|
1. Engel, T. and Reid, P. J. Physical chemistry, 2006, Pearson Benjamin Cummings. 2. Shewmon, P. Diffusion in solids, 2016, Springer. 3. Ge, Q.; Ling, M.; and Chung, T.-S. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. Journal of Membrane Science, 2013, 442, 225-237. 4. Zhong, Y.; Feng, X.; Chen, W.; Wang, X.; Huang, K.-W.; Gnanou, Y.; and Lai, Z. Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water. Environmental Science & Technology, 2016, 50, 1039-1045. 5. Yasukawa, M.; Tanaka, Y.; Takahashi, T.; Shibuya, M.; Mishima, S.; and Matsuyama, H. Effect of Molecular Weight of Draw Solute on Water Permeation in Forward Osmosis Process. Industrial & Engineering Chemistry Research, 2015, 54, 8239-8246. 6. Jun, B. M.; Nguyen, T. P. N.; Ahn, S. H.; Kim, I. C.; and Kwon, Y. N. The application of polyethyleneimine draw solution in a combined forward osmosis/nanofiltration system. Journal of Applied Polymer Science, 2015, 132. 7. Wang, Y.; Yu, H.; Xie, R.; Zhao, K.; Ju, X.; Wang, W.; Liu, Z.; and Chu, L. An easily recoverable thermo-sensitive polyelectrolyte as draw agent for forward osmosis process. Chinese Journal of Chemical Engineering, 2016, 24, 86-93. 8. Altaee, A.; Zaragoza, G.; and van Tonningen, H. R. Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination, 2014, 336, 50-57. 9. Cai, Y. A critical review on draw solutes development for forward osmosis. Desalination, 2016, 391, 16-29. 10. Semiat, R. Energy issues in desalination processes. Environmental science & technology, 2008, 42, 8193-8201. 11. Razmjou, A.; Liu, Q.; Simon, G. P.; and Wang, H. Bifunctional Polymer Hydrogel Layers As Forward Osmosis Draw Agents for Continuous Production of Fresh Water Using Solar Energy. Environmental Science & Technology, 2013, 47, 13160-13166. 12. Cai, Y.; Shen, W.; Wei, J.; Chong, T. H.; Wang, R.; Krantz, W. B.; Fane, A. G.; and Hu, X. Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environmental Science: Water Research & Technology, 2015, 1, 341-347. 13. Luo, H.; Wang, Q.; Zhang, T. C.; Tao, T.; Zhou, A.; Chen, L.; and Bie, X. A review on the recovery methods of draw solutes in forward osmosis. Journal of Water Process Engineering, 2014, 4, 212-223. 14. Dupont, D.; Depuydt, D.; and Binnemans, K. Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. The Journal of Physical Chemistry B, 2015, 119, 6747-6757. 15. Van der Bruggen, B.; Schaep, J.; Wilms, D.; and Vandecasteele, C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. Journal of Membrane Science, 1999, 156, 29-41. 16. Munson, B. R.; Okiishi, T. H.; Rothmayer, A. P.; and Huebsch, W. W. Fundamentals of fluid mechanics, 2014, John Wiley & Sons. 17. Georgalis, Y.; Umbach, P.; Soumpasis, D. M.; and Saenger, W. Dynamics and microstructure formation during nucleation of lysozyme solutions. Journal of the American Chemical Society, 1998, 120, 5539-5548. 18. Lodge, J. and Heyes, D. Structural evolution of phase-separating model colloidal liquids by Brownian dynamics computer simulation. The Journal of chemical physics, 1998, 109, 7567-7577. 19. Jena, A. and Chaturvedi, M. Phase transformation in materials, 1992, Prentice Hall. 20. Porter, D. A.; Easterling, K. E.; and Sherif, M. Phase Transformations in Metals and Alloys, (Revised Reprint), 2009, CRC press. 21. Gaskell, D. R. and Laughlin, D. E. Introduction to the Thermodynamics of Materials, 2017, CRC Press. 22. Moran, M. J.; Shapiro, H. N.; Boettner, D. D.; and Bailey, M. B. Fundamentals of engineering thermodynamics, 2010, John Wiley & Sons. 23. Smith, W. F. and Hashemi, J. Foundations of materials science and engineering, 2011, McGraw-Hill. 24. Kohno, Y.; Arai, H.; Saita, S.; and Ohno, H. Material design of ionic liquids to show temperature-sensitive LCST-type phase transition after mixing with water. Australian Journal of Chemistry, 2012, 64, 1560-1567. 25. Kohno, Y. and Ohno, H. Temperature-responsive ionic liquid/water interfaces: Relation between hydrophilicity of ions and dynamic phase change. Physical Chemistry Chemical Physics, 2012, 14, 5063-5070. 26. Kohno, Y. and Ohno, H. Ionic liquid/water mixtures: from hostility to conciliation. Chemical Communications, 2012, 48, 7119-7130. 27. Saita, S.; Kohno, Y.; and Ohno, H. Detection of small differences in the hydrophilicity of ions using the LCST-type phase transition of an ionic liquid–water mixture. Chemical Communications, 2013, 49, 93-95. 28. Sun, S.; Wang, H.; and Wu, P. Dynamic self-aggregation and disaggregation behavior of thermoresponsive hyperbranched polyethylenimine with peripheral NIPAM groups: an infrared spectroscopic study. Soft Matter, 2013, 9, 2878-2888. 29. Wang, H.; Sun, S.; and Wu, P. Thermodynamics of Hyperbranched Poly(ethylenimine) with Isobutyramide Residues during Phase Transition: An Insight into the Molecular Mechanism. The Journal of Physical Chemistry B, 2011, 115, 8832-8844. 30. Liu, Y.; Li, W.; Hou, L.; and Wu, P. Thermosensitive hyperbranched polyethylenimine partially substituted with N-isopropylacrylamide monomer: thermodynamics and use in developing a thermosensitive graphene composite. RSC Advances, 2014, 4, 24263-24271. 31. Li, W. and Wu, P. Unusual thermal phase transition behavior of an ionic liquid and poly(ionic liquid) in water with significantly different LCST and dynamic mechanism. Polymer Chemistry, 2014, 5, 5578-5590. 32. Wang, R.; Leng, W.; Gao, Y.; and Yu, L. Microemulsion-like aggregation behaviour of an LCST-type ionic liquid in water. RSC Advances, 2014, 4, 14055-14062. 33. Skoog, D. A.; Holler, F. J.; and Crouch, S. R. Principles of Instrumental Analysis, 2007, Thomson Brooks/Cole. 34. Rubinstein, M. and Colby, R. H. Polymer physics, 2003, Oxford university press New York. 35. Strobl, G. R. and Strobl, G. R. The physics of polymers, 1997, Springer. 36. Sperling, L. H. Introduction to physical polymer science, 2005, John Wiley & Sons. 37. Stewart, J. Calculus: Early transcendentals, 1995, Pacific Grove, CA: Brooks/Cole Publishing Company. 38. Pierola, I. F. and Agzenai, Y. Ion Pairing and Anion-Driven Aggregation of an Ionic Liquid in Aqueous Salt Solutions. The Journal of Physical Chemistry B, 2012, 116, 3973-3981. 39. Fukaya, Y.; Sekikawa, K.; Murata, K.; Nakamura, N.; and Ohno, H. Miscibility and phase behavior of water–dicarboxylic acid type ionic liquid mixed systems. Chemical Communications, 2007, 3089-3091. 40. Ohno, H. Electrochemical aspects of ionic liquids, 2005, John Wiley & Sons.
|