帳號:guest(18.188.202.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝函叡
作者(外文):Hsieh, Han-Jui
論文名稱(中文):反應式射頻磁控濺鍍法製備模造玻璃抗沾黏高熵合金薄膜之研究
論文名稱(外文):Study on Anti-stick Glass-molding High-entropy Alloy Films Deposited by RF Reactive Magnetron Sputtering
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien-Wei
口試委員(中文):李勝隆
洪健龍
蔡銘洪
口試委員(外文):Lee, Sheng-Long
Hong, Jian-Long
TSAI, MING-HUNG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031506
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:186
中文關鍵詞:薄膜抗沾黏模造玻璃射頻磁控濺鍍玻璃
外文關鍵詞:filmanti stickingglass moldingRF reactive magnetron sputteringglass
相關次數:
  • 推薦推薦:0
  • 點閱點閱:114
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗以反應式射頻磁控濺鍍法製備多元高熵碳化物及氮化物薄膜,探討薄膜成分含有不同碳原子及氮原子總量對薄膜微結構、附著性、抗玻璃沾黏性的影響。實驗結果顯示碳原子總量不同下,碳化物薄膜在 800 °C 熱循環前後均呈現 FCC 固溶結構,氮化物薄膜則根據氮含量多寡分別呈現混晶 (非晶∕FCC) 與 FCC 固溶結構,在 750 °C 熱循環後也仍保持相同結構,都具有優良的高溫熱穩定性。在碳化物及氮化物薄膜與鎢鋼基板附著性方面,碳化膜在熱循環前後都呈現最好的 HF1 等級,氮化膜則介於 HF2 至 HF3 之間的等級。針對碳化物薄膜在熱循環後與鎢鋼基板之間剝落的現象,本研究獲得解決方法,在工業上極具發展潛力。
Multi-element carbide and nitride coatings based on high-entropy alloys have received lots of attention. In this study, multi-element carbide and nitride films were designed and deposited at 350 °C and 150 V substrate bias on Si wafers and WC-Co substrates by RF reactive magnetron sputtering in the gaseous mixture Ar + CH4 and Ar + N2, separately. By changing carbon and nitrogen content of the coating, crystal structure, microstructure, adhesion and anti-sticking behavior between coating and glass have been investigated. The results of crystal structure indicate that all carbide coatings exhibit FCC structure before and after the 800 °C thermal cycling test. The structures of nitride coatings maintain amorphous + FCC mixed structure based on different nitrogen content before and after the 750 °C thermal cycling test. Thus, all the coatings have good thermal stability. The carbide coatings exhibit the best HF1 grade, and the nitride coatings exhibit the grade between HF2 and HF3. We also overcome the lift-off of the coatings from WC substrate during thermal cycling and thus show its potential in the glass molding industry.
摘要 I
Abstract II
致謝 III
目錄 VII
圖目錄 XII
表目錄 XXII
第一章 前言與研究目的 1
1.1 前言 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 精密光學玻璃模造製程技術 5
2.1.1 光學級模仁特性與要求 7
2.1.2 保護性鍍膜 8
2.2 薄膜鍍製技術 10
2.2.1 濺鍍原理 10
2.2.2 反應式濺鍍 11
2.2.3 直流濺鍍 14
2.2.4 磁控濺鍍 15
2.2.5 薄膜沉積與附著機制 18
2.2.6 薄膜微結構 20
2.3 高熵合金的發展與沿革 25
2.3.1 高熵合金的定義 25
2.3.2 高熵合金特點 27
2.3.3 高熵合金碳化膜及碳氮化物薄膜之研究 30
第三章 實驗步驟與方法 34
3.1 實驗設計 34
3.2 靶材製作 35
3.3 薄膜準備 39
3.3.1 基板 39
3.3.2 製程氣體 40
3.3.3 薄膜鍍製 41
3.4 高溫熱循環試驗 44
3.4.1 高溫爐真空石英封管熱循環試驗 44
3.4.2 真空快速熱退火 (RTA) 熱循環試驗 46
3.5 薄膜性質分析 49
3.5.1 成分分析 49
3.5.2 晶體結構分析 50
3.5.3 微結構分析 50
3.5.4 表面粗糙度分析 51
3.5.5 附著性分析 53
第四章 結果與討論 55
4.1 碳化物及氮化物薄膜之結構與性質 55
4.1.1 高熵合金靶材及鍍膜之成分分析 55
4.1.2 碳化物及氮化物薄膜之成分分析 57
4.1.3 碳化物及氮化物薄膜之晶體結構 61
4.1.4 碳化物及氮化物薄膜之表面形貌與截面形貌分析 66
4.1.5 碳化物及氮化物薄膜之附著性質 72
4.2 碳化物薄膜抗玻璃沾黏最佳化成分分析 76
4.2.1 高溫爐真空石英封管熱循環試驗之晶體結構分析 76
4.2.2 高溫爐真空石英封管熱循環試驗介面分析 83
4.2.2.1 650、750 °C 熱循環 83
4.2.2.2 800 °C 熱循環 97
4.2.2.3 850 °C 熱循環 101
4.2.3 碳化物薄膜最佳化成分 106
4.3 改善碳化物薄膜熱循環後薄膜剝落問題 107
4.3.1 兩種改善方法之薄膜成分分析 109
4.3.2 兩種改善方法之薄膜晶體結構分析 111
4.3.3 兩種改善方法之薄膜表面形貌與截面形貌分析 113
4.3.4 兩種改善方法之薄膜附著性質 116
4.4 改良之碳化物薄膜 RTA 熱循環試驗 118
4.4.1 RTA 熱循環試驗之晶體結構分析 119
4.4.2 RTA 熱循環試驗介面分析 122
4.4.2.1 800 °C 熱循環 122
4.4.2.2 750 °C 熱循環 130
4.4.2.3 薄膜與玻璃接觸區域黑色痕跡以及藍色區域分析 136
4.4.2.4 改良之碳化物薄膜熱循環後薄膜縱深分析 143
4.4.2.5 改良之碳化物薄膜熱循環後薄膜附著性質 152
4.5 氮化物薄膜抗沾黏性試驗 154
4.5.1 RTA 熱循環試驗之晶體結構分析 155
4.5.2 RTA 熱循環試驗介面分析 157
4.5.2.1 800 °C 熱循環 159
4.5.2.2 750 °C 熱循環 162
4.5.2.3 氮化物薄膜熱循環後薄膜附著性分析 165
4.6 RTA 熱循環前後之薄膜表面粗糙度分析 167
第五章 結論 176
第六章 研究貢獻 181
第七章 未來研究方向 182
第八章 參考文獻 183

1. Torii, H., et al., Mold for direct press molding of optical glass element. 1986, Google Patents.
2. Ishiguro, Y., et al., Method of making optical glass article. 1993, Google Patents.
3. Brand, J., R. Gadow, and A. Killinger, Application of diamond-like carbon coatings on steel tools in the production of precision glass components. Surface and Coatings Technology, 2004. 180: p. 213-217.
4. Klocke, F., et al., Model of coating wear degradation in precision glass molding. The International Journal of Advanced Manufacturing Technology, 2016. 87(1-4): p. 43-49.
5. Kung Jeng, M., et al., Design of Protective Coatings for Glass Lens Molding. Vol. 364. 2008. 655-661.
6. Yeh, J.-W., Recent progress in high-entropy alloys. Annales de Chimie-Science des Matériaux, 2006. 31(6): p. 633-648.
7. Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2: p. 107-123.
8. Yeh, J.-W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
9. Michaud, L., et al., New perspectives in monovision: A study comparing aspheric with disposable lenses. International Contact Lens Clinic, 1995. 22(9): p. 203-208.
10. Klocke, F., et al. Coating systems for precision glass molding tools. in proceedings of the 7th international conference: The coating in manufacturing engineering. 2008.
11. Aitken, B.G., Phosphate glasses for glass molds. 1991, Google Patents.
12. Furukawa, S., et al., Glass for molded lens. 2004, Google Patents.
13. Budinski, M.K., et al., Glass mold material for precision glass molding. 2002, Google Patents.
14. Roberts, M., Advances in moulds and materials. Glass technology, 1999. 40(5): p. 136-137.
15. Klocke, F., et al., Adhesive interlayers' effect on the entire structure strength of glass molding tools' Pt–Ir coatings by nano-tests determined. Surface and Coatings Technology, 2011. 206(7): p. 1867-1872.
16. Junjun, W., et al., Antistick Re-Ir Protective Coating Deposited on WC Mould Substrate. Rare Metal Materials and Engineering, 2016. 45(1): p. 227-231.
17. Mandina, M., Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry. Handbook of Optics, M. Bass, Editor, 2009.
18. Chao, C.-L., et al., Study on the design of precious metal based protective films for glass moulding process. Surface and Coatings Technology, 2013. 231: p. 567-572.
19. Su, C.H., et al., Mechanical and optical properties of diamond-like carbon thin films deposited by low temperature process. Thin Solid Films, 2006. 498(1): p. 220-223.
20. Klocke, F., O. Dambon, and K. Georgiadis. Comparison of nitride and noble metal coatings for precision glass molding tools. in Key Engineering Materials. 2010. Trans Tech Publ.
21. Grove, W.R., On the Electro-Chemical Polarity of Gases. Philosophical Transactions of the Royal Society of London, 1852. 142: p. 87-101.
22. Depla, D., S. Mahieu, and J.E. Greene, Chapter 5 - Sputter Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 253-296.
23. Mattox, D.M., Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering), in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, William Andrew Publishing: Boston. p. 237-286.
24. Walton, S.G. and J.E. Greene, Chapter 2 - Plasmas in Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 32-92.
25. http://marriott.tistory.com/97.
26. Greene, J.E., Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 554-620.
27. Mattox, D.M., Chapter 10 - Atomistic Film Growth and Some Growth-Related Film Properties, in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, William Andrew Publishing: Boston. p. 333-398.
28. Movchan, B.A. and A.V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Oxide. The Physics of Metals and Metallography, 1969. 28: p. 83-90.
29. Thornton, J.A., High Rate Thick Film Growth. Annyal Review of Materials Science, 1977. 7: p. 239-260.
30. Messier, R., A.P. Giri, and R. A.Roy, Revised Structure Zone Model for Thin Film Physical Structure. Journal of Vacuum Science & Technology A, 1984. 2(2): p. 500-503.
31. Huang, P.-K., et al., Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6(1-2): p. 74-78.
32. Yeh, J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65(12): p. 1759-1771.
33. Murty, B.S., J.W. Yeh, and S.Ranganathan, High-Entropy Alloys. 2014, London: Elsevier. 218.
34. Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
35. 辜文柏, (AlCrTaTiZr)(CN) 薄膜結構及性質之研究, in 清華大學材料科學工程學系學位論文. 2008. p. 1-97.
36. 劉庭瑋, 多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研究, in 清華大學材料科學工程學系學位論文. 2009. p. 1-133.
37. 林季薇, 多元碳化物 (CrNbSiTiZr) Cx 鍍膜之結構與性質研究, in 清華大學材料科學工程學系學位論文. 2010. p. 1-127.
38. 黃志維, 不同甲烷流率對反應式濺鍍 (CrNbSiTiZr) Cx 鍍膜結構與性質之影響. 2011, 國立清華大學.
39. 陳思寰, (CrNbTaTiZr) Cx 薄膜的機械性質與微結構之研究, in 清華大學材料科學工程學系學位論文. 2012. p. 1-135.
40. 許凱閔, et al., (CrNbSiTaZr)CxNy多元碳氮化物薄膜之結構與性質研究. 2015, 新竹市: 國立清華大學. 123面.
41. 陳思寰, (CrNbTaTiZr) Cx 薄膜的機械性質與微結構之研究. 清華大學材料科學工程學系學位論文, 2012.
42. 蔡佳凌, 反應式直流磁控濺鍍法製備 (Al, Cr, Nb, Si, B, C) 100-xNx 高熵薄膜之研究. 清華大學材料科學工程學系學位論文, 2014.
43. Gemelli, E., A. Scariot, and N.H.A. Camargo, Thermal Characterization of Commercially Pure Titanium for Dental Applications. Materials Research, 2007. 10: p. 241-346.
44. Vaz, F., et al., Physical, structural and mechanical characterization of Ti 1− x Si x N y films. Surface and Coatings Technology, 1998. 108: p. 236-240.
45. Hunt, J., et al., Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. The Journal of Physical Chemistry C, 2013. 117(51): p. 26871-26880.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *