191 (2009) 371-376.
[69] H.J. Cho, K.J. Kim, Y.M. Park, G.M. Choi, International Journal of Hydrogen Energy 41 (2016) 9577-9584.
[70] C.-S. Hwang, T.-J. Hwang, C.-H. Tsai, C.-L. Chang, S.-F. Yang, M.-H. Wu, C.-Y. Fu, Ceramics International 43 (2017) S591-S597.
[71] S. Molin, B. Kusz, M. Gazda, P. Jasinski, Journal of Power Sources 181 (2008) 31-37.
[72] S. Hui, D. Yang, Z. Wang, S. Yick, C. Decès-Petit, W. Qu, A. Tuck, R. Maric, D. Ghosh, Journal of Power Sources 167 (2007) 336-339.
[73] A.W. M. Gupta, N. Markocsan, M. Gindrat, Journal of The Electrochemical Society 163 (9) (2016) F1059-F1065.
[74] V.V. Krishnan, Wiley Interdisciplinary Reviews: Energy and Environment 6 (2017) e246.
[75] C.-K.L. P. Yang, J.-Y. Wu, W.-J. Shong, R.-Y. Lee, C.-C. Sung, Journal of Power Sources 213 (2012) 63-68.
[76] K.A. Ibrahim, B. Wu, N.P. Brandon, Materials & Design 106 (2016) 51-59.
[77] https://www.nist.gov/pml/engineering-physics-division/popular-links/hall-effect/resistivity-and-hall-measurements.
[78] D.W. Koon, Review of Scientific Instruments 60 (1989) 271-274.
[79] D.K. Schroder., Semiconductor material and device characterization., John Wiley & Sons, Inc., 2006.
[80] X.L. J. Wu, Jornal of Materials Science & Technology 26 (2010) 293-305.
[81] N.P.B. R.T. Leah, P. Aguiar, Journal of Power Sources 145 (2005) 336-352.
[82] A.P. R. Lacey, J.C. Lee, J.-I. Jung, B. Jiang, D.D. Edwards, R. Naum, S.T. Misture, Solid State Ionics 181 (2010) 1294-1302.
[83] T.Z. M. Bertoldi, D. Montinaro, V.M. Sglavo, A. Fossati, A. Lavacchi, C. Giolli, U. Bardi, Journal of Fuel Cell Science and Technology 5 (2008) 11001-11005.
[84] J.P. B. Hua, F. Lu, J. Zhang, B. Chi, L. Jian, Journal of Power Sources 195 (2010) 2782-2788.
[85] D.Y. W. Zhang, J. Yang, J. Chen, B. Chi, J. Pu, J. Li, Journal of Power Sources 271 (2014) 25-31.
[86] J.F. M. Stanislowski, L. Niewolak, W.J. Quadakkers, K. Hilpert, T. Markus, L. Singheiser, Journal of Power Sources 164 (2007) 578-589.
[87] X.C. S.P. Jiang, International Journal of Hydrogen Energy 39 (2014) 505-531.
[88] N.Y. T. Uehara, M. Okamoto, Y. Baba, Journal of Power Sources 196 (2011) 7251-7256.
[89] T. Furumoto, A. Koizumi, M.R. Alkahari, R. Anayama, A. Hosokawa, R. Tanaka, T. Ueda, Journal of Materials Processing Technology 219 (2015) 10-16.
[90] K.M. T. S. Srivatsan, T. S. Sudarshan, Chapter 1 Additive Manufacturing of Materials: Viable Techniques, Metals, Advances, Advantages, and Application, in: T.S.S. T.S. Srivatsan (Ed.) Additive Manufacturing Innovation, Advances, and Applications, Taylor & Francis Group, LLC, 2016, pp. 2-48.
[91] G. Casalino, S.L. Campanelli, N. Contuzzi, A.D. Ludovico, Optics & Laser Technology 65 (2015) 151-158.
[92] A.J. N.S. Moghaddam, A. Amerinatanzi, M. Elahinia, Recent Advances in Laser-Based Additive Manufacturing, in: N.S. L. Bian, J.M. Usher (Ed.) Laser-Based Additive Manufacturing of Metal Parts, CRC Press Taylor & Francis Group, 2017.
[93] S.D. J.-P. Kruth, B. Vrancken, K. Kempen, J. Vleugels, J.V. Humbeeck, Chapter 3 Additive Manufacturing of Metals via Selective Laser Melting Process Aspects and Material Developments, in: T.S.S. T.S. Srivatsan (Ed.) Additive Manufacturing Innovation, Advances, and Applications, Taylor & Francis Group, LLC, 2016, pp. 70-96.
[94] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Applied Physics Reviews 2 (2015) 041101.
[95] D. Gu, Y. Shen, Materials & Design 30 (2009) 2903-2910.
[96] E. Yasa, J.P. Kruth, Procedia Engineering 19 (2011) 389-395.
[97] T. Hao, RSC Advances 5 (2015) 57212-57215.
[98] A. Ladewig, G. Schlick, M. Fisser, V. Schulze, U. Glatzel, Additive Manufacturing 10 (2016) 1-9.
[99] Z. Han, Z. Yang, M. Han, International Journal of Hydrogen Energy 41 (2016) 10935-10941.
[100] S.-W.C. R. O'Hayre, W. Colella, F.B. Prinz, Fuel Cell Foundamentals, John Wiley & Sons, Inc. , New York 2006.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *