|
[1] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142. [2] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217. [3] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862. [4] Link, S.; Mohamed, M.; El-Sayed, M. J. Phys. Chem. B 1999, 103, 3073-3077. [5] Mie, G. Ann. Phys. 1908, 330, 377-445. [6] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504. [7] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297. [8] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094. [9] Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409-453. [10] Eesley, G. Phys. Rev. Lett. 1983, 51, 2140. [11] Eesley, G. Phys. Rev. B 1986, 33, 2144. [12] Ekici, O.; Harrison, R.; Durr, N.; Eversole, D.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501. [13] Qin, Z.; Bischof, J. C. Chem. Soc. Rev. 2012, 41, 1191-1217. [14] Sun, C.-K.; Vallee, F.; Acioli, L.; Ippen, E.; Fujimoto, J. Phys. Rev. B 1993, 48, 12365. [15] Maestro, L. M.; Haro-González, P.; Del Rosal, B.; Ramiro, J.; Caamano, A.; Carrasco, E.; Juarranz, A.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. Nanoscale 2013, 5, 7882-7889. [16] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Medical Laser Appl. 2007, 22, 199-206. [17] Liu, J.; Detrembleur, C.; Pauw‐Gillet, D.; Mornet, S.; Jérôme, C.; Duguet, E. Small 2015, 11, 2323-2332. [18] Kim, J.-W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H.-M.; Zharov, V. P. Nat. Nanotech. 2009, 4, 688. [19] Zha, Z.; Zhang, S.; Deng, Z.; Li, Y.; Li, C.; Dai, Z. Chem. Commun. 2013, 49, 3455-3457. [20] Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Chem. Soc. Rev. 2014, 43, 6254-6287. [21] Boriskina, S. V.; Ghasemi, H.; Chen, G. Mater Today 2013, 16, 375-386. [22] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotech. 2009, 4, 710. [23] Zhou, W.; Shao, J.; Jin, Q.; Wei, Q.; Tang, J.; Ji, J. Chem. Commun. 2010, 46, 1479-1481. [24] Hu, S.; Maslov, K.; Wang, L. V. Optics Lett. 2011, 36, 1134-1136. [25] Xu, M.; Wang, L. V. Phys. Rev. E 2005, 71, 016706. [26] Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L. V. Nat. Biotechnol. 2003, 21, 803. [27] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Sens. Actuators B 2018, 255, 1285-1290. [28] Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 14981-14989. [29] Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Appl. Phys. Lett. 2003, 83, 3555-3557. [30] Freddi, S.; Sironi, L.; D’Antuono, R.; Morone, D.; Donà, A.; Cabrini, E.; D’Alfonso, L.; Collini, M.; Pallavicini, P.; Baldi, G. Nano Lett. 2013, 13, 2004-2010. [31] Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G. Nanoscale 2014, 6, 9494-9530. [32] Yang, C. Y. Appl. Math Model. 1998, 22, 1-9. [33] Yang, C. Y. Int. J. Heat Mass Transfer 1999, 42, 345-356. [34] Hon, Y.; Wei, T. Eng. Anal. Bound. Elem. 2004, 28, 489-495. [35] Yang, L.; Dehghan, M.; Yu, J.-N.; Luo, G.-W. Math Comput. Simul. 2011, 81, 1656-1672. [36] Le Niliot, C.; Lefèvre, F. Int. J. Heat Mass Transfer 2004, 47, 827-841. [37] Ling, L.; Takeuchi, T. Commun. Comput. Phys. 2009, 5, 897-913.
[1] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142. [2] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217. [3] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862. [4] Link, S.; Mohamed, M.; El-Sayed, M. J. Phys. Chem. B 1999, 103, 3073-3077. [5] Mie, G. Ann. Phys. 1908, 330, 377-445. [6] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504. [7] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297. [8] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; de Abajo, F. J. G. Chem. Soc. Rev. 2008, 37, 1792-1805. [9] Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870-1901. [10] Cao, J.; Sun, T.; Grattan, K. T. Sens. Actuators B 2014, 195, 332-351. [11] Gans, R. v. Ann. Phys. 1912, 342, 881-900. [12] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094. [13] Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409-453. [14] Eesley, G. Phys. Rev. Lett. 1983, 51, 2140. [15] Eesley, G. Phys. Rev. B 1986, 33, 2144. [16] Ekici, O.; Harrison, R.; Durr, N.; Eversole, D.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501. [17] Qin, Z.; Bischof, J. C. Chem. Soc. Rev. 2012, 41, 1191-1217. [18] Sun, C.-K.; Vallee, F.; Acioli, L.; Ippen, E.; Fujimoto, J. Phys. Rev. B 1993, 48, 12365. [19] Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302-9315. [20] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods ACS Publications 1999 [21] Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. J. Am. Chem. Soc. 2007, 129, 14852-14853. [22] Hu, M.; Hartland, G. V. J. Phys. Chem. B 2002, 106, 7029-7033. [23] Wilson, O. M.; Hu, X.; Cahill, D. G.; Braun, P. V. Phys. Rev. B 2002, 66, 224301. [24] Werner, D.; Hashimoto, S. J. Phys. Chem. C 2010, 115, 5063-5072. [25] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotech. 2009, 4, 710. [26] Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G. Nanoscale 2014, 6, 9494-9530. [27] Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Small 2010, 6, 2272-2280. [28] Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. J. Phys. Chem. C 2009, 113, 12090-12094. [29] Gao, L.; Wang, L.; Li, C.; Liu, Y.; Ke, H.; Zhang, C.; Wang, L. V. J. Biomed. Opt. 2013, 18, 026003. [30] Wang, L. V.; Hu, S. Science 2012, 335, 1458-1462. [31] Hu, S.; Maslov, K.; Wang, L. V. Optics Lett. 2011, 36, 1134-1136. [32] Xu, M.; Wang, L. V. Phys. Rev. E 2005, 71, 016706. [33] Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L. V. Nat. Biotechnol. 2003, 21, 803. [34] Zha, Z.; Zhang, S.; Deng, Z.; Li, Y.; Li, C.; Dai, Z. Chem. Commun. 2013, 49, 3455-3457. [35] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Sens. Actuators B 2018, 255, 1285-1290. [36] Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 14981-14989. [37] Wan, X.; Li, C.; Yue, Y.; Xie, D.; Xue, M.; Hu, N. Nanotechnology 2016, 27, 445706. [38] Freddi, S.; Sironi, L.; D’Antuono, R.; Morone, D.; Donà, A.; Cabrini, E.; D’Alfonso, L.; Collini, M.; Pallavicini, P.; Baldi, G. Nano Lett. 2013, 13, 2004-2010. [39] Li, C.; Yue, Y. Nanotechnology 2014, 25, 435703. [40] Ke, G.; Wang, C.; Ge, Y.; Zheng, N.; Zhu, Z.; Yang, C. J. J. Am. Chem. Soc. 2012, 134, 18908-18911. [41] Arai, S.; Ishiwata, S. i.; Suzuki, M.; Sato, H. In Self-Calibrated Fluorescent Thermometer Nanoparticles Enable in Vivo Micro Thermography in Milimeter Scale Living Animal IEEE 2015 [42] Maestro, L. M.; Haro-González, P.; Del Rosal, B.; Ramiro, J.; Caamano, A.; Carrasco, E.; Juarranz, A.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. Nanoscale 2013, 5, 7882-7889. [43] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Medical Laser Appl. 2007, 22, 199-206. [44] Yang, C. Y. Appl. Math Model. 1998, 22, 1-9. [45] Zhao, D.; Qian, X.; Gu, X.; Jajja, S. A.; Yang, R. J. Electron. Packag. 2016, 138, 040802. [46] Franco, A. Appl. Therm. Eng. 2007, 27, 2495-2504. [47] Abu-Hamdeh, N. H.; Khdair, A. I.; Reeder, R. C. Int. J. Heat Mass Transfer 2001, 44, 1073-1078. [48] Festa, C.; Rossi, A. Ann. Glaciol. 1999, 29, 151-154. [49] Sundar, L. S.; Ramana, E. V.; Singh, M. K.; Sousa, A. C. Int. Commun. Heat Mass 2014, 56, 86-95. [50] Li, Y.; Shi, C.; Liu, J.; Liu, E.; Shao, J.; Chen, Z.; Dorantes-Gonzalez, D. J.; Hu, X. Meas. Sci. Technol. 2013, 25, 015006. [51] He, Y. Thermochim Acta 2005, 436, 122-129. [52] Gustavsson, M.; Karawacki, E.; Gustafsson, S. E. Rev. Sci. Instrum. 1994, 65, 3856-3859. [53] Gustafsson, S. E. Rev. Sci. Instrum. 1991, 62, 797-804. [54] Hon, Y.; Wei, T. Eng. Anal. Bound. Elem. 2004, 28, 489-495. [55] Yang, C. Y. Int. J. Heat Mass Transfer 1999, 42, 345-356. [56] Yang, L.; Dehghan, M.; Yu, J.-N.; Luo, G.-W. Math Comput. Simul. 2011, 81, 1656-1672. [57] Le Niliot, C.; Lefèvre, F. Int. J. Heat Mass Transfer 2004, 47, 827-841. [58] Ling, L.; Takeuchi, T. Commun. Comput. Phys. 2009, 5, 897-913. [59] Stephen, A. M.; Phillips, G. O. Food Polysaccharides and Their Applications CRC press 2016 [60] Bertasa, M.; Botteon, A.; Brambilla, L.; Riedo, C.; Chiantore, O.; Poli, T.; Sansonetti, A.; Scalarone, D. J. Anal. Appl. Pyrolysis 2017, 125, 310-317. [61] Arnott, S.; Fulmer, A.; Scott, W.; Dea, I.; Moorhouse, R.; Rees, D. J. Mol. Biol. 1974, 90, 269-284. [62] Rees, D. A. Structure, Conformation, and Mechanism in the Formation of Polysaccharide Gels and Networks Elsevier 1969 [63] Ramzi, M.; Rochas, C.; Guenet, J.-M. Macromolecules 1998, 31, 6106-6111. [64] Huang, J.; Holt, R. G.; Cleveland, R. O.; Roy, R. A. J. Acoust. Soc. Am. 2004, 116, 2451-2458. [65] Madsen, E. L.; Hobson, M. A.; Shi, H.; Varghese, T.; Frank, G. R. Phys. Med. Biol. 2005, 50, 5597. [66] Paul, A.; Narasimhan, A.; Kahlen, F. J.; Das, S. K. J. Therm Biol. 2014, 41, 77-87. [67] Zhu, J.; Marchant, R. E. Expert. Rev. Med. Devices. 2011, 8, 607-626. [68] Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. J. Chem. Eng. Data 2010, 56, 859-864. [69] Leonard, J. B.; Foster, K. R.; Athley, T. W. IEEE Trans. Biomed. Eng. 1984, 533-536. [70] Valvano, J.; Cochran, J.; Diller, K. Int. J. Thermophys. 1985, 6, 301-311. [71] Haynes, W. M. Handbook of Chemistry and Physics CRC press 2014
[1] Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. Fundamentals of Analytical Chemistry Nelson Education 2013 [2] Faust, C. B. Modern Chemical Techniques Royal Soc. of Chemistry, Educ. Divn. 1992 [3] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297. [4] Erni, R.; Rossell, M. D.; Kisielowski, C.; Dahmen, U. Phys. Rev. Lett. 2009, 102, 096101. [5] Aarhus UniversityTransmission and Scanning Electron Microscopy http://inano.au.dk/research/research-platforms/nanoanalysis/transmission-and-scanning-electron-microscopy/ [6] Williams, D. B.; Carter, C. B. The Transmission Electron Microscope Springer 1996 [7] Japan Association of Remote Sensing Remote Sensing Notes 1999 http://wtlab.iis.u-tokyo.ac.jp/wataru/lecture/rsgis/rsnote/cp1/cp1-7.htm [8] FLIR User’s Manual Flir A6xx Series FLIR 2016 [9] Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450-1457.
[1] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504. [2] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094. [3] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217. [4] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142. [5] Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. J. Chem. Eng. Data 2010, 56, 859-864. [6] Valvano, J.; Cochran, J.; Diller, K. Int. J. Thermophys. 1985, 6, 301-311. [7] Bates, O. K. Ind. Eng. Chem. 1949, 41, 1966-1968.
|