帳號:guest(3.15.18.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳品志
作者(外文):Chen, Pin-Chih
論文名稱(中文):高熵合金粉末燒結之研究
論文名稱(外文):Study on the Sintering of High Entropy Alloys Powders
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien-Wei
口試委員(中文):洪健龍
李勝隆
蔡銘洪
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031505
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:139
中文關鍵詞:高熵合金粉末燒結
外文關鍵詞:High Entropy AlloysMetallugry Powder Sintering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:352
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
實驗室蘇穎奇學長對於鑄造態AlCoCrFeMoNi高熵合金雙相結構研究提升合金的硬度值與破壞韌性。發現此合金系統中,Al元素促進BCC相形成,但會抑制σ相;Ni元素促進FCC相形成;Cr和Mo元素則會促成σ相形成。
由於Ni含量較高的合金:Ni25及Ni30,具有FCC + σ相結構。可期望FCC相增加韌性及高溫強度,σ相可增加高溫強度,故本實驗選此兩合金且特別利用粉末冶金製程製作高熵合金,希望可以利用σ相細緻均勻地分布於FCC基地相中,達到σ相提升硬度,FCC相增加韌性及高溫強度的效果,以增加應用範圍。
首先選取高熵合金氣噴粉末並加入適量羰基鐵粉和黏結劑,再進行濕式球磨混合及冷壓錠。最後使用水平爐管,調節燒結溫度曲線及保護氣氛,成功燒結出高熵粉末冶金試片。
綜合觀察Ni25、Ni30合金之顯微結構及晶體結構,可以發現在富含Fe、Co、Ni的FCC灰色基地相中,有富Mo、Cr的白色σ相,另外有網狀分佈的斑馬紋結構包含黑色相及淺灰色相,黑色相為富含Ni、Al的BCC相;淺灰色相為富Fe、Cr、Mo的區域。顯示利用粉末冶金的方式,確實可以得到較為細緻的相分布情形。其硬度達HV 580且壓痕周圍皆不會出現裂痕,代表此合金具有足夠的韌性。且此合金中的σ相,使合金在高溫下不易軟化,具有高溫應用之潛力。
Ni25 and Ni30 high entropy alloys, which consist of FCC + σ phase, are selected. High entropy alloys are prepared by powder metallurgy in this study. It is hoped that the characteristics of powder metallurgy can be used to control the σ phase distribution in the FCC base phase uniformly. The hardness can be improved by the σ phase and the toughness can be maintained by the FCC phase.
First, the high entropy alloys powders are prepared by gas atomization. Then an appropriate amount of carbonyl iron powder and a binder are added, mixed by wet ball milling and followed by cold compaction. Finally, the green compact is sintered under protective atmosphere, and the high entropy alloys are successfully sintered.
By comprehensively observing the microstructure and crystal structure of Ni25 and Ni30 alloys, it can be found that the FCC gray phase is rich in Fe, Co and Ni, the white σ phase is rich in Mo and Cr, a zebra structure with intervened black phase (BCC phase rich in Ni and Al) and light gray phase (rich in Fe, Cr and Mo). The microstructure shows that the method of powder metallurgy can indeed obtain a fine phase distribution.
The hardness could be attained to HV 580 and no crack around the hardness indentation could be found, which means that the alloy has sufficient toughness. The σ phase lets the alloy resist softening and maintain its high temperature strength, These alloys have the potential for high temperature applications.
摘 要 I
Abstract III
誌 謝 V
目 錄 VII
圖目錄 XII
表目錄 XIX
壹、前言 1
貳、文獻回顧 3
2.1 超合金 3
2.2 介金屬化合物 7
2.2.1 電子化合物 7
2.2.2 σ相簡介 9
2.3 Stellite 合金 11
2.4 粉末製備方式 15
2.4.1 粉末製備方式簡介 15
2.5 燒結方式及機制 21
2.5.1 固相燒結 21
2.5.2 液相燒結 25
2.5.3 燒結方式簡介 33
2.6 高熵合金 38
2.6.1 開發背景 38
2.6.2 高熵合金的特色 39
參、實驗方法 46
3.1 合金製備與實驗流程 46
3.1.1 合金選擇與製備 46
3.1.2 實驗流程 46
3.2 模擬相圖 49
3.3 粉末成型及燒結 50
3.3.1 水平球磨 50
3.3.2 生胚成型 51
3.3.3 燒結製程 52
3.4 性質分析與其它分析 54
3.4.1 X-ray繞射分析 54
3.4.2 微結構與EDS成分分析 55
3.4.3 密度量測與緻密度 55
3.4.4 硬度韌性量測 56
3.4.5 DTA熱分析 57
3.4.6 高溫硬度量測 57
3.4.7 Pin on disk磨耗測試 60
3.4.8 ImageJ影像分析 60
肆、結果與討論 61
4.1 原料粉末分析 61
4.1.1 微結構、橫截面微結構與晶體結構 62
4.1.2 Ni25、Ni30粉末的DTA分析 68
4.1.3 不同熱處理溫度之粉末橫截面微結構與晶體結構 70
4.1.4 模擬相圖討論及參考 73
4.2 不同含量的鐵粉添加與Ni30f粉末之燒結 75
4.2.1 燒結參數建立 75
4.2.2 XRD分析 77
4.2.3 微結構與EDS成分分析 79
4.2.4 機械性質比較 90
4.2.5 1300 C 1 h熱處理之探討 91
4.3 不同含量的鐵粉添加與Ni25粉末之燒結 92
4.3.1 燒結參數建立 92
4.3.2 XRD分析 94
4.3.3 微結構與EDS成分分析 97
4.3.4 機械性質 103
4.4 不同含量的鐵粉添加與Ni30粉末之燒結 104
4.4.1 燒結參數建立 104
4.4.2 XRD分析 106
4.4.3 微結構與EDS成分分析 108
4.4.4 機械性質 112
4.5 使用MIM binder與製程 113
4.5.1 實驗方法與燒結參數建立 113
4.5.2 XRD分析 116
4.5.3 微結構與EDS成分分析 118
4.5.4 機械性質比較 123
4.5.5 各相比例組成 124
4.5.6 微硬度測試及討論 127
4.5.7 高溫硬度量測 130
4.5.8 Pin on disk磨耗測試 131
伍、結論 132
陸、研究貢獻 134
柒、建議未來研究方向 134
捌、參考文獻 135
[1] Y. Jien-Wei, "Recent progress in high-entropy alloys," Ann. Chim. Sci. Mat, vol. 31, pp. 633-648, 2006.
[2] J. W. Yeh, "Recent progress in high-entropy alloys," Annales De Chimie-Science Des Materiaux, vol. 31, pp. 633-648, 2006.
[3] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, et al., "Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metallurgical and Materials Transactions A, vol. 36, pp. 881-893, 2005.
[4] C.-Y. Hsu, C.-C. Juan, T.-S. Sheu, S.-K. Chen,J.-W. Yeh, "Effect of Aluminum Content on Microstructure and Mechanical Properties of AlxCoCrFeMo0.5Ni High-Entropy Alloys," JOM, vol. 65, pp. 1840-1847, 2013.
[5] J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, et al., "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol. 35A, pp. 2533-2536, 2004.
[6] 黃坤祥, 粉末冶金學. 2003.
[7] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., "Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004.
[8] Rahaman, M.N., Ceramic processing. 2006: Wiley Online Library.
[9] Mari, D., Cermets and hardmetals. Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., Amsterdam. 2001.
[10] C. T. Sims, N. S. Stoloff,W. C. Hagel,superalloys II, 1987.
[11] R. M. N. Pelloux,N. J. Grant, "Solid Solutions and Second Phase Strengthening of Nickel Alloys at High and Low Temperatures," NP-7519 United StatesTue Feb 05, 1959.
[12] R. Fleischer, "Substitutional solution hardening," Acta metallurgica, vol. 11, pp. 203-209, 1963.
[13] M. Morinaga, N. Yukawa, H. Adachi,H. Ezaki, "New PHACOMP and its application to alloy design," Superalloys 1984, vol. 523-532, 1984.
[14] E. Machlin,J. Shao, "SIGMA-SAFE: A phase diagram approach to the sigma phase problem in ni base superalloys", Metallurgical Transactions A, vol. 9, pp. 561-568, 1978.
[15] C. Jiang, "Site preference of transition-metal elements in B2 NiAl: A comprehensive study", Acta Materialia, vol. 55, pp. 4799-4806, 2007.
[16] 潘金生, 健民,田民波, "材料科学基础," 清华大学出版社有限公司, 1998.
[17] A. M. Handbook-Properties, "Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2", Metals Park (OH): ASM International, vol. 1990.
[18] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004.
[19] C.-Y. Hsu, J.-W. Yeh, S.-K. Chen,T.-T. Shun, "Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition," Metallurgical and Materials Transactions A, vol. 35, pp. 1465-1469, 2004.
[20] P. K. Huang, J. W. Yeh, T. T. Shun,S. K. Chen,"Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating," Advanced Engineering Materials, vol. 6, pp. 74-78, 2004.
[21] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, et al., "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metallurgical and Materials Transactions A, vol. 35, pp. 2533-2536, 2004.
[22] Y. Chen, T. Duval, U. Hung, J. Yeh,H. Shih, "Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel," Corrosion science, vol. 47, pp. 2257-2279, 2005.
[23] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, et al., "Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metallurgical and Materials Transactions A, vol. 36, pp. 1263-1271, 2005.
[24] M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang,C.-P. Tu, "Microstructure and Properties of Al0.5CoCrCuFeNiTix (x=0–2.0) High-Entropy Alloys," MATERIALS TRANSACTIONS, vol. 47, pp. 1395-1401, 2006.
[25] M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen,Y.-S. Huang, "Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy," Metallurgical and Materials Transactions A, vol. 37, pp. 1363-1369, 2006.
[26] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang,H.-C. Chen, "Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content," Wear, vol. 261, pp. 513-519, 2006.
[27] U. S. Hsu, U. D. Hung, J. W. Yeh, S. K. Chen, Y. S. Huang,C. C. Yang, "Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys," Materials Science and Engineering: A, vol. 460–461, pp. 403-408, 2007.
[28] C.-H. Lai, K.-H. Cheng, S.-J. Lin,J.-W. Yeh, "Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings," Surface and Coatings Technology, vol. 202, pp. 3732-3738, 2008.
[29] M.-H. Tsai, C.-W. Wang, C.-H. Lai, J.-W. Yeh,J.-Y. Gan, "Thermally stable amorphous (AlMoNbSiTaTiVZr) 50 N 50 nitride film as diffusion barrier in copper metallization," Applied Physics Letters, vol. 92, pp. 052109-052109-3, 2008.
[30] Y. Chen, U. Hong, H. Shih, J. Yeh,T. Duval, "Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel," Corrosion science, vol. 47, pp. 2679-2699, 2005.
[31] Y. Y. Chen, U. T. Hong, J. W. Yeh,H. C. Shih, "Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water," Scripta Materialia, vol. 54, pp. 1997-2001, 2006.
[32] Y. Y. Chen, T. Duval, U. T. Hong, J. W. Yeh, H. C. Shih, L. H. Wang, et al., "Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 °C high-purity water," Materials Letters, vol. 61, pp. 2692-2696, 2007.
[33] S. Ranganathan, "Alloyed pleasures: Multimetallic cocktails," Current Science, vol. 85, pp. 1404-1406, 2003.
[34] M. Åstrand, T. I. Selinder, F. Fietzke,H. Klostermann, "PVD-Al2O3-coated cemented carbide cutting tools," Surface and Coatings Technology, vol. 188–189, pp. 186-192, 2004.
[35] C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang,H.-C. Chen, "On the elemental effect of AlCoCrCuFeNi high-entropy alloy system," Materials Letters, vol. 61, pp. 1-5, 2007.
[36] R. A. Swalin,A. L. King, "Thermodynamics of solids," American Journal of Physics, vol. 30, pp. 778-778, 1962.
[37] P. K. Huang, J. W. Yeh, T. T. Shun,S. K. Chen, "Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating," Advanced Engineering Materials, vol. 6, pp. 74-78, 2004.
[38] R. W. Kelsall, I. W. Hamley,M. Geoghegan,Nanoscale science and technology Wiley Online Library, 2005.
[39] C.-Y. Hsu, T.-S. Sheu, J.-W. Yeh,S.-K. Chen, "Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys," Wear, vol. 268, pp. 653-659, 2010.
[40] C.-Y. Hsu, W.-R. Wang, W.-Y. Tang, S.-K. Chen,J.-W. Yeh, "Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys," Advanced Engineering Materials, vol. 12, pp. 44-49, 2010.
[41] C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh,S.-K. Chen, "On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys," Materials Science and Engineering: A, vol. 528, pp. 3581-3588, 2011.
[42] C.-C. Juan, C.-Y. Hsu, C.-W. Tsai, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, et al., "On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys," Intermetallics, vol. 32, pp. 401-407, 2013.
[43] W. Schubert, H. Neumeister, G. Kinger,B. Lux, "Hardness to toughness relationship of fine-grained WC-Co hardmetals," International Journal of Refractory Metals and Hard Materials, vol. 16, pp. 133-142, 1998.
[44] H. Committee,ASM Handbook: Alloy Phase Diagrams ASM International, 1992.
[45] J. M. Joubert, "Crystal chemistry and Calphad modeling of the σ phase," Progress in Materials Science, vol. 53, pp. 528-583, 2008.
[46] 伍祖璁 and 黃錦鐘, 粉末冶金. 1996, 高立圖書有限公司.
[47] German, R.M., P. Suri, and S.J. Park, Review: liquid phase sintering. Journal of Materials Science, 2009. 44(1): p. 1-39.
[48] German, R.M., S. Farooq, and C. Kipphut, Kinetics of liquid sintering. Materials Science and Engineering: A, 1988. 105: p. 215-224.
[49] Porter, D., Easterling,“KE (1992). Phase Transformations in Metals and Alloys,”. London: Chapman k Hall, 1992: p. 147.
[50] Kim, H.-C., D.-Y. Oh, and I.-J. Shon, Sintering of nanophase WC–15vol.% Co hard metals by rapid sintering process. International Journal of Refractory Metals and Hard Materials, 2004. 22(4): p. 197-203.
[51] Wei, C., et al., Microstructure and properties of ultrafine cemented carbides—differences in spark plasma sintering and sinter-HIP. Materials Science and Engineering: A, 2012. 552: p. 427-433.
[52] Upadhyaya, G.S., Cemented tungsten carbides: production, properties and testing. 1998: William Andrew.
[53] Cha, S.I., S.H. Hong, and B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Materials Science and Engineering: A, 2003. 351(1): p. 31-38.
[54] Deorsola, F.A., et al., Densification of ultrafine WC–12Co cermets by pressure assisted fast electric sintering. International Journal of Refractory Metals and Hard Materials, 2010. 28(2): p. 254-259.
[55] Huang, S., et al., VC, Cr 3 C 2 and NbC doped WC–Co cemented carbides prepared by pulsed electric current sintering. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): p. 417-422.
[56] Maizza, G., et al., Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Science and Technology of Advanced Materials, 2007. 8(7): p. 644-654.
[57] Kessel, H., et al., Rapid sintering of novel materials by FAST/SPS—Further development to the point of an industrial production process with high cost efficiency. FCT Systeme GmbH, 2010. 96528.
[58] 蘇穎奇,利用合金設計改良 Al-Co-Cr-Fe-Mo-Ni 高熵合金雙相結構(BCC+σ)及機械性質之研究.
[59] M. H. Tsai, J. W. Yeh, et al., High-Entropy Alloys: A Critical Review, Materials Research Letters, Vol. 2, No. 3, pp. 107–123, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *