|
1. Torii, H., et al., Mold for direct press molding of optical glass element. 1986, Google Patents. 2. Ishiguro, Y., et al., Method of making optical glass article. 1993, Google Patents. 3. Brand, J., R. Gadow, and A. Killinger, Application of diamond-like carbon coatings on steel tools in the production of precision glass components. Surface and Coatings Technology, 2004. 180: p. 213-217. 4. Klocke, F., et al., Model of coating wear degradation in precision glass molding. The International Journal of Advanced Manufacturing Technology, 2016. 87(1-4): p. 43-49. 5. Kung Jeng, M., et al., Design of Protective Coatings for Glass Lens Molding. Vol. 364. 2008. 655-661. 6. Yeh, J.-W., Recent progress in high-entropy alloys. Annales de Chimie-Science des Matériaux, 2006. 31(6): p. 633-648. 7. Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2: p. 107-123. 8. Yeh, J.-W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303. 9. Michaud, L., et al., New perspectives in monovision: A study comparing aspheric with disposable lenses. International Contact Lens Clinic, 1995. 22(9): p. 203-208. 10. Klocke, F., et al. Coating systems for precision glass molding tools. in proceedings of the 7th international conference: The coating in manufacturing engineering. 2008. 11. Aitken, B.G., Phosphate glasses for glass molds. 1991, Google Patents. 12. Furukawa, S., et al., Glass for molded lens. 2004, Google Patents. 13. Budinski, M.K., et al., Glass mold material for precision glass molding. 2002, Google Patents. 14. Roberts, M., Advances in moulds and materials. Glass technology, 1999. 40(5): p. 136-137. 15. Klocke, F., et al., Adhesive interlayers' effect on the entire structure strength of glass molding tools' Pt–Ir coatings by nano-tests determined. Surface and Coatings Technology, 2011. 206(7): p. 1867-1872. 16. Junjun, W., et al., Antistick Re-Ir Protective Coating Deposited on WC Mould Substrate. Rare Metal Materials and Engineering, 2016. 45(1): p. 227-231. 17. Mandina, M., Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry. Handbook of Optics, M. Bass, Editor, 2009. 18. Chao, C.-L., et al., Study on the design of precious metal based protective films for glass moulding process. Surface and Coatings Technology, 2013. 231: p. 567-572. 19. Su, C.H., et al., Mechanical and optical properties of diamond-like carbon thin films deposited by low temperature process. Thin Solid Films, 2006. 498(1): p. 220-223. 20. Klocke, F., O. Dambon, and K. Georgiadis. Comparison of nitride and noble metal coatings for precision glass molding tools. in Key Engineering Materials. 2010. Trans Tech Publ. 21. Grove, W.R., On the Electro-Chemical Polarity of Gases. Philosophical Transactions of the Royal Society of London, 1852. 142: p. 87-101. 22. Depla, D., S. Mahieu, and J.E. Greene, Chapter 5 - Sputter Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 253-296. 23. Mattox, D.M., Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering), in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, William Andrew Publishing: Boston. p. 237-286. 24. Walton, S.G. and J.E. Greene, Chapter 2 - Plasmas in Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 32-92. 25. http://marriott.tistory.com/97. 26. Greene, J.E., Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 554-620. 27. Mattox, D.M., Chapter 10 - Atomistic Film Growth and Some Growth-Related Film Properties, in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, William Andrew Publishing: Boston. p. 333-398. 28. Movchan, B.A. and A.V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Oxide. The Physics of Metals and Metallography, 1969. 28: p. 83-90. 29. Thornton, J.A., High Rate Thick Film Growth. Annyal Review of Materials Science, 1977. 7: p. 239-260. 30. Messier, R., A.P. Giri, and R. A.Roy, Revised Structure Zone Model for Thin Film Physical Structure. Journal of Vacuum Science & Technology A, 1984. 2(2): p. 500-503. 31. Huang, P.-K., et al., Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6(1-2): p. 74-78. 32. Yeh, J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65(12): p. 1759-1771. 33. Murty, B.S., J.W. Yeh, and S.Ranganathan, High-Entropy Alloys. 2014, London: Elsevier. 218. 34. Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897. 35. 辜文柏, (AlCrTaTiZr)(CN) 薄膜結構及性質之研究, in 清華大學材料科學工程學系學位論文. 2008. p. 1-97. 36. 劉庭瑋, 多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研究, in 清華大學材料科學工程學系學位論文. 2009. p. 1-133. 37. 林季薇, 多元碳化物 (CrNbSiTiZr) Cx 鍍膜之結構與性質研究, in 清華大學材料科學工程學系學位論文. 2010. p. 1-127. 38. 黃志維, 不同甲烷流率對反應式濺鍍 (CrNbSiTiZr) Cx 鍍膜結構與性質之影響. 2011, 國立清華大學. 39. 陳思寰, (CrNbTaTiZr) Cx 薄膜的機械性質與微結構之研究, in 清華大學材料科學工程學系學位論文. 2012. p. 1-135. 40. 許凱閔, et al., (CrNbSiTaZr)CxNy多元碳氮化物薄膜之結構與性質研究. 2015, 新竹市: 國立清華大學. 123面. 41. 陳思寰, (CrNbTaTiZr) Cx 薄膜的機械性質與微結構之研究. 清華大學材料科學工程學系學位論文, 2012. 42. 蔡佳凌, 反應式直流磁控濺鍍法製備 (Al, Cr, Nb, Si, B, C) 100-xNx 高熵薄膜之研究. 清華大學材料科學工程學系學位論文, 2014. 43. Gemelli, E., A. Scariot, and N.H.A. Camargo, Thermal Characterization of Commercially Pure Titanium for Dental Applications. Materials Research, 2007. 10: p. 241-346. 44. Vaz, F., et al., Physical, structural and mechanical characterization of Ti 1− x Si x N y films. Surface and Coatings Technology, 1998. 108: p. 236-240. 45. Hunt, J., et al., Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. The Journal of Physical Chemistry C, 2013. 117(51): p. 26871-26880.
|