|
[1] Chao, A., & Shen, T. J. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and Ecological Statistics, 10(4), 429-443. [2] Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547. [3] Chao, A., Chiu, C. H., & Hsieh, T. C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology, 93(9), 2037-2051. [4] Chao, A., & Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6(8), 873-882. [5] Chao, A., Wang, Y. T., & Jost, L. (2013). Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods in Ecology and Evolution, 4(11), 1091-1100. [6] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 265-270. [7] Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 783-791. [8] Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K., & Gotelli, N. J. (2015). Unveiling the species‐rank abundance distribution by generalizing the Good‐Turing sample coverage theory. Ecology, 96(5), 1189-1201. [9] Chiu, C. H., Jost, L., & Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84(1), 21-44. [10] Chiu, C. H., Wang, Y. T., Walther, B. A., & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified good–turing frequency formula. Biometrics, 70(3), 671-682. [11] Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, 114(30), E6089-E6096. [12] Crist, T. O., Veech, J. A., Gering, J. C., & Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist, 162(6), 734-743. [13] Crist, T. O., & Veech, J. A. (2006). Additive partitioning of rarefaction curves and species–area relationships: unifying α‐, β‐and γ‐diversity with sample size and habitat area. Ecology Letters, 9(8), 923-932. [14] Dray, S., Dufour, A. B., & Chessel, D. (2007). The ade4 package-II: Two-table and K-table methods. R News, 7(2), 47-52. [15] Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7, 1-26. [16] Gotelli, N. J., Chao, A., Colwell, R. K., Hwang, W. H., & Graves, G. R. (2012). Specimen‐Based Modeling, Stopping Rules, and the Extinction of the Ivory‐Billed Woodpecker. Conservation Biology, 26(1), 47-56. [17] Gaggiotti, O. E., Chao, A., Peres‐Neto, P., Chiu, C. H., Edwards, C., Fortin, M. J., ... & Selkoe, K. A. (2018). Diversity from genes to ecosystems: A unifying framework to study variation across biological metrics and scales. Evolutionary Applications. DOI: 10.1111/eva.12593 [18] Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427-432. [19] Horn, H. S. (1966). Measurement of" overlap" in comparative ecological studies. The American Naturalist, 100(914), 419-424. [20] Ivol, J. M., Guinand, B., Richoux, P., & Tachet, H. (1997). Longitudinal changes in Trichoptera and Coleoptera assemblages and environmental conditions in the Loire River (France). Archiv für Hydrobiologie, 138(4), 525-557. [21] Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375. [22] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427-2439. [23] Marshall, A. W., Olkin, I., & Arnold, B. C. (1979). Inequalities: theory of majorization and its applications. New York. [24] MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews, 40(4), 510-533. [25] Medellín, R. A., Equihua, M., & Amin, M. A. (2000). Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14(6), 1666-1675. [26] Morisita, M. (1959). Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu University. Series E, 3(1), 65-80. [27] Patil, G. P., & Taillie, C. (1982). Diversity as a concept and its measurement. Journal of the American Statistical Association, 77(379), 548-561. [28] Pavoine, S., & Dolédec, S. (2005). The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environmental and Ecological Statistics, 12(2), 125-138. [29] Pavoine, S., & Ricotta, C. (2014). Functional and phylogenetic similarity among communities. Methods in Ecology and Evolution, 5(7), 666-675. [30] Pavoine, S., Marcon, E., & Ricotta, C. (2016). ‘Equivalent numbers’ for species, phylogenetic or functional diversity in a nested hierarchy of multiple scales. Methods in Ecology and Evolution, 7(10), 1152-1163. [31] Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21(1), 24-43. [32] Ricotta, C. (2005). On hierarchical diversity decomposition. Journal of Vegetation Science, 16(2), 223-226. [33] Routledge, R. D. (1979). Diversity indices: Which ones are admissible? Journal of Theoretical Biology, 76(4), 503-515. [34] Ripple, W. J., Wolf, C., Newsome, T. M., Galetti, M., Alamgir, M., Crist, E., ... & 15,364 scientist signatories from 184 countries. (2017). World Scientists’ Warning to Humanity: A Second Notice. BioScience, 67(12), 1026-1028. [35] Shannon, C. E., & Weaver, W. (1949). A Mathematical Model of Communication Urbana. )(IL: University of Illinois Press, 1949). [36] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688. [37] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487. [38] Tong, Y. L. (1983). Some distribution properties of the sample species-diversity indices and their applications. Biometrics, 39(4), 999-1008. [39] Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21(2) 213-251. [40] Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30(3), 279-338. [41] Wagner, H. H., Wildi, O., & Ewald, K. C. (2000). Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecology, 15(3), 219-227. [42] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013). 仰觀宇宙之大, 俯察品類之盛:如何量化生物多樣性. Journal of the Chinese Statistical Association, 51(1), 8-53. [43] 林尚毅 (2011). 生物多樣性指標之多層次架構與時空架構分解 趙蓮菊指導 新竹市國立清華大學統計學研究所博士論文 [44] 曾凱聲 (2014). 區塊抽樣之Hill指標估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文 [45] 林政翰 (2017). 多層次生物多樣性指標分解:統計估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
|