帳號:guest(3.133.157.142)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林聖鈞
作者(外文):Lin, Sheng-Jun
論文名稱(中文):以物理和化學建模評估無星雲核的主要形成途徑
論文名稱(外文):Assessing the Dominant Formation Scenario of Starless Cores via Physical and Chemical Modeling
指導教授(中文):賴詩萍
指導教授(外文):Lai, Shih-Ping
口試委員(中文):Pagani, Laurent
呂聖元
平野尚美
何英宏
顏士韋
口試委員(外文):Pagani, Laurent
Liu, Sheng-Yuan
Hirano, Naomi
Harsono, Daniel
Yen, Hsi-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:105025802
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:126
中文關鍵詞:天文化學星際介質(L1512)星際介質(L1498)星際磁場偏極恆星形成
外文關鍵詞:astrochemistryISM: abundancesISM: individual objects: L 1512ISM: individual objects: L 1498ISM: magnetic fieldspolarizationstar formation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:167
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
無星雲核(starless core)是孕育新生恆星和行星的場所。儘管我們已知重力塌縮在無星雲核形成的過程中扮演重要角色,對於其細節,尤其是形成所需時間,尚不完全了解。不同動力學理論所預期的無星雲核形成模型在形成過程的時間尺度有所不同,甚至可以相差至十倍。藉由與時間相依的化學分析法,我們可以測量歷經的塌縮時間長短來區別不同的無星雲核形成模型。在本研究中,我以氘化程度推估兩個無星雲核的塌縮時間:L1512以及L1498。我藉由觀測資料對天體的內部氘化程度進行化學建模,而這些觀測資料包含用以測定消光程度的紅外線波段觀測以及對於分子譜線進行非平衡態輻射遞移計算的電波波段資料。我們發現L1512的年紀較老(塌縮時間>1.43百萬年)而L1498則較年輕(塌縮時間>0.35百萬年,與典型的自由下墜時間尺度相當)。由此推論L1512的磁場可能較L1498強,而磁場影響下的雙極性擴散有可能使L1512塌縮的速度減緩或甚至使其停止於目前的狀態。由L1512的850微米波段偏振觀測,我們以戴維斯—錢卓塞卡—費米(Davis–Chandrasekhar–Fermi)方法得出其在天球平面的磁場強度為18$
m$5微高斯。然而單由此磁場分量並無法使L1512免於重力塌縮,且這與L1512有震盪的外層以及沒有內流運動的內核觀測不符。因此我們由維理(Virial)分析法,推算出要能支持L1512本身的重力所需的總磁場強度為32微高斯,即視線方向的磁場分量強度為27微高斯。
Starless cores are the potential sites for star and planet formation.
Although we know gravitational collapse plays the main role during the core formation, the details, in particular the timescale, are not yet well understood. The collapsing timescale suggested by different dynamical scenarios could vary by more than a factor of ten. With time-dependent chemical analysis, measuring the collapsing timescale of the cores allows us to distinguish between dynamical theories of core formation. In this thesis, I measure the collapsing timescale (t_coll) of two nearby low-mass starless cores, L1512 and L1498, using deuterium fractionation as a chemical clock. I perform chemical modeling of the deuteration profiles across the two targets based on dust extinction measurements from near-infrared observations and non-local thermal equilibrium radiative transfer with radio observations including the multi-transition of N2H+, N2D+, DCO+, and H2D+ (110-111). I find that L1512 is chemically evolved (t_coll>~ 1.43 Ma) while L1498 is chemically young (t_coll>~ 0.35 Ma, comparable to the typical free-fall time). This would imply that the magnetic field (B-field) is stronger in L1512 than in L1498. Consequently, ambipolar diffusion may have slowed down the contraction of L1512 or even halted it to the resent state. I further conducted the 850 um polarization observations toward L1512 and perform the Davis–Chandrasekhar–Fermi analysis to derive a lane-of-sky B-field strength of 18$
m$5 uG. Alone with this plane-of-sky B-field strength, L1512 can not be sufficiently supported, which however is not consistent with the presence of an oscillating envelope and the absence of infall motion in the core. With the Virial analysis, I estimate that the total B-field strength of 32 uG (a line-of-sight component of 27 uG) is needed to support L1512 against gravity.
Abstract (Chinese) I
Abstract II
Acknowledgements III
Contents V
List of Figures IX
List of Tables XII
1 Introduction 1
1.1 Starless Core Formation: Background . . . . . . . . . . . . . . . . . . 1
1.2 Starless Core Formation: Chemical Modeling . . . . . . . . . . . . . . 2
2 Physical and chemical modeling of the starless core L1512 7
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 IRAM 30 m observations . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 JCMT observations . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 GBT observations . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 CFHT observations . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Spitzer observations . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Continuum maps . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Molecular emission lines . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Velocity structure . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Visual extinction . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Density profile . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.3 Radiative transfer applied to the onion-shell model . . . . . . . 27
2.5.4 Time-dependent chemical model . . . . . . . . . . . . . . . . . 31
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.1 Density and kinetic temperature . . . . . . . . . . . . . . . . . 35
2.6.2 Cation abundance profiles . . . . . . . . . . . . . . . . . . . . 36
2.6.3 CO and N2 depletion . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.4 Lifetime scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A Spectral line observations . . . . . . . . . . . . . . . . . . . . . . . . . 44
B Best-fit physical and abundance profiles . . . . . . . . . . . . . . . . . 46
3 Deuterium fractionation of the starless core L1498 48
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Spectral observations . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Continuum observations . . . . . . . . . . . . . . . . . . . . . 57
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Continuum maps . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Molecular emission lines . . . . . . . . . . . . . . . . . . . . . 59
3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 Onion-like physical model . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Time-dependent chemical model . . . . . . . . . . . . . . . . . 64
3.5.3 Visual extinction . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.1 Density and kinetic temperature . . . . . . . . . . . . . . . . . 70
3.6.2 Cation abundance profiles . . . . . . . . . . . . . . . . . . . . 73
3.6.3 CO and N2 abundance profiles . . . . . . . . . . . . . . . . . . 75
3.6.4 Deuterium fractionation and lifetime scale of L1498 . . . . . . 77
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A Spectral line observations . . . . . . . . . . . . . . . . . . . . . . . . . 81
B Asymmetric onion-like model . . . . . . . . . . . . . . . . . . . . . . 82
C Best-fit physical and abundance profiles . . . . . . . . . . . . . . . . . 84
4 Magnetic fields of the starless core L1512 86
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . 90
4.3.1 James Clerk Maxwell Telescope (JCMT) observations . . . . . 90
4.3.2 Mimir polarization observations . . . . . . . . . . . . . . . . . 96
4.3.3 Other observations . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.1 B-field morphology . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.2 Davis–Chandrasekhar–Fermi analysis . . . . . . . . . . . . . . 99
4.4.3 Grain alignment . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A Virial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5 Summary 117
Bibliography 119
Aikawa, Y., Herbst, E., Roberts, H., & Caselli, P. 2005, ApJ, 620, 330
Aikawa, Y., Ohashi, N., & Herbst, E. 2003, ApJ, 593, 906
Aikawa, Y., Ohashi, N., Inutsuka, S.-i., Herbst, E., & Takakuwa, S. 2001, ApJ, 552, 639
Alves, F. O., Frau, P., Girart, J. M., et al. 2014, A&A, 569, L1
Alves, F. O., Frau, P., Girart, J. M., et al. 2015, On the radiation driven alignment of dust grains: Detection of the polarization hole in a starless core (Corrigendum), Astronomy & Astrophysics, Volume 574, id.C4, 1 pp.
Andersson, B. G., Lazarian, A., & Vaillancourt, J. E. 2015, ARA&A, 53, 501
Ascenso, J., Lada, C. J., Alves, J. F., Rom ́an-Z ́u ̃niga, C. G., & Lombardi, M. 2013, A&A, 549, A135
Bacmann, A., Lefloch, B., Ceccarelli, C., et al. 2002, A&A, 389, L6
Basu, S. 2000, ApJ, 540, L103
Beichman, C. A., Myers, P. C., Emerson, J. P., et al. 1986, ApJ, 307, 337
Bergin, E. A., Alves, J., Huard, T., & Lada, C. J. 2002, ApJ, 570, L101
Bergin, E. A. & Tafalla, M. 2007, ARA&A, 45, 339
Bernes, C. 1979, A&A, 73, 67
Bisschop, S. E., Fraser, H. J., ̈Oberg, K. I., van Dishoeck, E. F., & Schlemmer, S. 2006, A&A, 449, 1297
Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132
Bovino, S., Ferrada-Chamorro, S., Lupi, A., et al. 2019, ApJ, 887, 224
Bovino, S., Lupi, A., Giannetti, A., et al. 2021, A&A, 654, A34
Buckle, J. V., Hills, R. E., Smith, H., et al. 2009, MNRAS, 399, 1026
Cambr ́esy, L., Rho, J., Marshall, D. J., & Reach, W. T. 2011, A&A, 527, A141
Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M. 2002, ApJ, 572, 238
Caselli, P., Myers, P. C., & Thaddeus, P. 1995, ApJ, 455, L77
Caselli, P., Vastel, C., Ceccarelli, C., et al. 2008, A&A, 492, 703
Caselli, P., Walmsley, C. M., Tafalla, M., Dore, L., & Myers, P. C. 1999, ApJ, 523, L165
Ceccarelli, C., Caselli, P., Bockel ́ee-Morvan, D., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 859
Chandrasekhar, S. & Fermi, E. 1953, ApJ, 118, 116
Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545
Chapman, N. L., Davidson, J. A., Goldsmith, P. F., et al. 2013, ApJ, 770, 151
Ching, T.-C., Lai, S.-P., Zhang, Q., et al. 2017, ApJ, 838, 121
Clemens, D. P., Sarcia, D., Grabau, A., et al. 2007, PASP, 119, 1385
Clemens, D. P., Tassis, K., & Goldsmith, P. F. 2016, ApJ, 833, 176
Cox, P., Walmsley, C. M., & Guesten, R. 1989, A&A, 209, 382
Crabtree, K. N., Indriolo, N., Kreckel, H., Tom, B. A., & McCall, B. J. 2011, ApJ, 729, 15
Crapsi, A., Caselli, P., Walmsley, C. M., et al. 2005, ApJ, 619, 379
Crutcher, R. M., Nutter, D. J., Ward-Thompson, D., & Kirk, J. M. 2004, ApJ, 600, 279
Davis, Leverett, J. & Greenstein, J. L. 1951, ApJ, 114, 206
Dempsey, J. T., Friberg, P., Jenness, T., et al. 2013, MNRAS, 430, 2534
di Francesco, J., Evans, N. J., I., Caselli, P., et al. 2007, in Protostars and Planets V, ed.
B. Reipurth, D. Jewitt, & K. Keil, 17
Dolginov, A. Z. & Mitrofanov, I. G. 1976, Ap&SS, 43, 291
Enoch, M. L., Evans, Neal J., I., Sargent, A. I., et al. 2008, ApJ, 684, 1240
Eswaraiah, C., Li, D., Furuya, R. S., et al. 2021, ApJ, 912, L27
Falgarone, E., Panis, J.-F., Heithausen, A., et al. 1998, A&A, 331, 669
Falgarone, E., Pety, J., & Phillips, T. G. 2001, ApJ, 555, 178
Federrath, C. & Klessen, R. S. 2012, ApJ, 761, 156
Flower, D. R., Pineau des Forˆets, G., & Walmsley, C. M. 2004, A&A, 427, 887
Flower, D. R., Pineau Des Forˆets, G., & Walmsley, C. M. 2005, A&A, 436, 933
Flower, D. R., Pineau Des Forˆets, G., & Walmsley, C. M. 2006, A&A, 449, 621
Fontani, F., Busquet, G., Palau, A., et al. 2015, A&A, 575, A87
Fontani, F., Caselli, P., Crapsi, A., et al. 2006, A&A, 460, 709
Ford, A. B. & Shirley, Y. L. 2011, ApJ, 728, 144
Foster, J. B. & Goodman, A. A. 2006, ApJ, 636, L105
Frerking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590
Friberg, P., Bastien, P., Berry, D., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, ed. W. S. Holland & J. Zmuidzinas, 991403
Fuller, G. A. & Myers, P. C. 1993, ApJ, 418, 273
Giannetti, A., Bovino, S., Caselli, P., et al. 2019, A&A, 621, L7
Girart, J. M., Beltr ́an, M. T., Zhang, Q., Rao, R., & Estalella, R. 2009, Science, 324, 1408
Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science, 313, 812
Goldsmith, P. F. 2001, ApJ, 557, 736
Hartmann, L., Ballesteros-Paredes, J., & Bergin, E. A. 2001, ApJ, 562, 852
Heitsch, F., Zweibel, E. G., Mac Low, M.-M., Li, P., & Norman, M. L. 2001, ApJ, 561, 800
Holdship, J., Viti, S., Jim ́enez-Serra, I., Makrymallis, A., & Priestley, F. 2017, AJ, 154, 38
Holland, W. S., Bintley, D., Chapin, E. L., et al. 2013, MNRAS, 430, 2513
Honvault, P., Jorfi, M., Gonz ́alez-Lezana, T., Faure, A., & Pagani, L. 2011, Phys. Rev. Lett., 107, 023201
Honvault, P., Jorfi, M., Gonz ́alez-Lezana, T., Faure, A., & Pagani, L. 2012, Phys. Rev. Lett., 108, 109903
Hsieh, C.-h., Hu, Y., Lai, S.-P., et al. 2019, ApJ, 873, 16
Hugo, E., Asvany, O., & Schlemmer, S. 2009, Journal of Chemical Physics, 130, 164302
Hull, C. L. H., Plambeck, R. L., Bolatto, A. D., et al. 2013, ApJ, 768, 159
Jim ́enez-Serra, I., Vasyunin, A. I., Spezzano, S., et al. 2021, ApJ, 917, 44
Jones, T. J., Bagley, M., Krejny, M., Andersson, B. G., & Bastien, P. 2015, AJ, 149, 31
Juvela, M., Pelkonen, V.-M., Padoan, P., & Mattila, K. 2006, A&A, 457, 877
Kandori, R., Tamura, M., Saito, M., et al. 2020a, PASJ, 72, 8
Kandori, R., Tamura, M., Saito, M., et al. 2020b, ApJ, 890, 14
Kandori, R., Tamura, M., Tomisaka, K., et al. 2017, ApJ, 848, 110
Kandori, R., Tomisaka, K., Saito, M., et al. 2020c, ApJ, 888, 120
Karoly, J., Soam, A., Andersson, B. G., et al. 2020, ApJ, 900, 181
Keto, E. & Caselli, P. 2008, ApJ, 683, 238
Khersonkii, V. K., Varshalovich, D. A., & Opendak, M. G. 1987, Soviet Ast., 31, 274
Kim, G., Lee, C. W., Gopinathan, M., Jeong, W.-S., & Kim, M.-R. 2016, ApJ, 824, 85
Kirk, J. M., Ward-Thompson, D., & Andr ́e, P. 2005, MNRAS, 360, 1506
Kirk, J. M., Ward-Thompson, D., & Crutcher, R. M. 2006, MNRAS, 369, 1445
Kong, S., Caselli, P., Tan, J. C., Wakelam, V., & Sipil ̈a, O. 2015, ApJ, 804, 98
Kong, S., Tan, J. C., Caselli, P., et al. 2016, ApJ, 821, 94
K ̈onyves, V., Andr ́e, P., Men’shchikov, A., et al. 2015, A&A, 584, A91
K ̈ortgen, B., Bovino, S., Schleicher, D. R. G., Giannetti, A., & Banerjee, R. 2017, MNRAS, 469, 2602
K ̈ortgen, B., Bovino, S., Schleicher, D. R. G., et al. 2018, MNRAS, 478, 95
Kuiper, T. B. H., Langer, W. D., & Velusamy, T. 1996, ApJ, 468, 761
Kutner, M. L. & Ulich, B. L. 1981, ApJ, 250, 341
Lackington, M., Fuller, G. A., Pineda, J. E., et al. 2016, MNRAS, 455, 806
Lai, S.-P. & Crutcher, R. M. 2000, ApJS, 128, 271
Langer, W. D. & Willacy, K. 2001, ApJ, 557, 714
Launhardt, R., Stutz, A. M., Schmiedeke, A., et al. 2013, A&A, 551, A98
Lazarian, A. & Hoang, T. 2007, MNRAS, 378, 910
Lee, C. W. & Myers, P. C. 1999, ApJS, 123, 233
Lee, C. W. & Myers, P. C. 2011, ApJ, 734, 60
Lee, C. W., Myers, P. C., & Tafalla, M. 1999, ApJ, 526, 788
Lee, C. W., Myers, P. C., & Tafalla, M. 2001, ApJS, 136, 703
Lee, J.-E., Evans, II, N. J., Shirley, Y. L., & Tatematsu, K. 2003, ApJ, 583, 789
Lef`evre, C., Pagani, L., Juvela, M., et al. 2014, A&A, 572, A20
Lef`evre, C., Pagani, L., Min, M., Poteet, C., & Whittet, D. 2016, A&A, 585, L4
Lemme, C., Walmsley, C. M., Wilson, T. L., & Muders, D. 1995, A&A, 302, 509
Levin, S. M., Langer, W. D., Velusamy, T., Kuiper, T. B. H., & Crutcher, R. M. 2001, ApJ, 555, 850
Li, Z.-Y., Shematovich, V. I., Wiebe, D. S., & Shustov, B. M. 2002, ApJ, 569, 792
Li, Z.-Y. & Shu, F. H. 1996, ApJ, 472, 211
Lin, S.-J., Pagani, L., Lai, S.-P., Lef`evre, C., & Lique, F. 2020, A&A, 635, A188
Linsky, J. L. 2007, Space Sci. Rev., 130, 367
Lippok, N., Launhardt, R., Henning, T., et al. 2016, A&A, 592, A61
Lippok, N., Launhardt, R., Semenov, D., et al. 2013, A&A, 560, A41
Lique, F., Daniel, F., Pagani, L., & Feautrier, N. 2015, MNRAS, 446, 1245
Liu, H.-L., Stutz, A. M., & Yuan, J.-H. 2019, MNRAS, 487, 1259
Liu, J., Qiu, K., Berry, D., et al. 2019, ApJ, 877, 43
Lodders, K. 2003, ApJ, 591, 1220
Lombardi, M. & Alves, J. 2001, A&A, 377, 1023
Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, Physical Review Letters, 80, 2754
Magalh ̃aes, V. S., Hily-Blant, P., Faure, A., Hernandez-Vera, M., & Lique, F. 2018, A&A, 615, A52
Maret, S., Bergin, E. A., & Tafalla, M. 2013, A&A, 559, A53
McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565
McKee, C. F. & Zweibel, E. G. 1992, ApJ, 399, 551
M ̈oller, T., Bernst, I., Panoglou, D., et al. 2013, A&A, 549, A21
Montier, L., Plaszczynski, S., Levrier, F., et al. 2015, A&A, 574, A136
Mouschovias, T. C., Tassis, K., & Kunz, M. W. 2006, ApJ, 646, 1043
Myers, P. C. 1983, ApJ, 270, 105
Myers, P. C., Fuller, G. A., Goodman, A. A., & Benson, P. J. 1991, ApJ, 376, 561
Myers, P. C., Linke, R. A., & Benson, P. J. 1983, ApJ, 264, 517
Navarro-Almaida, D., Fuente, A., Majumdar, L., et al. 2021, A&A, 653, A15
Nguyen, T., Baouche, S., Congiu, E., et al. 2018, A&A, 619, A111
Nilsson, A., Hjalmarson, Å., Bergman, P., & Millar, T. J. 2000, A&A, 358, 257
Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980
Padoan, P. & Nordlund, Å. 1999, ApJ, 526, 279
Pagani, L., Bacmann, A., Cabrit, S., & Vastel, C. 2007, A&A, 467, 179
Pagani, L., Bacmann, A., Motte, F., et al. 2004, A&A, 417, 605
Pagani, L., Bourgoin, A., & Lique, F. 2012, A&A, 548, L4
Pagani, L., Daniel, F., & Dubernet, M.-L. 2009a, A&A, 494, 719
Pagani, L., Frayer, D., Pagani, B., & Lef`evre, C. 2020, A&A, 643, A126
Pagani, L., Lef`evre, C., Juvela, M., Pelkonen, V. M., & Schuller, F. 2015, A&A, 574, L5
Pagani, L., Lesaffre, P., Jorfi, M., et al. 2013, A&A, 551, A38
Pagani, L., Pardo, J.-R., Apponi, A. J., Bacmann, A., & Cabrit, S. 2005, A&A, 429, 181
Pagani, L., Ristorcelli, I., Boudet, N., et al. 2010a, A&A, 512, 3
Pagani, L., Roueff, E., & Lesaffre, P. 2011, ApJ, 739, L35 124
Pagani, L., Salez, M., & Wannier, P. G. 1992a, A&A, 258, 479
Pagani, L., Steinacker, J., Bacmann, A., Stutz, A., & Henning, T. 2010b, Science, 329, 1622
Pagani, L., Vastel, C., Hugo, E., et al. 2009b, A&A, 494, 623
Pagani, L., Wannier, P. G., Frerking, M. A., et al. 1992b, A&A, 258, 472
Pattle, K., Fissel, L., Tahani, M., Liu, T., & Ntormousi, E. 2022, arXiv e-prints, arXiv:2203.11179
Pattle, K., Lai, S.-P., Di Francesco, J., et al. 2021, ApJ, 907, 88
Pattle, K., Lai, S.-P., Hasegawa, T., et al. 2019, ApJ, 880, 27
Pattle, K., Ward-Thompson, D., Berry, D., et al. 2017, ApJ, 846, 122
Pineau des Forˆets, G., Flower, D. R., & McCarroll, R. 1991, MNRAS, 248, 173
Pineda, J. L., Goldsmith, P. F., Chapman, N., et al. 2010, ApJ, 721, 686
Priestley, F. D., Viti, S., & Williams, D. A. 2018, AJ, 156, 51
Redaelli, E., Bizzocchi, L., Caselli, P., et al. 2019, A&A, 629, A15
Roberts, H., Herbst, E., & Millar, T. J. 2003, ApJ, 591, L41
Roberts, H., Herbst, E., & Millar, T. J. 2004, A&A, 424, 905
Shirley, Y. L., Nordhaus, M. K., Grcevich, J. M., et al. 2005, ApJ, 632, 982
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Sohn, J., Lee, C. W., Park, Y.-S., et al. 2007, ApJ, 664, 928
Steinacker, J., Andersen, M., Thi, W. F., et al. 2015, A&A, 582, A70
Steinacker, J., Pagani, L., Bacmann, A., & Guieu, S. 2010, A&A, 511, A9
Stutz, A. M., Gonzalez-Lobos, V. I., & Gould, A. 2018, arXiv e-prints,
arXiv:1807.11496
Stutz, A. M., Rieke, G. H., Bieging, J. H., et al. 2009, ApJ, 707, 137
Tafalla, M., Myers, P. C., Caselli, P., & Walmsley, C. M. 2004, A&A, 416, 191
Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M., & Comito, C. 2002, ApJ, 569, 815
Tafalla, M., Santiago-Garc ́ıa, J., Myers, P. C., et al. 2006, A&A, 455, 577
Tassis, K. & Mouschovias, T. C. 2004, ApJ, 616, 283
Tazaki, R., Tanaka, H., Okuzumi, S., Kataoka, A., & Nomura, H. 2016, ApJ, 823, 70
Tokuda, K., Fujishiro, K., Tachihara, K., et al. 2020, ApJ, 899, 10
van der Tak, F. F. S., Caselli, P., & Ceccarelli, C. 2005, A&A, 439, 195
Walmsley, C. M., Flower, D. R., & Pineau des Forˆets, G. 2004, A&A, 418, 1035
Wang, J.-W., Lai, S.-P., Eswaraiah, C., et al. 2019, ApJ, 876, 42
Wannier, P. G. 1980, ARA&A, 18, 399
Ward-Thompson, D., Kirk, J. M., Crutcher, R. M., et al. 2000, ApJ, 537, L135
Wardle, J. F. C. & Kronberg, P. P. 1974, ApJ, 194, 249
Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 296
Willacy, K., Langer, W. D., & Velusamy, T. 1998, ApJ, 507, L171
Wilson, T. L. & Rood, R. 1994, ARA&A, 32, 191
Wolkovitch, D., Langer, W. D., Goldsmith, P. F., & Heyer, M. 1997, ApJ, 477, 241
Yin, C., Priestley, F. D., & Wurster, J. 2021, MNRAS, 504, 2381
Young, K. E., Lee, J.-E., Evans, Neal J., I., Goldsmith, P. F., & Doty, S. D. 2004, ApJ, 614, 252
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *