帳號:guest(3.139.81.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳立婷
作者(外文):Chen, Li-Ting
論文名稱(中文):以氣溶膠自組裝技術製備功能性混成式奈米材料應用於能源與環境工程領域
論文名稱(外文):A Facile Aerosol-Based Self-Assembly Technique of Functional Hybrid Nanoparticle Cluster for Energy and Environmental Application
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):呂世源
何榮銘
胡啟章
口試委員(外文):Lu, Shih-Yuan
Ho, Rong-Ming
Hu, Chi-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105030605
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:79
中文關鍵詞:氣溶膠自組裝氧化鋅氧化錳光觸媒超級電容器
外文關鍵詞:aerosolself-assemblyzinc oxidemanganese oxidephotocatalystsupercapacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:69
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本研究目的為於氣相中以氣溶膠系統自組裝製備混成式結構奈米粒子,並將之應用於能源與環境工程領域中,我們利用TGA、XRD、SEM、HR-TEM及EDS做材料之性質分析,也利用DMA做即時之粒徑測量,經過基礎之性質鑑定後,我們將製備出之奈米粒子作為光觸媒材料應用於光催化除汙技術以及電極材料應用於超級電容器。
本研究分為兩大部分,第一部分為利用氣溶膠系統製備擔載銀之氧化鋅奈米粒子團簇(Ag-ZnO-NPCs),運用上述儀器做基本之材料性質鑑定,發現製備出之Ag-ZnO-NPCs呈銀奈米粒子均勻包覆於氧化鋅外圍之覆盆子狀結構,我們將此覆盆子狀結構之奈米粒子作為光觸媒,應用於光催化除汙技術,降解水溶液中之染料羅丹名B(RhB)分子,我們將水溶液中之實驗條件設定於pH3、pH6及pH10,各代表酸、中及鹼性環境,比較不同狀況下光觸媒之催化活性,另外我們將陰離子表面活性劑,十二烷基硫酸鈉(SDS)與奈米粒子利用靜電吸引力與親疏水性質形成凡得瓦力而鍵結(i.e. SDS-Ag-ZnO-NPCs),再以同樣之實驗條件(pH3、pH6及pH10)觀察奈米粒子經鍵結後對光催化活性之影響力,結果顯示與未擔載Ag之ZnO比較來看,Ag-ZnO-NPCs催化活性能提高20X,與SDS鍵結之光觸媒於酸中性條件下則能使催化活性提升至6X,此顯著之提升效果歸因於SDS有助於奈米粒子於水溶液穩定分散,而如此將使光觸媒不易團聚沉至底部則能有效吸收光能量。
第二部分同樣使用氣溶膠系統,此部分則是製備擔載銀之錳氧化物奈米粒子團簇(AgMnOx-NPCs),透過TGA、XRD、SEM、EDS與DMA即時粒徑量測之基礎材料性質鑑定,製備出之奈米粒子為球狀,且Ag粒子均勻分布於MnOx外圍,我們將AgMnOx-NPCs作為活性材料製做為以石墨塊材為基底之活性電極,製做電極需使用黏著劑將活性材料黏著於石墨塊材上,通常黏著劑需先溶於有機溶劑中,含有黏著劑之有機溶液其本身極性會影響活性材料能否完善均勻沉積於石墨塊材上,因此本研究首先配置三種黏著劑溶液,分別是Nafion+EtOH、Nafion+NMP與PVDF+NMP,以循環伏安及定電流充放電測試來探討不同極性之有機溶液對活性電極之電容特性影響,另外,本研究額外添加了碳黑材料與活性材料一起附著於石墨塊材上,探討添加此種導電性良好之材料對活性電極電容特性影響,結果顯示以PVDF+NMP作為黏著劑能提升活性電極之電容特性,而額外添加碳黑也有助於提升活性材料之導電性進而提高比電容值。
A gas-phase-controlled self-assembly synthetic approach is demonstrated to fabricate functional hybrid nanoparticles for energy and environmental applications. TGA, XRD, SEM, in-situ DMA, HR-TEM and EDS were demonstrated for characterization of synthesized hybrid nanoparticles. In our work, the self-assembly hybrid-nanoparticles were used as photocatalysts and electrode materials for photodegradation techniques and supercapacitors application, respectively.
In the first part of the work, we use aerosol-based self-assembly approach to fabricate Ag-ZnO hybrid nanostructure as a high-performance catalyst for photodegradation of water pollutants. The degradation of rhodamine B (RhB) was used as representative, which were tested and evaluated with respect to the environmental pH and the presence of dodecyl sulfate corona on the surface of the catalyst. The results show that a raspberry-structure Ag−ZnO hybrid nanoparticle cluster was successfully synthesized via gas-phase evaporation-induced self-assembly. The photodegradation activity increased significantly (20×) by using the Ag−ZnO hybrid nanoparticle cluster as a catalyst. A surge of catalytic turnover frequency of ZnO nanoparticle cluster (>20×) was observed through the hybridization with silver nanoparticles. The dodecyl sulfate corona increased the photocatalytic activity of the Ag−ZnO hybrid nanoparticle cluster, especially at the acidic and neutral pH environments (maximum 6×), and the enhancement in catalytic activity was attributed to the improved colloidal stability of ZnO-based nanoparticle cluster under the interaction with RhB. This part provides a generic route of facile synthesis of the Ag−ZnO hybrid nanoparticle cluster with a mechanistic understanding of the interface reaction for enhancing photocatalysis toward the degradation of water pollutants.
We use the same gas-phase controlled method to fabricate AgMnOx hybrid nanostructures. TGA、XRD、SEM、EDS and in-situ DMA were demonstrated to characterize properties of hybrid nanostructures. Ag nanoparticles were homogeneously distributed outside the MnOx nanoparticle cluster. AgMnOx hybrid nanoparticles were used as electrode materials for supercapacitors application. Supercapacitor performances are influenced by binder types and contents in the electrodes. We performed two types of binder solutions: nafion and PVDF. The capacitance performance of different types of binders were investigated by cyclic voltammetry (CV) and galvanostatic charge discharge (GCD). The results showed that PVDF was suitable binder than nafion based on its higher dispersibility and better electrochemical performances. The specific capacitance of electrodes using PVDF as binder can reach 210 F/g (maxima). The increasing specific capacitance was also observed through the hybridization with silver nanoparticles. After addition of carbon black. The specific capacitance of AgMnOx reached 325 F/g (maxima) after adding carbon black. The high performance of the hybrid nanoparticle as the electrode was attributed to the better conductivities during the electrochemical reaction. We provide a facile aerosol-based synthesis method to fabricate hybrid nanoparticles as electrode materials for enhancing the specific capacitance.
目錄
摘要 Ⅰ
ABSTRACT Ⅲ
誌謝 Ⅴ
總目錄 Ⅵ
圖目錄 Ⅷ
表目錄 XI
第一章 緒論 1
1.1 功能性奈米材料 1
1.2 混成式奈米材料 7
1.3 奈米粒子合成方法 9
1.4 氣溶膠自組裝法製備奈米粒子 12
1.5 氧化鋅奈米材料 17
1.6 氧化錳奈米材料 19
1.7 銀奈米材料 21
1.8 研究目的 22
第二章 實驗方法 24
2.1 實驗藥品 24
2.2 實驗步驟 25
2.2.1 氣霧化奈米粒子之製備 25
2.2.2 奈米粒子與表面活性劑鍵結 27
2.2.3 光催化活性測試 28
2.2.4 電極製備 30
2.2.5 電化學量測 31
2.3 實驗儀器 32
2.3.1 熱重量分析儀(TGA) 32
2.3.2 X光繞射儀(XRD) 32
2.3.3 氣相奈米粒子流動分析儀(DMA) 33
2.3.4 掃描式電子顯微鏡(SEM) 33
2.3.5 穿透式電子顯微鏡(TEM & HRTEM) 34
2.3.6 紫外光可見光吸收光譜儀(UV-Vis) 35
2.3.7 界面電位分析儀(Zeta potential analysis) 35
第三章 結果與討論 37
3.1 以氣溶膠自組裝法製備Ag-ZnO-NPC作為光觸媒 37
3.1.1 混成式結構Ag-ZnO-NPC材料性質分析 37
3.1.2 配體分子與粒子團簇間之作用關係 43
3.1.3 Ag-ZnO混成奈米粒子團簇之光催化性能表現 45
3.2 以氣溶膠自組裝法製備Ag-MnOx-NPC作為混成式電極材料應用於超級電容器 54
3.2.1 混成式結構AgMnOx-NPC材料性質分析 54
3.2.2 混成式活性電極材料電化學分析結果 56
3.2.2.1 不同黏著劑與溶劑對活性材料電容特性之影響 56
3.2.2.2 添加碳黑(XC72)對電極材料電容特性之影響 62
第四章 結論 68
第五章 未來展望 70
參考文獻 71

1. Ibrahim Khan, K.S., Idrees Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2017.
2. ALAALDIN M. ALKILANY, S.E.L., CATHERINE J. MURPHY, The Gold Standard: Gold Nanoparticle Libraries To Understand the NanoBio Interface. ACCOUNTS OF CHEMICAL RESEARCH, 2013. 46: p. 650-661.
3. Rajesh Sardar, A.M.F., Paul Mulvaney, Royce W. Murray, Gold Nanoparticles: Past, Present, and Future. Langmuir, 2009. 25: p. 13840-13851.
4. Miriam Colombo, w.S.C.-R., wb Maria F. Casula, Biological applications of magnetic nanoparticles. Chem Soc Rev, 2012. 41: p. 4306-4334.
5. Mrinmoy De, P.S.G., Vincent M. Rotello, Applications of Nanoparticles in Biology. Adv. Mater., 2008. 20: p. 4225–4241.
6. Jesus M. de la Fuente, V.G., Nanobiotechnology
Inorganic Nanoparticles vs Organic Nanoparticles. Vol. 4. 2012: Elsevier.
7. Yun-Sang Lee, Y.-i.K., Dong Soo Lee, Future Perspectives of Radionanomedicine Using the Novel Micelle-Encapsulation Method for Surface Modification. Nucl Med Mol Imaging, 2015. 49: p. 170-173.
8. Guangli Che, B.B.L., Charles R. Martin, Ellen R. Fisher, Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir, 1999. 15: p. 750-758.
9. Martin Lundqvist, J.S., Giuliano Elia, Iseult Lynch, Tommy Cedervall, Kenneth A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS, 2008. 105: p. 14265–14270.
10. GAPONENKO, S.V., Optical Properties of Semiconductor Nanocrystals. 1998, United Kingdom: THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE.
11. Kubo, R., Generalized Cumulant Expansion Method. J. Phys. Soc. Jpn. , 1962. 17: p. 1100-1120.
12. Richard A. Yetter , G.A.R., Steven F. Son, Metal particle combustion and nanotechnology. The Combustion Institute, 2009. 32: p. 1819–1838.
13. Suresh, S., Semiconductor Nanomaterials, Methods and Applications: A Review. Nanoscience and Nanotechnology, 2013. 3: p. 62-74.
14. Samuel E. Lohse, C.J.M., Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. J. Am. Chem. Soc., 2012. 134: p. 15607-15620.
15. Xiaohua Huang, M.A.E.-S., Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 2010. 1: p. 13-28.
16. Okpala, C.C., Nanocomposites – An Overview. International Journal of Engineering Research and Development, 2013. 8(11): p. 17-23.
17. Vivek Kumar Modi , Y.S., Chandan Sharma, Prakash Kumar Sen ,Shailendra Kumar Bohidar, Review on Green Polymer Nanocomposite and Their Applications. International Journal of Innovative Research in Science, Engineering and Technology, 2014. 3(11): p. 17651-17656.
18. Caruso, F., Nanoengineering of Particle Surfaces. Adv. Mater., 2001. 13: p. 11-22.
19. Makio Naito, M.H., Toyokazu Yokoyama, Kiyoshi Nogi, Nanoparticle Technology Handbook. 2007: Elsevier.
20. Matijevic, E., Preparation and Properties of Uniform Size Colloids. Chem. Mater., 1993. 5: p. 412-426.
21. Matijevic, E., Preparation and characterization of well defined powders and their applications in technology. Journal of the European Ceramic Society, 1998. 18: p. 1357-1364.
22. Hardikar, V.V.a.E.M., Coating of nanosize silver particles with silica. Journal of Colloid and Interface Science, 2000. 221: p. 133-136.
23. F. Einar Kruis, H.F.a.A.P., SYNTHESIS OF NANOPARTICLES IN THE GAS PHASE FOR ELECTRONIC, OPTICAL AND MAGNETIC APPLICATIONSÐA REVIEW. J. Aerosol Sci., 1998. 29: p. 511-535.
24. Xia, Y.W.a.Y., Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano Lett., 2004. 4: p. 2047-2050.
25. MP, P., Metal particles made in various colloidal self-assemblies: syntheses and properties.In: Sugimoto T, editor. Fine particles: synthesis, characterization, and mechanism of growth. Surfactant science series, 2000. 92: p. 497–511.
26. Waclawik, J.C.a.E.R., Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv.,, 2014. 4: p. 23505–23527.
27. KARHUNEN, T., ON GAS-PHASE SYNTHESIS OF NANOPARTICLES FOR ADVANCED ENERGY SOLUTIONS, in REPORT SERIES IN AEROSOL SCIENCE. 2016: Faculty of Science and Forestry of the University of Eastern Finland.
28. Kikuo Okuyama, I.W.L., Preparation of nanoparticles via spray route. Chemical Engineering Science, 2003. 58: p. 537 – 547.
29. Robert M. Eninger , C.J.H.J., Pratim Biswas , Atin Adhikari ,Tiina Reponen & Sergey A. Grinshpun, Electrospray versus Nebulization for Aerosolization and Filter Testing with Bacteriophage Particles. Aerosol Science and Technology, 2009. 43: p. 298–304.
30. Yunfeng Lu, H.F., Aaron Stump, Timothy L. Ward, Thomas Rieker & C. Jeffrey Brinker, Aerosol-assisted selfassembly of mesostructured spherical nanoparticles. NATURE, 1999. 398: p. 223-226.
31. Jung Sang Cho, J.-C.L., Sang-Hoon Rhee, Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density. J Biomed Mater Res Part B, 2015. 104B: p. 422–430.
32. Asep Bayu Dani Nandiyanto, K.O., Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 2011. 22: p. 1-19.
33. OKUYAMA, E., PREPARATION OF MICRO-CONTROLLED PARTICLES USING AEROSOL PROCESS. J. Aerosol Sci., 1991. 22: p. S7-SI0.
34. Tokyo Institute of Technology, c.e. Principle of synthesis of functional ceramic nanoparticles by spray pyrolysis.
35. Hankwon Chang, H.D.J., Controlled synthesis of porous particles via aerosol processing and their applications. Advanced Powder Technology, 2014. 25: p. 32-42.
36. Tsung-Hsuan Yu, W.-Y.C., Kang-Ju Chao and Shih-Yuan Lu, ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. Nanoscale, 2013. 5: p. 7356–7360.
37. Wei Li Ong, S.N., Bradley Kloostra and Ghim Wei Ho, Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance. Nanoscale, 2013. 5: p. 5568–5575.
38. acidYosep Han, D.K., Gukhwa Hwang, Byoungcheun Lee, Igchun Eom, Pil Je Kim, Meiping Tong, Hyunjung Kim, Aggregation and dissolution of ZnO nanoparticles synthesized bydifferent methods: Influence of ionic strength and humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 451: p. 7-15.
39. Yuanhui Zheng, L.Z., Yingying Zhan, Xingyi Lin, Qi Zheng, and Kemei Wei, Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorganic Chemistry, 2007. 46(17): p. 6980-6986.
40. Myo Thuya Thein, S.-Y.P., Azizan Aziz, Mitsuru Itoh, Effect of Ni coupling on the photoluminescence property and photocatalytic activity of ZnO nanorods. Journal of the Taiwan Institute of Chemical Engineers, 2016. 61: p. 156–165.
41. Ali Abbasi, M.H., Masoud Salavati-Niasari, Sobhan Mortazavi-Derazkola, Facile size-controlled preparation of highly photocatalytically active ZnCr2O4 and ZnCr2O4/Ag nanostructures for removal of organic contaminants. Journal of Colloid and Interface Science, 2017. 500: p. 276–284.
42. Mahsa Pirhashemi, A.H.-Y., Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. Journal of Colloid and Interface Science, 2017. 491: p. 216–229.
43. Yan Lu, J.Z., Lei Ge, Changcun Han, Ping Qiu, Siman Fang, Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity. Journal of Colloid and Interface Science, 2016. 483: p. 146–153.
44. Kian Mun Lee , C.W.L., Koh Sing Ngai, Joon Ching Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 2016. 88: p. 428-448.
45. Min Chen, J.G.C.S., Yixin Zhao, Ruoxi Zhang, Xinyuan You, Qinglei Liu, Wang Zhang, Yishi Su, Huilan Su, and Di Zhang, Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures. ACS Nano, 2016. 10: p. 6693-6701.
46. Ping She, K.X., Shan Zeng, Qinrong He, Hang Sun, Zhenning Liu, Investigating the size effect of Au nanospheres on the photocatalytic activity of Au-modified ZnO nanorods. Journal of Colloid and Interface Science, 2017. 499: p. 76–82.
47. T. Yatsui, Y.R., T. Morishima, W. Nomura, T. Kawazoe, T. Yonezawa, M. Washizu, H. Fujita, and M. Ohtsu, Self-assembly method of linearly aligning ZnO quantum dots for a nanophotonic signal transmission device. Appl. Phys. Lett., 2010. 96: p. 133106.
48. Yonezawa, T.H., A.; Sato, S.; Ariyada, O., Preparation of Zinc Oxide Nanoparticles by Using Microwave-induced Plasma in Liquid. Chem. Lett., 2010. 39: p. 783-785.
49. Jian F Lei, L.B.L., Kai Du, Jing Ni, Shao F Zhang and Ling Z Zhao, Thermo-catalytic decomposition of formaldehyde: a novel approach to produce mesoporous ZnO for enhanced photocatalytic activities. Nanotechnology, 2014. 25: p. 255701.
50. Ping She, S.Y., Qinrong He, Xiaochen Zhang, Kongliang Xu, Yinxing Shang, Xiaoju Men, Shan Zeng, Hang Sun, Zhenning Liu, A self-standing macroporous Au/ZnO/reduced graphene oxide foam for recyclable photocatalysis and photocurrent generation. Electrochimica Acta, 2017. 246: p. 35–42.
51. M.Y. Guo, M.K.F., F. Fang, X.Y. Chen, A.M.C. Ng, A.B. Djuriˇsi ´c, W.K. Chan, ZnO and TiO2 1D nanostructures for photocatalytic applications. Journal of Alloys and Compounds, 2011. 509: p. 1328–1332.
52. Murray J. Height , S.E.P., Okorn Mekasuwandumrong, Piyasan Praserthdam, Ag-ZnO catalysts for UV-photodegradation of methylene blue. Applied Catalysis B: Environmental, 2006. 63: p. 305–312.
53. Zongyu Wang, S.L., Jianan Zhang, Jiajun Yan, Yepin Zhao, Clare Mahoney, Rachel Ferebee, Danli Luo, Joanna Pietrasik, Michael R. Bockstaller and Krzysztof Matyjaszewski, Photocatalytic Active Mesoporous Carbon/ZnO Hybrid Materials from Block Copolymer Tethered ZnO Nanocrystals. Langmuir, 2017. 33: p. 12276-12284.
54. Xiao-Yan Zhang, Y.-J.D., Jin-Ku Liu, Yi Lua, Xiao-Hong Yang, Mass preparation and novel visible light photocatalytic activity of C and Ag Co-modified ZnO nanocrystals. Journal of Colloid and Interface Science, 2015. 459: p. 1–9.
55. B. Subash, B.K., M. Swaminathan, and M. Shanthi, Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag-ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir, 2012. 29: p. 939-949.
56. Reenamole Georgekutty, M.K.S., Suresh C. Pillai, A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism. Journal of Physical Chemistry C, 2008. 112: p. 13563-13570.
57. V. Vaianoa, M.M., J.J. Murcia, H. Rojas, J.A. Navío, M.C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Applied Catalysis B: Environmental, 2018. 225: p. 197–206.
58. Shao-Wei Bian, I.A.M., Thilini Rupasinghe, and Vicki H. Grassian, Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir, 2011. 27: p. 6059–6068.
59. Munichandraiah, S.D.a.N., Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties. J. Phys. Chem. C, 2008. 112: p. 4406-4417.
60. Yaohui Wang, I.Z., Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors. Materials Letters, 2011. 65: p. 1759–1761.
61. Alfred Tawirirana Chidembo, S.H.A., Konstantin Konstantinov, Charl Jeremy Jafta, Hua Kun Liu and Kenneth Ikechukwu Ozoemena, In situ engineering of urchin-like reduced grapheneoxide–Mn2O3–Mn3O4 nanostructures for supercapacitors. RSC Advances, 2014. 4: p. 886.
62. Ming Huang, F.L., Fan Dong, Yu Xin Zhang and Li Li Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A,, 2015. 3: p. 21380–21423.
63. Xingyou Lang, A.H., Takeshi Fujita and Mingwei Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. NATURE NANOTECHNOLOGY, 2011. 6: p. 232-236.
64. TING-TING LIU, G.-J.S., MING-TONG JI and ZHI-PENG MA, Research Progress in Nano-Structured MnO2 as Electrode Materials for Supercapacitors. Asian Journal of Chemistry, 2013. 25: p. 7065-7070.
65. Meng Dong, Y., HongFangSong, XinQiu, XiaoDongHao, ChuanPuLiu, Yuan Yuan, XinLuLi, JiaMuHuang, Self-assembledspongy-likeMnO2 electrode materialsforsupercapacitors. Physica E, 2012. 45: p. 103–108.
66. Guihua Yu, L.H., Nian Liu, Huiliang Wang, Michael Vosgueritchian, Yuan Yang, Yi Cui, and Zhenan Bao, Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Lett., 2011. 11: p. 4438–4442.
67. Kang, S.H.C.a.Y.C., Polystyrene-Templated Aerosol Synthesis of MoS2–Amorphous Carbon Composite with Open Macropores as Battery Electrode. ChemSusChem, 2015. 8: p. 2260 – 2267.
68. Achmad Syafiuddin, S., Mohd Razman Salim, Ahmad Beng Hong Kueh, Tony Hadibaratad and Hadi Nur, A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis,Properties, and Future Challenges. JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2017. 64: p. 732–756.
69. Jingyu Liu, D.A.S., Saira Shervani, and Robert H. Hurt, Controlled Release of Biologically Active Silver from Nanosilver Surfaces. American Chemical Society, 2010. 4: p. 6903–6913.
70. Siva Kumar-Krishnan, E.P., Monserrat Hernández-Iturriaga, Josué D. Mota-Morales, Milton Vázquez-Lepe, Yuri Kovalenko, Isaac C. Sanchez, Gabriel Luna-Bárcenas, Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 2015. 67: p. 242-251.
71. Tung-Yu Tsai, H.-L.W., Yi-Chen Chen, Wei-Chang Chang, Je-Wei Chang, Shih-Yuan Lu, De-Hao Tsai, Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments. Journal of Colloid and Interface Science, 2017. 490: p. 802–811.
72. Fu-Cheng Lee, Y.-F.L., Fang-Chun Chou, Chung-Fu Cheng, Rong-Ming Ho, and De-Hao Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation. J. Phys. Chem. B, 2016. 120: p. 13638-13648.
73. Yi-Fu Lu, F.-C.C., Fu-Cheng Lee, Chih-Yuan Lin, and De-Hao Tsai, Synergistic Catalysis of Methane Combustion Using Cu-Ce-O Hybrid Nanoparticles with High Activity and Operation Stability. J. Phys. Chem. C, 2016. 120: p. 27389-27398.
74. Chao-Shun Lai, Y.-C.C., Hsiao-Fang Wang, Hsin-Chia Ho, Rong-Ming Ho and De-Hao Tsai, Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles. Nanotechnology, 2016. 28: p. 035602.
75. Jeffrey E. Chen, H.-Y.L., Saikat Dutta, Saad M. Alshehri, Yusuke Yamauchi, Mai Thanh Nguyen, Tetsu Yonezawa and Kevin C.-W. Wu, Synthesis of magnetic mesoporous titania colloidal crystals through evaporation induced self-assembly in emulsion as effective and recyclable photocatalysts. Phys.Chem.Chem.Phys., 2015. 17: p. 27653--27657.
76. Ping She , K.X., Shengyan Yin, Yinxing Shang, Qinrong He, Shan Zeng, Hang Sun, Zhenning Liu, Bioinspired self-standing macroporous Au/ZnO sponges for enhanced photocatalysis. Journal of Colloid and Interface Science, 2018. 514: p. 40–48.
77. Thai Phuong Nguyen, W.-C.C., Yen-Chih Lai, Ta-Chih Hsiao, De-Hao Tsai, Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses. Anal Bioanal Chem, 2017. 409: p. 5933–5941.
78. Matthew N. Martin, A.J.A., Robert I. MacCuspie, and Vincent A. Hackley, Dissolution, Agglomerate Morphology, and Stability Limits of Protein-Coated Silver Nanoparticles. Langmuir, 2014. 30: p. 11442-11452.
79. Jui-Ting Tai, C.-S.L., Hsin-Chia Ho, Yu-Shan Yeh, Hsiao-Fang Wang, Rong-Ming Ho, and De-Hao Tsai, Protein-Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments. Langmuir, 2014. 30: p. 12755-12764.
80. Zhentao Zhu, S.T., Jiawei Yuan, Xiaolong Qin, Yuxiao Deng, Renjie Qu, Geir Martin Haarberg, Effects of Various Binders on Supercapacitor Performances. Int. J. Electrochem. Sci., 2016. 11: p. 8270 – 8279.
81. C. Ramirez-Castro, O.C., L. Athouel, R. Retoux, D. Belanger, and T. Brousse, Electrochemical Performance of Carbon/MnO2 Nanocomposites Prepared via Molecular Bridging as Supercapacitor Electrode Materials. Journal of The Electrochemical Society, 2015. 162: p. A5179-A5184.
82. Jiaojie Tan, T.J.C., De-Hao Tsai, Jingyu Liu, John M. Pettibone, Rian You, Vincent A. Hackley, and Michael R. Zachariah, Surface Modification of Cisplatin-Complexed Gold Nanoparticles and Its Influence on Colloidal Stability, Drug Loading, and Drug Release. Langmuir, 2017. 34: p. 154-163.
83. Xuan Li, J.J.L., and Harold W. Walker, Aggregation Kinetics and Dissolution of Coated Silver Nanoparticles. Langmuir, 2011. 28: p. 1095-1104.
84. REDFERN, A.W.C.A.J.P., Thermogravimetric Analysis
A Review. Analyst, 1963. 88: p. 906-924.
85. De-Hao Tsai, F.W.D., Robert I. MacCuspie, Tae Joon Cho, Michael R. Zachariah, and Vincent A. Hackley, Competitive Adsorption of Thiolated Polyethylene Glycol and Mercaptopropionic Acid on Gold Nanoparticles Measured by Physical Characterization Methods. Langmuir, 2010. 26: p. 10325–10333.
86. De-Hao Tsai, F.W.D., Athena M. Keene, Katherine M. Tyner, Robert I. MacCuspie, Tae Joon Cho, Michael R. Zachariah, and Vincent A. Hackley, Adsorption and Conformation of Serum Albumin Protein on Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ Spectroscopic Methods. Langmuir, 2011. 27: p. 2464–2477.
87. D-H Tsai, S., T D Corrigan, R J Phaneuf and MRZachariah, Electrostatic-directed deposition of nanoparticles on a field generating substrate. Nanotechnology, 2005. 16: p. 1856–1862.
88. De-Hao Tsai, T.J.C., Frank W. DelRio, Julian Taurozzi, Michael R. Zachariah, and Vincent A. Hackley, Hydrodynamic Fractionation of Finite Size Gold Nanoparticle Clusters. J. Am. Chem. Soc., 2011. 133: p. 8884–8887.
89. D.-H. Tsai, L.F.P.I., R. A. Zangmeister, M. J. Tarlov, and M. R. Zachariah, Aggregation Kinetics of Colloidal Particles Measured by Gas-Phase Differential Mobility Analysis. Langmuir, 2009. 25: p. 140-146.
90. Yen-Chih Lai, C.-S.L., Jui-Ting Tai, Thai Phuong Nguyen, Hsuan-Lan Wang, Chih-Yuan Lin,Tung-Yu Tsai, Hsin-Chia Ho, Po-Hsuan Wang, Ying-Chih Liao, De-Hao Tsai, Understanding ligand–nanoparticle interactions for silica, ceria, and titania nanopowders. Advanced Powder Technology, 2015. 26: p. 1676–1686.
91. Bikash Chandra Beheraa, C., Dinesh Setti, Sudarsan Ghosh, P. Venkateswara Rao, Spreadability studies of metal working fluids on tool surface and itsimpact on minimum amount cooling and lubrication turning. Journal of Materials Processing Technology, 2017. 244: p. 1–16.
92. Arnau Carne´-Sa´nchez, I.I., Mary Cano-Sarabia and Daniel Maspoch, A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. NATURE CHEMISTRY, 2013. 5: p. 203-211.
93. Brayner, R.D., S. A.; Yeṕ reḿ ian, C.; Djediat, C.; Meyer, M.; Coute,́ A.; Fiev́ et, F., ZnO Nanoparticles: Synthesis, Characterization, and Ecotoxicological Studies. Langmuir, 2010. 26: p. 6522-6528.
94. J. MICHAEL BERG, A.R., NIVEDITA BANERJEE, REMA ZEBDA & CHRISTIE M. SAYES, The relationship between pH and zeta potential of ~ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology, 2009. 3: p. 276–283.
95. Sara Skoglund, T.A.L., †, Jonas Hedberg, Eva Blomberg, Inger Odnevall Wallinder, Susanna Wold, and Maria Lundin, Effect of Laundry Surfactants on Surface Charge and Colloidal Stability of Silver Nanoparticles. Langmuir, 2013. 29: p. 8882-8891.
96. Ye Li, Z.Q., Hongxia Guo, Hanxiao Yang, Guojun Zhang, Shulan Ji, Tingying Zeng, Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity. PLOS ONE, 2014. 9: p. e114638.
97. Ting-Ting Chen, I.-C.C., Min-Han Yang, Hsin-Tien Chiu, Chi-Young Lee, The exceptional photo-catalytic activity of ZnO/RGO composite viametal and oxygen vacancies. Applied Catalysis B: Environmental, 2013. 143: p. 442–449.
98. Prabal Sapkota, H.K., Zinc–air fuel cell, a potential candidate for alternative energy. Journal of Industrial and Engineering Chemistry, 2009. 15: p. 445–450.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *