帳號:guest(3.133.160.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李孟緯
作者(外文):Lee, Meng-Wei
論文名稱(中文):含有氮族元素的有機和有機金屬化合物在含有硼化雙氮基脒的Mo−Mo四重鍵上的轉化
論文名稱(外文):Transformation of Substrates Containing Pnictogen Elements on the Boraamidinate-supported Mo−Mo Quadruple Bond
指導教授(中文):蔡易州
指導教授(外文):Tsai, Yi-Chou
口試委員(中文):王育恒
楊自雄
劉學儒
林嘉和
口試委員(外文):Wang, Yu-Heng
Yang, Tzu-Hsiung
Liu, Hsueh-Ju
Lin, Chia-Her
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023901
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:331
中文關鍵詞:四重鍵反應性
外文關鍵詞:Qradruple bondMolybdenumReactivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
低配位雙鉬四重鍵化合物Mo2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (1)與Cp*Fe(cyclo-E5) (E = P (2)、As (3))反應生成兩個三核化合物Cp*Fe(μ3,η5:2:2-E5)Mo2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (E = P (4)、As (5))。4在室溫下會進行自發性異構化並在約60 °C加熱反應可令其加速轉變成Cp*FeMo2[κ2-PhB(N-2,6-iPr2C6H3)2](µ3,κ:κ:η2-P2)[µ3,κ:κ:η3κ-P3PhB(N-2,6-iPr2C6H3)2] (6)。根據X-光結晶學,6的FeMo2P5核心具有類似立方烷的幾何結構。
1可與取代基為烷基、芳香基或推電子基的腈反應產生[2+2]腈錯合物Mo2(μ,η2-NCR)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Me (7)、Et (8)、nPr (9)、iPr (10)、iBu (11)、CH2Ph (12)、NMe2 (13)、Ph (14)),其中烷基腈與1反應得到的[2+2]腈錯合物7-11可再與過量的鉀石墨與腈反應形成η2-腈錯合物{Mo2(η2-KNCR)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2}n (R = Me (15)、Et (16)、nPr (17)、iPr (18)、iBu (19)),15-19在固態時以配位聚合物的形式堆疊。若添加冠醚與15-17反應則會拔走其中一個橋接鉀離子而形成離子型聚合物{[K(18-C-6)(THF)2][Mo2(η2-NCR)(η2-KNCR)(μ,κ2-PhB{N-2,6-iPr2C6H3}2)2]}n (R = Me (20)、Et (21))和{[K(benzo-15-C-5)2][Mo2(η2-NCnPr)(η2-KNCnPr)(μ,κ2-PhB{N-2,6-iPr2C6H3}2)2]}n (22)。
1與體積較大的烷基腈和芳基腈會進行[2+2+2]環化加成反應,生成碳−碳耦合環化加成錯合物Mo2[μ,κ2-NC(R)C(R)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = p-NMe2-tolyl (23)、tBu (24)、Ph (25)、Mes (26)、iPr (27);C(R)C(R) = C14H8O (28)、C14H8 (29)、C12H6 (30))。相反地,1與過量的立體阻礙較小的直鏈烷基腈反應則得到氮−碳耦合[2+2+2]環化加成錯合物Mo2[μ,κ2-NHC(R)NHC(R)][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Me (33)、Et (34)、nPr (35)),其中新形成的Mo2N2C2六元金屬雜環預期被氫化。有趣的是,除了33之外還有等莫耳數的烯化腈錯合物Mo2[μ,κ2-NHC(CH2)NC(Me)CHCN][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (32)從1與過量乙腈的反應中被單離出來,32和33的形成涉及源於乙腈之兩個α-氫原子的轉移。
30與兩當量的鉀石墨和18-冠-6反應得到具有芳香性Mo2N2C2六元金屬雜環的二價離子化合物[K(18-C-6)(THF)2]2[Mo2{μ,κ2-N(C12H6)N}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (31),而33-35與一當量或兩當量的鉀石墨和18-冠-6反應分別得到一次去質子化的負一價陰離子化合物[K(18-C-6)(THF)2][Mo2{μ,κ2-NHC(R)NC(R)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (R = Me (36)、Et (37)、nPr (38))與二次去質子化的負二價陰離子化合物[K(18-C-6)(THF)2]2[Mo2{μ,κ2-NC(R)NC(R)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (R = Me (39)、Et (40)、nPr (41))。
值得一提的是,20 與PPh4Cl的離子交換反應移除20中被兩個氮原子配位的橋接鉀原子,導致其中兩個η2-腈與鉬−鉬鍵環化而變成36,因此η2-腈錯合物被認為是頭對尾氮−碳耦合[2+2+2]環化加成反應的可能中間物。
The low-coordinate quadruply-bonded dimolybdenum complex Mo2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (1) reacts with Cp*Fe(cyclo-E5) (E = P (2), As (3)) to give two trinuclear species Cp*Fe(μ3,η5:2:2-E5)Mo2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (E = P (4), As (5)). 4 undergoes facile isomerization upon heating to produce Cp*FeMo2[κ2-PhB(N-2,6-iPr2C6H3)2](µ3,κ:κ:η2-P2)[µ3,κ:κ:η3κ-P3PhB(N-2,6-iPr2C6H3)2] (6), where the core FeMo2P5 displays a cubane-like geometry according to X-ray crystallography.
1 undergoes [2+2] reactions with alkylnitriles to produce cycloaddition adducts Mo2(μ,η2-NCR)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Me (7), Et (8), nPr (9), iPr (10), iBu (11), CH2Ph (12), NMe2 (13), Ph (14)), where 7-11 subsequently react with an excess amount of nitriles in the presence of KC8 to generate the η2-bound nitrile complexes {Mo2(η2-KNCR)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2}n (R = Me (15), Et (16), nPr (17), iPr (18), iBu (19)). 15-17 crystallize in the form of coordination polymers in the solid states, and they are transformed into ionic polymer {[K(18-C-6)(THF)2][Mo2(η2-NCR)(η2-KNCR)(μ,κ2-PhB{N-2,6-iPr2C6H3}2)2]}n (R = Me (20), Et (21)) and {[K(benzo-15-C-5)2][Mo2(η2-NCnPr)(η2-KNCnPr)(μ,κ2-PhB{N-2,6-iPr2C6H3}2)2]}n (22) upon the addition of crown ethers to remove the bridged potassium ions.
1 undergoes [2+2+2] cycloaddition reactions with bulkier alkylnitriles and aryl nitriles to produce C−C coupled cycloaddition compounds Mo2[μ,κ2-NC(R)C(R)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = p-NMe2-tolyl (23), tBu (24), Ph (25), Mes (26), iPr (27); C(R)C(R) = C14H8O (28), C14H8 (29), C12H6 (30)). On the contrary, 1 reacts with an excess amount of less hindered nitriles with linear alkyl groups to give N−C coupled [2+2+2] cycloaddition complexes Mo2[μ,κ2-NHC(R)NHC(R)][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Me (33), Et (34), nPr (35)), where the newly formed Mo2N2C2 six-membered rings are expectedly hydrogenated. It is interesting to note that in addition to 33, an equimolar amout of species Mo2[μ,κ2-NHC(CH2)NC(Me)CHCN][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (32) is isolated from the reaction of 1 with an excess amount of acetonitrile. The formation of 32 and 33 presumably involved transfer of two α-hydrogen atoms from acetonitrile.
The dianionic compound [K(18-C-6)(THF)2]2[Mo2{μ,κ2-N(C12H6)N}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (31) where the Mo2N2C2 six-membered metallacycle bears aromaticity is obtained by reacting 30 with two equivalents of KC8 and 18-C-6 via two-electron reduction. 33-35 react with one equivalent or two equivalents of KC8 and 18-C-6 to form the monoanionic compounds [K(18-C-6)(THF)2][Mo2{μ,κ2-NHC(R)NC(R)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (R = Me (36), Et (37), nPr (38)) via one deprotonation and dianionic species [K(18-C-6)(THF)2]2[Mo2{μ,κ2-NC(R)NC(R)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (R = Me (39), Et (40), nPr (41)) via double deprotonation.
It is worth mentioning that the ion exchange reaction of 20 with PPh4Cl removes the bridged potassium ions coordinated by two nitrogen atoms in 20 and results in the cyclization of the two bound nitriles and the Mo−Mo bond to give of of 36. As a result, the η2-bound nitrile species are considered as possible intermediates before the formation of the head-to-tail N−C coupling [2+2+2] cycloadducts.
中文摘要 i
Abstract iii
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xvi
流程圖目錄 xviii
第壹章 緒論 1
第貳章 環五磷/砷配位基橋接於三核金屬暨含有鉬−鉬三重鍵之三層錯合物及其異構化 8
第參章 腈在鉬−鉬四重鍵上的配位與環化反應 28
3-1. 前言 28
3-2. 結果與討論 31
3-2-1. [2+2]環化加成錯合物與雙核η2-腈錯合物的合成與鑑定 31
3-2-2. 尾對尾碳−碳耦合[2+2+2]環化加成錯合物的合成與鑑定 39
3-2-3. 頭對尾氮−碳耦合[2+2+2]環化加成錯合物與相關衍生物的合成與鑑定 46
3-3. DFT計算 65
3-4. 反應性統整與總結 70
第肆章 其他嘗試 74
4-1. 叔丁基磷雜乙炔與1的反應 74
4-2. 硼化雙氮基脒鋰與氯化亞銅的反應 77
4-3. 二茂鐵-二雙氮基脒鉗型配位基的製程 78
第伍章 參考資料 84
5-1. 合成步驟、元素分析及NMR光譜 84
5-1-1. Cp*Fe(μ3,η5:2:2-P5)Mo2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (4) 85
5-1-2. Cp*Fe(μ3,η5:2:2-As5)Mo2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (5) 87
5-1-3. Cp*FeMo2[κ2-PhB(N-2,6-iPr2C6H3)2](µ3,κ:κ:η2-P2)[µ3,κ:κ:η3κ-P3PhB(N-2,6-iPr2C6H3)2] (6) 88
5-1-4. Mo2(μ,η2-NCCR3)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = H (7), D (7-d3)) 92
5-1-5. Mo2(μ,η2-NCEt)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (8) 95
5-1-6. Mo2(μ,η2-NCnPr)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (9) 97
5-1-7. Mo2(μ,η2-NCiPr)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (10) 100
5-1-8. Mo2(μ,η2-NCiBu)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (11) 102
5-1-9. Mo2(μ,η2-NCCH2Ph)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (12) 105
5-1-10. Mo2(μ,η2-NCNMe2)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (13) 107
5-1-11. Mo2(μ,η2-NCPh)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (14)與Mo2[μ,κ2-NC(Ph)C(Ph)N)[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (25) 110
5-1-12. {Mo2(η2-KNCMe)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2}n (15) 114
5-1-13. {Mo2(η2-KNCEt)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2}n (16) 116
5-1-14. {Mo2(η2-KNCnPr)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2}n (17) 118
5-1-15. {Mo2(η2-KNCiPr)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2}n (18) 120
5-1-16. {Mo2(η2-KNCiBu)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2}n (19) 122
5-1-17. {[K(18-C-6)(THF)2][Mo2(η2-NCCR3)(η2-KNCCR3)(μ,κ2-PhB{N-2,6-iPr2C6H3}2)2]}n (R = H (20), D (20-d6)) 124
5-1-18. {[K(18-C-6)(THF)2][Mo2(η2-NCEt)(η2-KNCEt)(μ,κ2-PhB{N-2,6-iPr2C6H3}2)2]}n (21) 127
5-1-19. {[K(benzo-15-C-5)2][Mo2(η2-NCnPr)(η2-KNCnPr)(μ,κ2-PhB{N-2,6-iPr2C6H3}2)2]}n (22) 128
5-1-20. Mo2[μ,κ2-NC(p-NMe2-tolyl)C(p-NMe2-tolyl)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (23) 131
5-1-21. Mo2[μ,κ2-NC(tBu)C(tBu)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (24) 134
5-1-22. Mo2[μ,κ2-NC(Mes)C(Mes)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (26) 136
5-1-23. Mo2[μ,κ2-NC(iPr)C(iPr)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (27) 138
5-1-24. Mo2[μ,κ2-N(C14H8O)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (28) 140
5-1-25. Mo2[μ,κ2-N(C14H8)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (29) 142
5-1-26. Mo2[μ,κ2-N(C12H6)N][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (30) 144
5-1-27. [K(18-C-6)(THF)2]2[Mo2{μ,κ2-N(C12H6)N}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (31) 146
5-1-28. Mo2[μ,κ2-NRC(CR2)NC(CR3)CRCN][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = H (32), D (32-d7))與Mo2[μ,κ2-NRC(CR3)NRC(CR3))[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = H (33), D (33-d8)) 147
5-1-29. Mo2[μ,κ2-NHC(Et)NHC(Et)][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (34) 154
5-1-30. Mo2[μ,κ2-NHC(nPr)NHC(nPr)][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (35) 157
5-1-31. Mo2{μ,κ2-NRC(CR3)N[K(18-C-6)]C(CR3)}[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = H (36), D (36-d7)) 161
5-1-32. Mo2{μ,κ2-NHC(Et)N[K(18-C-6)]C(Et)}[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (37) 165
5-1-33. [K(18-C-6)(THF)2][Mo2{μ,κ2-NHC(nPr)NC(nPr)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (38) 169
5-1-34. [K(18-C-6)(THF)2][Mo2{μ,κ2-NC(CR3)N[K(18-C-6)]C(CR3)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (R = H (39), D (39-d6)) 173
5-1-35. [K(18-C-6)(THF)2][Mo2{μ,κ2-NC(Et)N[K(18-C-6)]C(Et)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (40) 176
5-1-36. [K(18-C-6)(THF)2]2[Mo2{μ,κ2-NC(nPr)NC(nPr)}{μ,κ2-PhB(N-2,6-iPr2C6H3)2}2] (41) 180
5-1-37. Mo2(NCHMe)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (42) 184
5-1-38. Mo2[μ,κ2-NC(NMe2)NC(NMe2)][μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (43) 186
5-1-39. Mo2(μ,κ2-[C(tBu)P]2)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (44) 189
5-1-40. Cu6(μ-Cl)2[μ,κ2-PhB(N-2,6-iPr2C6H3)2]2 (45) 191
5-1-41. Fe[C5H4NHC(Me)(N-2,6-iPr2C6H3)]2 (46) 193
5-2. 參考文獻 197
5-3. 附錄 207
5-3-1. 晶體數據 207
5-3-2. 元素分析證明單 218
5-3-3. DFT計算 260
5-3-4. 自傳 331
1. Lewis, G. N. The Atom and the Molecule. J. Am. Chem. Soc. 1916, 38, 762–785.
2. Langmuir, I. Electric ] the Arrangement of Electrons. J. Franklin Inst. 1919, 187, 359–362.
3. Cotton, F. A.; Murillo, C. A. Multiple Bonds between Metal Atoms, 3rd Ed. In Multiple Bonds between Metal Atoms, 3rd ed.; Walton, R. A., Ed.; Springer Science and Business Media: New York, 2005.
4. Cotton, F. A.; Nocera, D. G. The Whole Story of the Two-Electron Bond, with the δ Bond as a Paradigm. Acc. Chem. Res. 2000, 33, 483–490.
5. Bertrand, J. A.; Cotton, F. A.; Dollase, W. A. The Metal-Metal Bonded, Polynuclear Complex Anion in CsReCl4. J. Am. Chem. Soc. 1963, 85, 1349–1350.
6. Cotton, F. A.; Murillo, C. A.; Richard, A. W.Multiple Bonds Between Metal Atoms, 3rd Ed.; Springer, Berlin, 2005.
7. Cotton, F. A.; Harris, C. B. The Crystal and Molecular Structure of Dipotassium Octachlorodirhenate(III) Dihydrate, K2[Re2Cl8] · 2H2O. Inorg. Chem. 1965, 4, 330–333.
8. Lawton, D.; Mason, R. The Molecular Structure of Molybdenum(II) Acetate. J. Am. Chem. Soc. 1965, 87, 921–922.
9. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity. Science 1964, 145, 1305–1307.
10. Yamashita, Y.; Salter, M. M.; Aoyama, K.; Kobayashi, S. With Molecular-Oxygen-Activated Lewis Acids: Dinuclear Molybdenum Complexes for Aza-Diels-Alder Reactions of Acyl Hydrazones. Angew. Chem. Int. Ed. 2006, 45, 3816–3819.
11. Brogden, D. W.; Christian, J. H.; Dalal, N. S.; Berry, J. F. Completing the Series of Group VI Heterotrimetallic M2Cr(Dpa)4Cl2 (M2=Cr2, Mo2, MoW and W2) Compounds and Investigating Their Metal–Metal Interactions Using Density Functional Theory. Inorg. Chim. Acta 2015, 424, 241–247.
12. Nippe, M.; Wang, J.; Bill, E.; Hope, H.; Dalal, N. S.; Berry, J. F. Crystals in Which Some Metal Atoms Are More Equal Than Others: Inequalities From Crystal Packing and Their Spectroscopic/Magnetic Consequences. J. Am. Chem. Soc. 2010, 132, 14261–14272.
13. Nippe, M.; Bill, E.; Berry, J. F. Group 6 Complexes with Iron and Zinc Heterometals: Understanding the Structural, Spectroscopic, and Electrochemical Properties of a Complete Series of MM···M′ Compounds. Inorg. Chem. 2011, 50, 7650–7661.
14. Brogden, D. W.; Berry, J. F. Heterometallic Second-Row Transition Metal Chain Compounds in Two Charge States: Syntheses, Properties, and Electronic Structures of [Mo–Mo–Ru]6+/7+ Chains. Inorg. Chem. 2015, 54, 7660–7665.
15. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers. Science 2005, 310, 844 LP – 847.
16. Nair, A. K.; Harisomayajula, N. V. S.; Tsai, Y.-C. The Lengths of the Metal-to-Metal Quintuple Bonds and Reactivity Thereof. Inorg. Chim. Acta 2015, 424, 51–62.
17. Nair, A. K.; Harisomayajula, N. V. S.; Tsai, Y.-C. Theory, Synthesis and Reactivity of Quintuple Bonded Complexes. Dalton Trans. 2014, 43, 5618–5638.
18. Harisomayajula, N. V. S.; Nair, A. K.; Tsai, Y.-C. Discovering Complexes Containing a Metal–Metal Quintuple Bond: From Theory to Practice. Chem. Commun. 2014, 50, 3391–3412.
19. Noor, A.; Kempe, R. M5M – Key Compounds of the Research Field Metal–Metal Quintuple Bonding. Inorg. Chim. Acta 2015, 424, 75–82.
20. Tsai, Y.-C.; Lin, Y.-M.; Yu, J.-S. K.; Hwang, J.-K. A Three-Coordinate and Quadruply Bonded Mo−Mo Complex. J. Am. Chem. Soc. 2006, 128, 13980–13981.
21. Tsai, Y. C.; Chen, H. Z.; Chang, C. C.; Yu, J. S. K.; Lee, G. H.; Wang, Y.; Kuo, T. S. Journey from Mo-Mo Quadruple Bonds to Quintuple Bonds. J. Am. Chem. Soc. 2009, 131, 12534–12535.
22. Lu, D.-Y.; Kuo, T.-S.; Tsai, Y.-C. A Family of Multiply Bonded Dimolybdenum Boraamidinates with the Formal Mo−Mo Bond Orders of 3, 4, 4.5, and 5. Angew. Chem. Int. Ed. 2016, 55, 11614–11618.
23. 周琬芳. 雙鉬多重鍵與有機腈類反應之研究. 國立清華大學化學研究所碩士論文 2016.
24. 呂端晏. Unpublished Results. 擔任蔡易州實驗室博士後研究員期間研究資料 2018.
25. 詹益泉. 雙鉬四鍵錯合物與有機鋅、主族試劑及小分子的反應. 國立清華大學化學研究所碩士論文 2015.
26. 陳彥均. 高三重態能量之聚咔唑衍生物的光物理及電致發光特性之研究. 國立清華大學化學研究所碩士論文 2020.
27. 陳思翰. 雙鉬四重鍵與醯氯氧化加成後還原生成鉬碳炔與其異構化反應. 國立清華大學化學研究所碩士論文 2022.
28. Kajita, Y.; Ogawa, T.; Matsumoto, J.; Masuda, H. Synthesis and Characterization of a Benzene−Dimolybdenum Complex with a New Bridging Mode. Inorg. Chem. 2009, 48, 9069–9071.
29. Carrasco, M.; Curado, N.; Álvarez, E.; Maya, C.; Peloso, R.; Poveda, M. L.; Rodríguez, A.; Ruiz, E.; Álvarez, S.; Carmona, E. Experimental and Theoretical Studies on Arene-Bridged Metal–Metal-Bonded Dimolybdenum Complexes. Chem. – A Eur. J. 2014, 20, 6092–6102.
30. Schwarzmaier, C.; Noor, A.; Glatz, G.; Zabel, M.; Timoshkin, A. Y.; Cossairt, B. M.; Cummins, C. C.; Kempe, R.; Scheer, M. Formation of Cyclo-E42− Units (E4=P4, As4, AsP3) by a Complex with a CrCr Quintuple Bond. Angew. Chem. Int. Ed. 2011, 50, 7283–7286.
31. Scherer, O. J.; Brück, T. [(η-5-P5)Fe(Η5-C5Me5)], a Pentaphosphaferrocene Derivative. Angew. Chem. Int. Ed. Engl. 1987, 26, 59.
32. Fleischmann, M.; Welsch, S.; Krauss, H.; Schmidt, M.; Bodensteiner, M.; Peresypkina, E.V.; Sierka, M.; Gröger, C.; Scheer, M. Complexes of Monocationic Group 13 Elements with Pentaphospha- and Pentaarsaferrocene. Chem. – A Eur. J. 2014, 20, 3759–3768.
33. Butovskiy, M.V.; Balázs, G.; Bodensteiner, M.; Peresypkina, E.V.; Virovets, A.V.; Sutter, J.; Scheer, M. Ferrocene and Pentaphosphaferrocene: A Comparative Study Regarding Redox Chemistry. Angew. Chem. Int. Ed. 2013, 52, 2972–2976.
34. Schmidt, M.; Konieczny, D.; Peresypkina, E.V.; Virovets, A.V.; Balázs, G.; Bodensteiner, M.; Riedlberger, F.; Krauss, H.; Scheer, M. Arsenic-Rich Polyarsenides Stabilized by Cp*Fe Fragments. Angew. Chem. Int. Ed. 2017, 56, 7307–7311.
35. Reichl, S.; Mädl, E.; Riedlberger, F.; Piesch, M.; Balázs, G.; Seidl, M.; Scheer, M. Pentaphosphaferrocene-Mediated Synthesis of Asymmetric Organo-Phosphines Starting from White Phosphorus. Nat. Commun. 2021, 12, 5774.
36. Whitmire, K. H. Transition Metal Complexes of the Naked Pnictide Elements. Coord. Chem. Rev. 2018, 376, 114–195.
37. Mädl, E.; Peresypkina, E.; Timoshkin, A. Y.; Scheer, M. Triple-Decker Sandwich Complexes with a Bent Cyclo-P5 Middle-Deck. Chem. Commun. 2016, 52, 12298–12301.
38. Scherer, O. J.; Mohr, T.; Wolmershäuser, G. Cleavage of an Acyclic P5 Ligand into P4|P1 and P3|P2 Molecular Building Blocks. J. Organomet. Chem. 1997, 529, 379–385.
39. Bai, J.; Virovets, A.V.; Scheer, M. Pentaphosphaferrocene as a Linking Unit for the Formation of One- and Two-Dimensional Polymers. Angew. Chem. Int. Ed. 2002, 41, 1737–1740.
40. Bai, J.; Virovets, A.V.; Scheer, M. Synthesis of Inorganic Fullerene-Like Molecules. Science 2003, 300, 781–783.
41. Scheer, M.; Bai, J.; Johnson, B. P.; Merkle, R.; Virovets, A.V.; Anson, C. E. Fullerene-Like Nanoballs Formed by Pentaphosphaferrocene and CuBr. Eur. J. Inorg. Chem. 2005, 2005, 4023–4026.
42. Scheer, M.; Gregoriades, L. J.; Virovets, A.V.; Kunz, W.; Neueder, R.; Krossing, I. Reversible Formation of Polymeric Chains by Coordination of Pentaphosphaferrocene with Silver(I) Cations. Angew. Chem. Int. Ed. 2006, 45, 5689–5693.
43. Scheer, M.; Schindler, A.; Merkle, R.; Johnson, B. P.; Linseis, M.; Winter, R.; Anson, C. E.; Virovets, A.V. Fullerene C60 as an Endohedral Molecule within an Inorganic Supramolecule. J. Am. Chem. Soc. 2007, 129, 13386–13387.
44. Welsch, S.; Gregoriades, L. J.; Sierka, M.; Zabel, M.; Virovets, A. V.; Scheer, M. Unusual Coordination Behavior of Pn-Ligand Complexes with Tl+. Angew. Chem. Int. Ed. 2007, 46, 9323–9326.
45. Scheer, M.; Schindler, A.; Gröger, C.; Virovets, A. V.; Peresypkina, E. V. A Spherical Molecule with a Carbon-Free Ih-C80 Topological Framework. Angew. Chem. Int. Ed. 2009, 48, 5046–5049.
46. Scheer, M.; Schindler, A.; Bai, J.; Johnson, B. P.; Merkle, R.; Winter, R.; Virovets, A. V.; Peresypkina, E. V.; Blatov, V. A.; Sierka, M.; Eckert, H. Structures and Properties of Spherical 90-Vertex Fullerene-Like Nanoballs. Chem. – A Eur. J. 2010, 16, 2092–2107.
47. Rink, B.; Scherer, O. J.; Heckmann, G.; Wolmershäuser, G. Neutrale 30-Valenzelektronen-Tripeldeckerkomplexe Mit Cyclo-E5-Mitteldeck (E = P, As). Chem. Ber. 1992, 125, 1011–1016.
48. Kudinov, A. R.; Petrovskii, P.V; Rybinskaya, M. I. Synthesis and the Fluxional Behavior of the 30-Electron Cationic Iron-Molybdenum Triple-Decker Complex with a Central Pentaphospholyl Ligand, [(η-C7H7)Mo(μ-η:η-P5)Fe(η-C5Me5)]BF4. Russ. Chem. Bull. 1999, 48, 1362–1364.
49. Kudinov, A. R.; Loginov, D. A.; Starikova, Z. A.; Petrovskii, P. V.; Corsini, M.; Zanello, P. Iron- and Ruthenium-Containing Triple-Decker Complexes with a Central Pentaphospholyl Ligand − X-Ray Structures of [(η-C5H5)Fe(μ-η:η-P5)Ru(η-C5Me5)]PF6 and [(η-C5Me5)Ru(μ-η:η-P5)Ru(η-C5Me5)]PF6. Eur. J. Inorg. Chem. 2002, 2002, 3018–3027.
50. Vinogradov, M. M.; Nelyubina, Y.V; Corsini, M.; Fabrizi de Biani, F.; Kudinov, A. R.; Loginov, D. A. Thioether Iron Complexes [(X-SMe-7,8-C2B9H10)Fe(C6H6)] (X = 9 or 10) as Synthons of Neutral Ferracarborane Fragments. Eur. J. Inorg. Chem. 2017, 2017, 4627–4634.
51. Loginov, D. A.; Nelyubina, Y.V; Kudinov, A. R. (C4Me4)Co-Containing Triple-Decker Complexes with Bridging Heterocyclic Ligands. J. Organomet. Chem. 2018, 870, 130–135.
52. Elsayed Moussa, M.; Welsch, S.; Dütsch, L.; Piesch, M.; Reichl, S.; Seidl, M.; Scheer, M.The Triple-Decker Complex [Cp*Fe(µ,Η5:Η5-P5)Mo(CO)3] as a Building Block in Coordination Chemistry. Molecules. 2019.
53. Piesch, M.; Dielmann, F.; Reichl, S.; Scheer, M. A General Pathway to Heterobimetallic Triple-Decker Complexes. Chem. – A Eur. J. 2020, 26, 1518–1524.
54. Reinfandt, N.; Michenfelder, N.; Schoo, C.; Yadav, R.; Reichl, S.; Konchenko, S. N.; Unterreiner, A. N.; Scheer, M.; Roesky, P. W. D/f-Polypnictides Derived by Non-Classical Ln2+ Compounds: Synthesis, Small Molecule Activation and Optical Properties. Chem. – A Eur. J. 2021, 27, 7862–7871.
55. Filippov, O. A.; Titov, A. A.; Guseva, E. A.; Loginov, D. A.; Smol’yakov, A. F.; Dolgushin, F. M.; Belkova, N.V; Epstein, L. M.; Shubina, E. S. Remarkable Structural and Electronic Features of the Complex Formed by Trimeric Copper Pyrazolate with Pentaphosphaferrocene. Chem. – A Eur. J. 2015, 21, 13176–13180.
56. Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1–118. Chem. – A Eur. J. 2009, 15, 186–197.
57. Cotton, F. A. Molybdenum-Molybdenum Bonds. J. Less Common Met. 1977, 54, 3–12.
58. Alvarez, C. M.; Alvarez, M. A.; García, M. E.; Ramos, A.; Ruiz, M. A.; Lanfranchi, M.; Tiripicchio, A. A Triply Bonded Dimolybdenum Hydride Complex with Acid, Base and Radical Activity. Organometallics 2005, 24, 7–9.
59. Arleth, N.; Gamer, M. T.; Köppe, R.; Pushkarevsky, N. A.; Konchenko, S. N.; Fleischmann, M.; Bodensteiner, M.; Scheer, M.; Roesky, P. W. The Approach to 4d/4f-Polyphosphides. Chem. Sci. 2015, 6, 7179–7184.
60. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, No. 21, 2832–2838.
61. Dillon, K. B.; Gibson, V. C.; Howard, J. A. K.; Sequeira, L. J.; Jing Wen Yao. Bis(Imido) Molybdenum(IV) Complexes Containing Η2-Diphosphene Ligands. Polyhedron 1996, 15, 4173–4177.
62. Goumri-Magnet, S.; Polishchuk, O.; Gornitzka, H.; Marsden, C. J.; Baceiredo, A.; Bertrand, G. The Electrophilic Behavior of Stable Phosphanylcarbenes Towards Phosphorus Lone Pairs. Angew. Chem. Int. Ed. 1999, 38, 3727–3729.
63. Sterenberg, B. T.; Senturk, O. S.; Udachin, K. A.; Carty, A. J. Reactivity of Terminal, Electrophilic Phosphinidene Complexes of Molybdenum and Tungsten. Nucleophilic Addition at Phosphorus and P−P Bond Forming Reactions with Phosphines and Diphosphines. Organometallics 2007, 26, 925–937.
64. Das, S.; Maity, J.; Panda, T. K. Metal/Non-Metal Catalyzed Activation of Organic Nitriles. Chem. Rec. 2022, 22, e202200192.
65. Kukushkin, V. Y.; Pombeiro, A. J. L. Additions to Metal-Activated Organonitriles. Chem. Rev. 2002, 102, 1771–1802.
66. DeBellefon, C.; Fouilloux, P. Homogeneous and Heterogeneous Hydrogenation of Nitriles in a Liquid Phase: Chemical, Mechanistic, and Catalytic Aspects. Catal. Rev. 1994, 36, 459–506.
67. Li, B.; Xu, S.; Song, H.; Wang, B. Reactions of (Me2C)(Me2Si)[(Η5-C5H3)Mo(CO)3]2 with Nitrile and Subsequent Cleavage of the C{triple Bond, Long}N Bond by Cooperation of Molybdenum and Ruthenium. J. Organomet. Chem. 2008, 693, 87–96.
68. Michelin, R. A.; Mozzon, M.; Bertani, R. Reactions of Transition Metal-Coordinated Nitriles. Coord. Chem. Rev. 1996, 147, 299–338.
69. Pyykkö, P.; Riedel, S.; Patzschke, M. Triple-Bond Covalent Radii. Chem. – A Eur. J. 2005, 11, 3511–3520.
70. Pyykkö, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li–E112. Chem. – A Eur. J. 2009, 15, 12770–12779.
71. Domínguez, G.; Pérez-Castells, J. Recent Advances in [2+2+2] Cycloaddition Reactions. Chem. Soc. Rev. 2011, 40, 3430–3444.
72. Shen, J.; Yap, G. P. A.; Werner, J. P.; Theopold, K. H. Reactions of a Quintuply Bonded Chromium Dimer with Alkynes. Chem. Commun. 2011, 47, 12191–12193.
73. Noor, A.; Tamne, E. S.; Qayyum, S.; Bauer, T.; Kempe, R. Cycloaddition Reactions of a Chromium-Chromium Quintuple Bond. Chem. Eur. J. 2011, 17, 6900–6903.
74. Chen, H. Z.; Liu, S. C.; Yen, C. H.; Yu, J. S. K.; Shieh, Y. J.; Kuo, T. S.; Tsai, Y. C. Reactions of Metal-Metal Quintuple Bonds with Alkynes: [2+2+2] and [2+2] Cycloadditions. Angew. Chem. Int. Ed. 2012, 51, 10342–10346.
75. Chen, Y.; Sakaki, S. The Important Role of the Mo–Mo Quintuple Bond in Catalytic Synthesis of Benzene from Alkynes. A Theoretical Study. Dalton Trans. 2014, 43, 11478–11492.
76. Fukin, G. K.; Lindeman, S.V; Kochi, J. K. Molecular Structures of Cation···π(Arene) Interactions for Alkali Metals with π- and σ-Modalities. J. Am. Chem. Soc. 2002, 124, 8329–8336.
77. Cui, P.; Gao, H.; Wang, Y.; Tung, C.-H.; Kong, L. The Cation-π Interactions in a Potassium Alkylideneborane Complex. Eur. J. Inorg. Chem. 2022, 2022, e202200400.
78. Wright, T. C.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B. (Η2-Acetonitrile)Bis(Η5-Cyclopentadienyl)Molybdenum(II):The First Structurally Characterized Complex Containing an Η2-Nitrile Ligand. J. Chem. Soc.{,} Dalt. Trans. 1986, No. 9, 2017–2019.
79. Anderson, S. J.; Wells, F. J.; Willkinson, G.; Hussain, B.; Hursthouse, M. B. 1,2-Bis(Dimethyl)Phosphinoethane Complexes of Molybdenum and Vanadium. X-Ray Crystal Structure of Trans-[MoCl(Η2-NCMe)(Dmpe)2]BPh4, Trans-[Mo(SPh)2(Dmpe)2], Trans-[V(NCMe)2 (Dmpe)2](BPh4)2, Trans-[V(CNBut)2(Dmpe)2](PF6)2. Polyhedron 1988, 7, 2615–2626.
80. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkovc, A.; Verpoort, F. Metal–Organic Frameworks: Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations. Chem. Soc. Rev. 2015, 44, 6804–6849.
81. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300, 1127–1129.
82. Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen Storage in Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.
83. Bailey, W. F.; Cioffi, E. A. Carbon-13 NMR Chemical Shifts of Representative Nitriles and Nitro Compounds. Magn. Reson. Chem. 1987, 25, 181–183.
84. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of Bond Lengths Determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc. Perkin Trans. 2 1987, No. 12, S1–S19.
85. Roberts, J. D.; Streitwieser, A. J.; Regan, C. M. Small-Ring Compounds. X. Molecular Orbital Calculations of Properties of Some Small-Ring Hydrocarbons and Free Radicals1. J. Am. Chem. Soc. 1952, 74, 4579–4582.
86. Anthony, S. P.; Varughese, S. Diaminotriazine Substituted Diphenyl Ether: Reversible Structural Transformation and Solvent Dependent Solid State Fluorescence. CrystEngComm 2013, 15, 4117–4123.
87. Hassan, J.; Gozzi, C.; Lemaire, M. Palladium-Catalysed Symmetrical and Unsymmetrical Coupling of Aryl Halides. Comptes Rendus l’Academie des Sci. - Ser. IIc Chem. 2000, 3, 517–521.
88. Wrobel, A. J.; Lucchesi, R.; Wibbeling, B.; Daniliuc, C. G.; Fröhlich, R.; Würthwein, E. U. 1,3,5-Triazapentadienes by Nucleophilic Addition to 1,3- and 1,4-Dinitriles - Sterically Constrained Examples by Incorporation into Cyclic Peripheries: Synthesis, Aggregation, and Photophysical Properties. J. Org. Chem. 2016, 81, 2849–2863.
89. Germain, M. E.; Temprado, M.; Castonguay, A.; Kryatova, O. P.; Rybak-Akimova, E.V; Curley, J. J.; Mendiratta, A.; Tsai, Y.-C.; Cummins, C. C.; Prabhakar, R.; McDonough, J. E.; Hoff, C. D. Coordination-Mode Control of Bound Nitrile Radical Complex Reactivity: Intercepting End-on Nitrile−Mo(III) Radicals at Low Temperature. J. Am. Chem. Soc. 2009, 131, 15412–15423.
90. Hurdis, E. C.; Smyth, C. P. The Structural Effects of Unsaturation and Hyperconjugation in Aldehydes, Nitriles and Chlorides as Shown by Their Dipole Moments in the Vapor State. J. Am. Chem. Soc. 1943, 65, 89–96.
91. Kleinpeter, E.; Schulenburg, A. Quantification of the Push–Pull Effect in Substituted Alkenes. Tetrahedron Lett. 2005, 46, 5995–5997.
92. Dannenberg, J. J. An Introduction to Hydrogen Bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press:  New York and Oxford. 1997. Ix + 303 Pp. $60.00. ISBN 0-19-509549-9. J. Am. Chem. Soc. 1998, 120, 5604.
93. Pauling, L.The Concept of Resonance. In The Nature of the Chemical Bond – An Introduction to Modern Structural Chemistry; Cornell University Press, 1960; pp 10–13.
94. Wadepohl, H.; Arnold, U.; Pritzkow, H.; Calhorda, M. J.; Veiros, L. F. Interplay of Ketenyl and Nitrile Ligands on D6-Transition Metal Centres. Acetonitrile as an End-on (Two-Electron) and a Side-on (Four-Electron) Ligand. J. Organomet. Chem. 1999, 587, 233–243.
95. Nishio, M. CH/π Hydrogen Bonds in Crystals. CrystEngComm 2004, 6, 130–158.
96. Zhao, C.; Parrish, R. M.; Smith, M. D.; Pellechia, P. J.; Sherrill, C. D.; Shimizu, K. D. Do Deuteriums Form Stronger CH−π Interactions? J. Am. Chem. Soc. 2012, 134, 14306–14309.
97. Cotton, F. A.; Daniels, L. M.; Lei, P.; Murillo, C. A.; Wang, X. Di- and Trinuclear Complexes with the Mono- and Dianion of 2,6-Bis(Phenylamino)Pyridine:  High-Field Displacement of Chemical Shifts Due to the Magnetic Anisotropy of Quadruple Bonds. Inorg. Chem. 2001, 40, 2778–2784.
98. Pearson, R. G. Chemical Hardness and Density Functional Theory. J. Chem. Sci. 2005, 117, 369–377.
99. Bani-Fwaz, M. Z.; Fazary, A. E.; Becker, G. Synthesis and Crystal Structures of Dialkyl[1,1-Bis(Alkylchloroalanyl)Organylmethyl]Phosphine•dialkylchloroalane(1/1) Complexes. J. Coord. Chem. 2017, 70, 2224–2248.
100. Shafir, A.; Power, M. P.; Whitener, G. D.; Arnold, J.; Miller, P. W.; Long, N. J.1,1′-Diaminoferrocene. In Inorganic Syntheses: Volume 36; John Wiley & Sons, Ltd, 2014; pp 65–72.
101. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515.
102. Dolomanov, O.V; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. {\it OLEX2}: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341.
103. Sheldrick, G. M. {\it SHELXT} {--} Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71, 3–8.
104. Sheldrick, G. M. Crystal Structure Refinement with {\it SHELXL}. Acta Crystallogr. Sect. C 2015, 71, 3–8.
105. Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606.
106. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211.
107. Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822–8824.
108. Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100.
109. Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
110. Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence{,} Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
111. Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 Dispersion Coefficient Model. J. Chem. Phys. 2017, 147.
112. Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. J. Chem. Phys. 2019, 150.
113. Glendening, E. D.; Landis, C. R.; Weinhold, F. NBO 7.0: New Vistas in Localized and Delocalized Chemical Bonding Theory. J. Comput. Chem. 2019, 40, 2234–2241.
114. Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013, 9, 4834–4843.
115. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. a.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. a.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, a.V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.V.; Izmaylov, a. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. a.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. a.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, a. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.G16_C01. 2016, p Gaussian 16, Revision C.01, Gaussian, Inc., Wallin.
116. Fukui, K. The Path of Chemical Reactions - the IRC Approach. Acc. Chem. Res. 1981, 14, 363–368.
117. Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161–4163.
118. Martin, J. M. L.; Sundermann, A. Correlation Consistent Valence Basis Sets for Use with the Stuttgart–Dresden–Bonn Relativistic Effective Core Potentials: The Atoms Ga–Kr and In–Xe. J. Chem. Phys. 2001, 114, 3408–3420.
119. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123–141.
120. Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222.
121. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self‐consistent Molecular Orbital Methods. XXIII. A Polarization‐type Basis Set for Second‐row Elements. J. Chem. Phys. 1982, 77, 3654–3665.
122. Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-Consistent Molecular-Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements. J. Am. Chem. Soc. 1982, 104, 2797–2803.
123. Hehre, W. J.; Ditchfield, K.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261.
124. Lu, T. No Title. sobMECP Progr.
125. Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. No Title. Theor. Chem. Acc. 1998, 99, 95−99.
(此全文20280818後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *