|
[1] Y. Jien-Wei, "Recent progress in high-entropy alloys," Ann. Chim. Sci. Mat, vol. 31, pp. 633-648, 2006. [2] J. W. Yeh, "Recent progress in high-entropy alloys," Annales De Chimie-Science Des Materiaux, vol. 31, pp. 633-648, 2006. [3] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, et al., "Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metallurgical and Materials Transactions A, vol. 36, pp. 881-893, 2005. [4] C.-Y. Hsu, C.-C. Juan, T.-S. Sheu, S.-K. Chen,J.-W. Yeh, "Effect of Aluminum Content on Microstructure and Mechanical Properties of AlxCoCrFeMo0.5Ni High-Entropy Alloys," JOM, vol. 65, pp. 1840-1847, 2013. [5] J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, et al., "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol. 35A, pp. 2533-2536, 2004. [6] 黃坤祥, 粉末冶金學. 2003. [7] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., "Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004. [8] Rahaman, M.N., Ceramic processing. 2006: Wiley Online Library. [9] Mari, D., Cermets and hardmetals. Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., Amsterdam. 2001. [10] C. T. Sims, N. S. Stoloff,W. C. Hagel,superalloys II, 1987. [11] R. M. N. Pelloux,N. J. Grant, "Solid Solutions and Second Phase Strengthening of Nickel Alloys at High and Low Temperatures," NP-7519 United StatesTue Feb 05, 1959. [12] R. Fleischer, "Substitutional solution hardening," Acta metallurgica, vol. 11, pp. 203-209, 1963. [13] M. Morinaga, N. Yukawa, H. Adachi,H. Ezaki, "New PHACOMP and its application to alloy design," Superalloys 1984, vol. 523-532, 1984. [14] E. Machlin,J. Shao, "SIGMA-SAFE: A phase diagram approach to the sigma phase problem in ni base superalloys", Metallurgical Transactions A, vol. 9, pp. 561-568, 1978. [15] C. Jiang, "Site preference of transition-metal elements in B2 NiAl: A comprehensive study", Acta Materialia, vol. 55, pp. 4799-4806, 2007. [16] 潘金生, 健民,田民波, "材料科学基础," 清华大学出版社有限公司, 1998. [17] A. M. Handbook-Properties, "Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2", Metals Park (OH): ASM International, vol. 1990. [18] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004. [19] C.-Y. Hsu, J.-W. Yeh, S.-K. Chen,T.-T. Shun, "Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition," Metallurgical and Materials Transactions A, vol. 35, pp. 1465-1469, 2004. [20] P. K. Huang, J. W. Yeh, T. T. Shun,S. K. Chen,"Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating," Advanced Engineering Materials, vol. 6, pp. 74-78, 2004. [21] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, et al., "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metallurgical and Materials Transactions A, vol. 35, pp. 2533-2536, 2004. [22] Y. Chen, T. Duval, U. Hung, J. Yeh,H. Shih, "Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel," Corrosion science, vol. 47, pp. 2257-2279, 2005. [23] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, et al., "Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metallurgical and Materials Transactions A, vol. 36, pp. 1263-1271, 2005. [24] M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang,C.-P. Tu, "Microstructure and Properties of Al0.5CoCrCuFeNiTix (x=0–2.0) High-Entropy Alloys," MATERIALS TRANSACTIONS, vol. 47, pp. 1395-1401, 2006. [25] M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen,Y.-S. Huang, "Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy," Metallurgical and Materials Transactions A, vol. 37, pp. 1363-1369, 2006. [26] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang,H.-C. Chen, "Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content," Wear, vol. 261, pp. 513-519, 2006. [27] U. S. Hsu, U. D. Hung, J. W. Yeh, S. K. Chen, Y. S. Huang,C. C. Yang, "Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys," Materials Science and Engineering: A, vol. 460–461, pp. 403-408, 2007. [28] C.-H. Lai, K.-H. Cheng, S.-J. Lin,J.-W. Yeh, "Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings," Surface and Coatings Technology, vol. 202, pp. 3732-3738, 2008. [29] M.-H. Tsai, C.-W. Wang, C.-H. Lai, J.-W. Yeh,J.-Y. Gan, "Thermally stable amorphous (AlMoNbSiTaTiVZr) 50 N 50 nitride film as diffusion barrier in copper metallization," Applied Physics Letters, vol. 92, pp. 052109-052109-3, 2008. [30] Y. Chen, U. Hong, H. Shih, J. Yeh,T. Duval, "Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel," Corrosion science, vol. 47, pp. 2679-2699, 2005. [31] Y. Y. Chen, U. T. Hong, J. W. Yeh,H. C. Shih, "Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water," Scripta Materialia, vol. 54, pp. 1997-2001, 2006. [32] Y. Y. Chen, T. Duval, U. T. Hong, J. W. Yeh, H. C. Shih, L. H. Wang, et al., "Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 °C high-purity water," Materials Letters, vol. 61, pp. 2692-2696, 2007. [33] S. Ranganathan, "Alloyed pleasures: Multimetallic cocktails," Current Science, vol. 85, pp. 1404-1406, 2003. [34] M. Åstrand, T. I. Selinder, F. Fietzke,H. Klostermann, "PVD-Al2O3-coated cemented carbide cutting tools," Surface and Coatings Technology, vol. 188–189, pp. 186-192, 2004. [35] C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang,H.-C. Chen, "On the elemental effect of AlCoCrCuFeNi high-entropy alloy system," Materials Letters, vol. 61, pp. 1-5, 2007. [36] R. A. Swalin,A. L. King, "Thermodynamics of solids," American Journal of Physics, vol. 30, pp. 778-778, 1962. [37] P. K. Huang, J. W. Yeh, T. T. Shun,S. K. Chen, "Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating," Advanced Engineering Materials, vol. 6, pp. 74-78, 2004. [38] R. W. Kelsall, I. W. Hamley,M. Geoghegan,Nanoscale science and technology Wiley Online Library, 2005. [39] C.-Y. Hsu, T.-S. Sheu, J.-W. Yeh,S.-K. Chen, "Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys," Wear, vol. 268, pp. 653-659, 2010. [40] C.-Y. Hsu, W.-R. Wang, W.-Y. Tang, S.-K. Chen,J.-W. Yeh, "Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys," Advanced Engineering Materials, vol. 12, pp. 44-49, 2010. [41] C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh,S.-K. Chen, "On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys," Materials Science and Engineering: A, vol. 528, pp. 3581-3588, 2011. [42] C.-C. Juan, C.-Y. Hsu, C.-W. Tsai, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, et al., "On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys," Intermetallics, vol. 32, pp. 401-407, 2013. [43] W. Schubert, H. Neumeister, G. Kinger,B. Lux, "Hardness to toughness relationship of fine-grained WC-Co hardmetals," International Journal of Refractory Metals and Hard Materials, vol. 16, pp. 133-142, 1998. [44] H. Committee,ASM Handbook: Alloy Phase Diagrams ASM International, 1992. [45] J. M. Joubert, "Crystal chemistry and Calphad modeling of the σ phase," Progress in Materials Science, vol. 53, pp. 528-583, 2008. [46] 伍祖璁 and 黃錦鐘, 粉末冶金. 1996, 高立圖書有限公司. [47] German, R.M., P. Suri, and S.J. Park, Review: liquid phase sintering. Journal of Materials Science, 2009. 44(1): p. 1-39. [48] German, R.M., S. Farooq, and C. Kipphut, Kinetics of liquid sintering. Materials Science and Engineering: A, 1988. 105: p. 215-224. [49] Porter, D., Easterling,“KE (1992). Phase Transformations in Metals and Alloys,”. London: Chapman k Hall, 1992: p. 147. [50] Kim, H.-C., D.-Y. Oh, and I.-J. Shon, Sintering of nanophase WC–15vol.% Co hard metals by rapid sintering process. International Journal of Refractory Metals and Hard Materials, 2004. 22(4): p. 197-203. [51] Wei, C., et al., Microstructure and properties of ultrafine cemented carbides—differences in spark plasma sintering and sinter-HIP. Materials Science and Engineering: A, 2012. 552: p. 427-433. [52] Upadhyaya, G.S., Cemented tungsten carbides: production, properties and testing. 1998: William Andrew. [53] Cha, S.I., S.H. Hong, and B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Materials Science and Engineering: A, 2003. 351(1): p. 31-38. [54] Deorsola, F.A., et al., Densification of ultrafine WC–12Co cermets by pressure assisted fast electric sintering. International Journal of Refractory Metals and Hard Materials, 2010. 28(2): p. 254-259. [55] Huang, S., et al., VC, Cr 3 C 2 and NbC doped WC–Co cemented carbides prepared by pulsed electric current sintering. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): p. 417-422. [56] Maizza, G., et al., Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Science and Technology of Advanced Materials, 2007. 8(7): p. 644-654. [57] Kessel, H., et al., Rapid sintering of novel materials by FAST/SPS—Further development to the point of an industrial production process with high cost efficiency. FCT Systeme GmbH, 2010. 96528. [58] 蘇穎奇,利用合金設計改良 Al-Co-Cr-Fe-Mo-Ni 高熵合金雙相結構(BCC+σ)及機械性質之研究. [59] M. H. Tsai, J. W. Yeh, et al., High-Entropy Alloys: A Critical Review, Materials Research Letters, Vol. 2, No. 3, pp. 107–123, 2014.
|