|
1. Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer Science & Business Media; 2006. p. 1-17. 2. Kamehara N, Kurihara K, Niwa K. Method for producing multilayered glass-ceramic structure with copper-based conductors therein. US Patent 4,504,339; 1985. 3. Tummala RR. Ceramic and glass‐ceramic packaging in the 1990s. J Am Ceram Soc. 1991;74(5):895-908. 4. Jean JH, Fang YC, Dai SX, Wilcox DL. Effects of alumina on devitrification kinetics and mechanism of K2O–CaO–SrO–BaO–B2O3–SiO2 glass. Jpn J Appl Phys. 2003;42(7):4438-43. 5. Scrantom CQ, Lawson JC. LTCC technology: where we are and where we're going. II. IEEE MTT-S1999. p. 193-200. 6. Hillman C, Suo Z, Lange FF. Cracking of laminates subjected to biaxial tensile stresses. J Am Ceram Soc. 1996;79(8):2127-33. 7. Gongora Rubio MR, Espinoza Vallejos P, Sola Laguna L, Santiago Aviles JJ. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens Actuators A: Phys. 2001;89(3):222-41. 8. Mikeska K, Jensen R. Pressure-assisted sintering of multilayer packages. Ceram Trans. 1989;15:629-50. 9. Vitriol WA, Brown RL. Process for fabricating dimensionally stable interconnect boards. US Patent 4,645,552; 1987. 10. Mikeska KR, Schaefer DT. Method for reducing shrinkage during firing of ceramic bodies. US Patent 5,474,741; 1995. 11. Geller B, Fathy A, Liberatore M, Chen H, Ayers G, Pendrick V, et al. LTCC-M: an enabling technology for high performance multilayer RF systems. J Microwave. 1999;42(7):64-70. 12. Garino TJ, Bowen HK. Deposition and sintering of particle films on a rigid substrate. J Am Ceram Soc. 1987;70(11):C315-C7. 13. Lautzenhiser F, Amaya E. Self-constrained LTCC tape. Am Ceram Soc Bull. 2002;81(10):27-32. 14. Chang JC, Jean JH. Self-constrained sintering of mixed low-temperature-cofired ceramic laminates. J Am Ceram Soc. 2006;89(3):829-35. 15. Liao CH, Jean JH, Hung YY. Self-constrained sintering of a multilayer low-temperature-cofired glass-ceramics/alumina laminate. J Am Ceram Soc. 2008;91(2):648-51. 16. Garino TJ, Bowen HK. Kinetics of constrained‐film sintering. J Am Ceram Soc. 1990;73(2):251-7. 17. Guillon O, Weiler L, Rodel J. Anisotropic microstructural development during the constrained sintering of dip-coated alumina thin films. J Am Ceram Soc. 2007;90(5):1394-400. 18. Guillon O, Aulbach E, Rodel J, Bordia RK. Constrained sintering of alumina thin films: Comparison between experiment and modeling. J Am Ceram Soc. 2007;90(6):1733-7. 19. Wang X, Kim JS, Atkinson A. Constrained sintering of 8 mol% Y2O3 stabilised zirconia films. J Eur Ceram Soc. 2012;32(16):4121-8. 20. Kim JS, Rudkin RA, Wang X, Atkinson A. Constrained sintering kinetics of 3YSZ films. J Eur Ceram Soc. 2011;31(13):2231-9. 21. Wang X, Atkinson A. Microstructure evolution in thin zirconia films: Experimental observation and modelling. Acta Mater. 2011;59(6):2514-25. 22. Lu GQ, Sutterlin RC, Gupta TK. Effect of mismatched sintering kinetics on camber in a low‐temperature cofired ceramic package. J Am Ceram Soc. 1993;76(8):1907-14. 23. Bang J, Lu GQ. Constrained‐film sintering of a borosilicate glass: In situ measurement of film stresses. J Am Ceram Soc. 1995;78(3):813-5. 24. Tzeng SY, Jean JH. Stress development during constrained sintering of alumina/glass/alumina sandwich structure. J Am Ceram Soc. 2002;85(2):335-40. 25. Choe JW, Calata JN, Lu GQ. Constrained-film sintering of a gold circuit paste. J Mater Res. 1995;10(4):986-94. 26. Amaral L, Jamin C, Senos AMR, Vilarinho PM, Guillon O. Constrained sintering of BaLa4Ti4O15 thick films: Pore and grain anisotropy. J Eur Ceram Soc. 2013;33(10):1801-8. 27. Bordia R, Scherer G. Sintering of composites: A critique of the available analyses. Ceramic Powder Science II Transactions Westerville, Oh. 1988;1:872-86. 28. Bordia RK, Scherer GW. On constrained sintering—I. Constitutive model for a sintering body. Acta Metall. 1988;36(9):2393-7. 29. Bordia RK, Scherer GW. On constrained sintering—II. Comparison of constitutive models. Acta Metall. 1988;36(9):2399-409. 30. Bordia RK, Scherer GW. On constrained sintering—III. Rigid inclusions. Acta Metall. 1988;36(9):2411-6. 31. Hsu RT, Jean JH, Hung YY. Stress required to densify a low-fire NiCuZn ferrite under constrained sintering. J Am Ceram Soc. 2008;91(6):2051-4. 32. Kim ES, Chun BS, Freer R, Cernik RJ. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J Eur Ceram Soc. 2010;30(7):1731-6. 33. Cai PZ, Messing GL, Green DJ. Determination of the mechanical response of sintering compacts by cyclic loading dilatometry. J Am Ceram Soc. 1997;80(2):445-52. 34. Mohanram A, Messing GL, Green DJ. Measurement of viscosity of densifying glass-based systems by isothermal cyclic loading dilatometry. J Am Ceram Soc. 2004;87(2):192-6. 35. Young WS, Cutler IB. Initial sintering with constant rates of heating. J Am Ceram Soc. 1970;53(12):659-63. 36. Weibel A, Bouchet R, Bouvier P, Knauth P. Hot compaction of nanocrystalline TiO2 (anatase) ceramics. Mechanisms of densification: Grain size and doping effects. Acta Mater. 2006;54(13):3575-83. 37. Lin YC, Jean JH. Constrained densification kinetics of alumina/borosilicate glass + alumina/alumina sandwich structure. J Am Ceram Soc. 2002;85(1):150-4. 38. Zuo R, Rödel J. Temperature dependence of constitutive behaviour for solid-state sintering of alumina. Acta Mater. 2004;52(10):3059-67. 39. Espe W. Materials of high vacuum technology. 2. Oxford: Pergamon Press; 1968.
|