帳號:guest(3.128.198.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃俞甄
作者(外文):Huang, Yu-Chen
論文名稱(中文):硼矽玻璃對BaWO4於束縛燒結下之影響
論文名稱(外文):Effects of Borosilicate Glass on the Constrained Sintering of BaWO4
指導教授(中文):簡朝和
指導教授(外文):Jean, Jau-Ho
口試委員(中文):方友清
李嘉甄
口試委員(外文):Fang, Yu-Ching
Li, Chia-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031501
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:束縛燒結低溫共燒陶瓷單軸向應力
外文關鍵詞:Constrained SinteringLTCCUniaxial Stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討添加硼矽玻璃對BaWO4 (BW)在束縛燒結下緻密行為之影響。BW在束縛燒結下無法於950oC燒結緻密,燒結活化能分析顯示BW在束縛燒結下的緻密機制發生轉變,造成其產生嚴重的緻密延遲。為了解決緻密延遲,透過添加硼矽玻璃至BW中,形成硼矽玻璃+BW (BWG)玻璃陶瓷系統,BWG在束縛燒結下於950oC即可達到良好的緻密度。
BWG於束縛燒結下的緻密溫度高於自由燒結100oC,本研究顯示BWG於束縛燒結下,具有與自由燒結時相同的緻密機制及等向性的微結構。為了提升BWG於束縛燒結下的緻密度,可藉由在Z軸向施加壓應力,在750-900oC使束縛燒結下的BWG具有與自由燒結相同的緻密速率所需之單軸向壓應力為100-900 kPa,此結果與利用構成方程式(Constitutive equations)中的等向性模型計算之理論值相符。活化能分析結果顯示BWG的燒結緻密機制由硼矽玻璃的黏滯流動(Viscous flow)所控制,推測硼矽玻璃的黏滯流動可使BW粉體重排(Rearrangement),使BWG能夠在束縛燒結下於950oC達到緻密。

The effects of borosilicate glass on the densification behavior of BaWO4 (BW) under constrained sintering have been studied. BW cannot be densified under constrained sintering at 950oC. Activation energy analysis shows that the densification mechanism of BW under constrained sintering has been changed. It results in a severe densification retardation of BW under constrained sintering. To solve this problem, we added borosilicate glass into BW, which forms borosilicate glass + BW (BWG) system. BWG system can be densified under constrained sintering at 950oC. Insignificant change in densification mechanism and isotropy in microstructure are observed during free and constrained sintering. The required uniaxial stress to densify BWG under constrained sintering at 750-900oC is in the range of 100-900 kPa, consistent with those calculated by using an isotropic viscous model. Activation energy analysis shows that the densification of BWG under constrained sintering is mainly achieved by the viscous flow of borosilicate glass and the rearrangement of BW particles.
一、前言 1
二、實驗方法 6
2.1 粉體合成及試片製備 6
2.1.1 粉體合成 6
2.1.2 試片製備 7
2.2 性質量測 8
2.2.1 緻密度與收縮性質量測 8
2.2.2 X光繞射分析 8
2.2.3 顯微結構觀察與統計分析 8
三、結果與討論 10
3.1 BW的束縛燒結 10
3.1.1 緻密行為 10
3.1.2 燒結活化能 11
3.1.3 顯微結構分析 12
3.2 硼矽玻璃與BW間無明顯反應發生 12
3.2.1 結晶相之鑑定 12
3.2.2 顯微結構觀察 13
3.3 BWG的束縛燒結 14
3.3.1 BWG與ZrO2間無界面反應 14
3.3.2 緻密行為 14
3.3.3 燒結活化能 15
3.3.4 晶粒方向分析 17
3.3.5 外加應力 18
3.3.6 燒結行為分析 19
四、結論 24
五、參考文獻 25

1. Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer Science & Business Media; 2006. p. 1-17.
2. Kamehara N, Kurihara K, Niwa K. Method for producing multilayered glass-ceramic structure with copper-based conductors therein. US Patent 4,504,339; 1985.
3. Tummala RR. Ceramic and glass‐ceramic packaging in the 1990s. J Am Ceram Soc. 1991;74(5):895-908.
4. Jean JH, Fang YC, Dai SX, Wilcox DL. Effects of alumina on devitrification kinetics and mechanism of K2O–CaO–SrO–BaO–B2O3–SiO2 glass. Jpn J Appl Phys. 2003;42(7):4438-43.
5. Scrantom CQ, Lawson JC. LTCC technology: where we are and where we're going. II. IEEE MTT-S1999. p. 193-200.
6. Hillman C, Suo Z, Lange FF. Cracking of laminates subjected to biaxial tensile stresses. J Am Ceram Soc. 1996;79(8):2127-33.
7. Gongora Rubio MR, Espinoza Vallejos P, Sola Laguna L, Santiago Aviles JJ. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens Actuators A: Phys. 2001;89(3):222-41.
8. Mikeska K, Jensen R. Pressure-assisted sintering of multilayer packages. Ceram Trans. 1989;15:629-50.
9. Vitriol WA, Brown RL. Process for fabricating dimensionally stable interconnect boards. US Patent 4,645,552; 1987.
10. Mikeska KR, Schaefer DT. Method for reducing shrinkage during firing of ceramic bodies. US Patent 5,474,741; 1995.
11. Geller B, Fathy A, Liberatore M, Chen H, Ayers G, Pendrick V, et al. LTCC-M: an enabling technology for high performance multilayer RF systems. J Microwave. 1999;42(7):64-70.
12. Garino TJ, Bowen HK. Deposition and sintering of particle films on a rigid substrate. J Am Ceram Soc. 1987;70(11):C315-C7.
13. Lautzenhiser F, Amaya E. Self-constrained LTCC tape. Am Ceram Soc Bull. 2002;81(10):27-32.
14. Chang JC, Jean JH. Self-constrained sintering of mixed low-temperature-cofired ceramic laminates. J Am Ceram Soc. 2006;89(3):829-35.
15. Liao CH, Jean JH, Hung YY. Self-constrained sintering of a multilayer low-temperature-cofired glass-ceramics/alumina laminate. J Am Ceram Soc. 2008;91(2):648-51.
16. Garino TJ, Bowen HK. Kinetics of constrained‐film sintering. J Am Ceram Soc. 1990;73(2):251-7.
17. Guillon O, Weiler L, Rodel J. Anisotropic microstructural development during the constrained sintering of dip-coated alumina thin films. J Am Ceram Soc. 2007;90(5):1394-400.
18. Guillon O, Aulbach E, Rodel J, Bordia RK. Constrained sintering of alumina thin films: Comparison between experiment and modeling. J Am Ceram Soc. 2007;90(6):1733-7.
19. Wang X, Kim JS, Atkinson A. Constrained sintering of 8 mol% Y2O3 stabilised zirconia films. J Eur Ceram Soc. 2012;32(16):4121-8.
20. Kim JS, Rudkin RA, Wang X, Atkinson A. Constrained sintering kinetics of 3YSZ films. J Eur Ceram Soc. 2011;31(13):2231-9.
21. Wang X, Atkinson A. Microstructure evolution in thin zirconia films: Experimental observation and modelling. Acta Mater. 2011;59(6):2514-25.
22. Lu GQ, Sutterlin RC, Gupta TK. Effect of mismatched sintering kinetics on camber in a low‐temperature cofired ceramic package. J Am Ceram Soc. 1993;76(8):1907-14.
23. Bang J, Lu GQ. Constrained‐film sintering of a borosilicate glass: In situ measurement of film stresses. J Am Ceram Soc. 1995;78(3):813-5.
24. Tzeng SY, Jean JH. Stress development during constrained sintering of alumina/glass/alumina sandwich structure. J Am Ceram Soc. 2002;85(2):335-40.
25. Choe JW, Calata JN, Lu GQ. Constrained-film sintering of a gold circuit paste. J Mater Res. 1995;10(4):986-94.
26. Amaral L, Jamin C, Senos AMR, Vilarinho PM, Guillon O. Constrained sintering of BaLa4Ti4O15 thick films: Pore and grain anisotropy. J Eur Ceram Soc. 2013;33(10):1801-8.
27. Bordia R, Scherer G. Sintering of composites: A critique of the available analyses. Ceramic Powder Science II Transactions Westerville, Oh. 1988;1:872-86.
28. Bordia RK, Scherer GW. On constrained sintering—I. Constitutive model for a sintering body. Acta Metall. 1988;36(9):2393-7.
29. Bordia RK, Scherer GW. On constrained sintering—II. Comparison of constitutive models. Acta Metall. 1988;36(9):2399-409.
30. Bordia RK, Scherer GW. On constrained sintering—III. Rigid inclusions. Acta Metall. 1988;36(9):2411-6.
31. Hsu RT, Jean JH, Hung YY. Stress required to densify a low-fire NiCuZn ferrite under constrained sintering. J Am Ceram Soc. 2008;91(6):2051-4.
32. Kim ES, Chun BS, Freer R, Cernik RJ. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J Eur Ceram Soc. 2010;30(7):1731-6.
33. Cai PZ, Messing GL, Green DJ. Determination of the mechanical response of sintering compacts by cyclic loading dilatometry. J Am Ceram Soc. 1997;80(2):445-52.
34. Mohanram A, Messing GL, Green DJ. Measurement of viscosity of densifying glass-based systems by isothermal cyclic loading dilatometry. J Am Ceram Soc. 2004;87(2):192-6.
35. Young WS, Cutler IB. Initial sintering with constant rates of heating. J Am Ceram Soc. 1970;53(12):659-63.
36. Weibel A, Bouchet R, Bouvier P, Knauth P. Hot compaction of nanocrystalline TiO2 (anatase) ceramics. Mechanisms of densification: Grain size and doping effects. Acta Mater. 2006;54(13):3575-83.
37. Lin YC, Jean JH. Constrained densification kinetics of alumina/borosilicate glass + alumina/alumina sandwich structure. J Am Ceram Soc. 2002;85(1):150-4.
38. Zuo R, Rödel J. Temperature dependence of constitutive behaviour for solid-state sintering of alumina. Acta Mater. 2004;52(10):3059-67.
39. Espe W. Materials of high vacuum technology. 2. Oxford: Pergamon Press; 1968.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *