帳號:guest(18.188.224.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何家宇
作者(外文):Ho, Chia-Yu
論文名稱(中文):以點熱源模型分析由紅外線熱像儀偵測固定於瓊脂內的金奈米棒光熱過程中樣品表面溫度於時間及空間之演進
論文名稱(外文):Thermographic detection and analysis of the temporal and spatial evolution of temperature on the basis of point heat source model upon optical heating of gold nanorod assembly immobilized in agar
指導教授(中文):朱立岡
指導教授(外文):Chu, Li-Kang
口試委員(中文):陳仁焜
劉靜萍
口試委員(外文):Chen, Jen-Kun
Liu, Ching-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023571
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:點熱源紅外線熱像儀瓊脂金奈米棒光熱效應
外文關鍵詞:point heat sourceThermographicagargold nanorodphotothermal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金奈米棒吸收光能後得以熱緩解至環境,且其長軸表面電漿共振吸收波長可藉由增加長寬比調變至近紅外光區。由於此波長可以穿透至生物組織深處,故使金奈米棒可廣泛應用於光熱治療中。在過去的研究中,常以紅外線熱像儀擷取的生物體表面溫度變化,評估光熱治療的效果。然而在光熱治療的過程中組織內部的溫度通常高於生物體表面的溫度,故可能低估病灶的局部溫度而導致病灶周圍的健康組織受到熱傷害。因此,吾人將金奈米棒固定於瓊脂內1 mm3的空間中,以兩種近紅外光源,808 nm連續式雷射及850 nm發光二極體,激發樣品中的金奈米棒做為熱源,用以模擬生物組織進行光熱治療的過程,並搭配紅外線熱像儀,其時間、空間與溫度解析度分別為0.16 s-1、50 μm與0.04 °C,記錄樣品表面的溫度於時間與空間演進。
吾人藉由加熱過程中表面溫度變化量之空間分佈呈現對稱性,確認樣品無熱對流的現象。吾人亦將兩種近紅外光源之照射功率依瓊脂的散射程度修正為有效功率,並依吾人建立之點熱源熱傳導模型擬合以兩種近紅外光源照射樣品30秒時沿Z軸之溫度變化量空間分布,可獲得和實驗製備加熱源一致的深度。吾人於本研究提出以非接觸式的方法進行加熱與偵測,並對加熱物體表面溫度的空間分佈進行分析的方法,預期可應用於分析光熱治療時組織內部的熱傳導模型。
Gold nanorods (AuNR) offer a tunable longitudinal surface plasmon resonance band in near infrared region for the applications in photothermal therapy. Generally, the temperatures evolution of the object of interest upon photothermal treatment was recorded by the thermographic imaging of the object surface. However, when the object surface reached the curable temperature, the interior temperature will be higher than the required and cause further damage of the healthy cells or tissues at the vicinity of the unhealthy areas. In this work, the agar was chosen to serve as a bio-mimicking tissue and a point heat source model was constructed to evaluate the accurate inner temperature though monitoring the surface temperature. An agar matrix was embedded with an 1 mm3 AuNR agar cube in different depths with respect to the agar surface. The photoexcitation of AuNR agar cube with 808 nm CW laser or 850 nm LED light leads to the evolution of increasing surface temperature monitored by an infrared thermographic camera. The temporal resolution, spatial resolution and temperature resolution in our system are 0.16 s-1、50 μm and 0.04 °C, respectively.
The symmetric distribution of the temperature change along the x and z axes through the heating center suggested that the sample is non-fluidic and the convection and the mass flow can be excluded. The injection powers of laser and LED light were corrected according to the absorption and scattering of the agar matrix for fitting the temperature distribution along the z axis after heating for 30 seconds using the point source heat transfer model. The depths of the AuNR agar cube can be determined and are consistent with the prepared depths. Thus, I reported that the development of a bio-mimicking matrix using agar upon optical heating of the embedded AuNR sample and thermographic monitoring is feasible to the analysis of the surface and interior temperature evolution.
第一章 緒論 1
1.1 前言 1
1.2 光熱治療簡介 1
1.3 實驗動機 3
參考文獻 4
第二章 文獻回顧 7
2.1 金奈米棒之光學性質 7
2.1.1 侷域性表面電漿共振 7
2.1.2 光熱效應 8
2.2 非接觸式測溫方式 9
2.2.1 光聲測溫 10
2.2.2 螢光溫度計 11
2.2.3 紅外線熱像儀 11
2.3 熱傳導反問題 12
2.3.1 熱傳導係數 12
2.3.2 熱源位置與加熱功率 13
2.4 瓊脂熱傳導性質 14
參考文獻 25
第三章 儀器原理、實驗系統架設、實驗樣品製備及點熱源模型建立 30
3.1. 儀器原理介紹 30
3.1.1. 靜態紫外/可見/近紅外光吸收光譜 30
3.1.2. 穿透式電子顯微鏡 31
3.1.3. 紅外線熱像儀 32
3.2. 紅外線熱像儀系統架設 33
3.3. 樣品合成與製備 34
3.3.1. 金奈米棒合成、純化與濃縮 34
3.3.2. 瓊脂樣品製備 35
3.3.3. 實驗藥品 36
3.4. 點熱源模型 36
3.5. 儀器參數設定 39
3.5.1. 靜態紫外/可見/近紅外光吸收光譜 39
3.5.2. 穿透式電子顯微鏡 39
3.5.3. 紅外線熱像儀系統 40
參考文獻 50
第四章 實驗結果與討論 51
4.1. 金奈米棒之靜態光譜及形貌 51
4.1.1. 金奈米棒的靜態可見/近紅外光譜 51
4.1.2. 穿透式電子顯微影像 52
4.2. 點熱源模型之修正 52
4.3. 數據處理 52
4.3.1. 扣除背景 53
4.3.2. 扣除瓊脂受光加熱所造成的升溫 53
4.3.3. 溫度變化量空間分布圖之對稱性 53
4.3.4. 加熱功率修正 54
4.3.5. 以點熱源模型擬合溫度變化量空間分布並模擬溫度變化量空間分布 54
4.4. 瓊脂表面的溫度演進 55
4.4.1. 808 nm雷射激發樣品之XZ平面溫度變化量空間分布演進 55
4.4.2. 850 nm發光二極體激發樣品之XZ平面溫度變化量空間分布演進 56
4.5. 利用點熱源解熱傳導反問題 57
4.5.1. 實驗樣品不具流動性 57
4.5.2. 808 nm雷射照射樣品之溫度變化量空間分布擬合與模擬結果 57
4.5.3. 850 nm發光二極體照射樣品之溫度變化量空間分布擬合結果 58
參考文獻 86
第五章 結論 87
[1] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142.
[2] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[3] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[4] Link, S.; Mohamed, M.; El-Sayed, M. J. Phys. Chem. B 1999, 103, 3073-3077.
[5] Mie, G. Ann. Phys. 1908, 330, 377-445.
[6] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504.
[7] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[8] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[9] Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409-453.
[10] Eesley, G. Phys. Rev. Lett. 1983, 51, 2140.
[11] Eesley, G. Phys. Rev. B 1986, 33, 2144.
[12] Ekici, O.; Harrison, R.; Durr, N.; Eversole, D.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[13] Qin, Z.; Bischof, J. C. Chem. Soc. Rev. 2012, 41, 1191-1217.
[14] Sun, C.-K.; Vallee, F.; Acioli, L.; Ippen, E.; Fujimoto, J. Phys. Rev. B 1993, 48, 12365.
[15] Maestro, L. M.; Haro-González, P.; Del Rosal, B.; Ramiro, J.; Caamano, A.; Carrasco, E.; Juarranz, A.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. Nanoscale 2013, 5, 7882-7889.
[16] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Medical Laser Appl. 2007, 22, 199-206.
[17] Liu, J.; Detrembleur, C.; Pauw‐Gillet, D.; Mornet, S.; Jérôme, C.; Duguet, E. Small 2015, 11, 2323-2332.
[18] Kim, J.-W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H.-M.; Zharov, V. P. Nat. Nanotech. 2009, 4, 688.
[19] Zha, Z.; Zhang, S.; Deng, Z.; Li, Y.; Li, C.; Dai, Z. Chem. Commun. 2013, 49, 3455-3457.
[20] Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Chem. Soc. Rev. 2014, 43, 6254-6287.
[21] Boriskina, S. V.; Ghasemi, H.; Chen, G. Mater Today 2013, 16, 375-386.
[22] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotech. 2009, 4, 710.
[23] Zhou, W.; Shao, J.; Jin, Q.; Wei, Q.; Tang, J.; Ji, J. Chem. Commun. 2010, 46, 1479-1481.
[24] Hu, S.; Maslov, K.; Wang, L. V. Optics Lett. 2011, 36, 1134-1136.
[25] Xu, M.; Wang, L. V. Phys. Rev. E 2005, 71, 016706.
[26] Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L. V. Nat. Biotechnol. 2003, 21, 803.
[27] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Sens. Actuators B 2018, 255, 1285-1290.
[28] Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 14981-14989.
[29] Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Appl. Phys. Lett. 2003, 83, 3555-3557.
[30] Freddi, S.; Sironi, L.; D’Antuono, R.; Morone, D.; Donà, A.; Cabrini, E.; D’Alfonso, L.; Collini, M.; Pallavicini, P.; Baldi, G. Nano Lett. 2013, 13, 2004-2010.
[31] Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G. Nanoscale 2014, 6, 9494-9530.
[32] Yang, C. Y. Appl. Math Model. 1998, 22, 1-9.
[33] Yang, C. Y. Int. J. Heat Mass Transfer 1999, 42, 345-356.
[34] Hon, Y.; Wei, T. Eng. Anal. Bound. Elem. 2004, 28, 489-495.
[35] Yang, L.; Dehghan, M.; Yu, J.-N.; Luo, G.-W. Math Comput. Simul. 2011, 81, 1656-1672.
[36] Le Niliot, C.; Lefèvre, F. Int. J. Heat Mass Transfer 2004, 47, 827-841.
[37] Ling, L.; Takeuchi, T. Commun. Comput. Phys. 2009, 5, 897-913.

[1] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142.
[2] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[3] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[4] Link, S.; Mohamed, M.; El-Sayed, M. J. Phys. Chem. B 1999, 103, 3073-3077.
[5] Mie, G. Ann. Phys. 1908, 330, 377-445.
[6] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504.
[7] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[8] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; de Abajo, F. J. G. Chem. Soc. Rev. 2008, 37, 1792-1805.
[9] Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870-1901.
[10] Cao, J.; Sun, T.; Grattan, K. T. Sens. Actuators B 2014, 195, 332-351.
[11] Gans, R. v. Ann. Phys. 1912, 342, 881-900.
[12] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[13] Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409-453.
[14] Eesley, G. Phys. Rev. Lett. 1983, 51, 2140.
[15] Eesley, G. Phys. Rev. B 1986, 33, 2144.
[16] Ekici, O.; Harrison, R.; Durr, N.; Eversole, D.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[17] Qin, Z.; Bischof, J. C. Chem. Soc. Rev. 2012, 41, 1191-1217.
[18] Sun, C.-K.; Vallee, F.; Acioli, L.; Ippen, E.; Fujimoto, J. Phys. Rev. B 1993, 48, 12365.
[19] Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302-9315.
[20] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods ACS Publications 1999
[21] Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. J. Am. Chem. Soc. 2007, 129, 14852-14853.
[22] Hu, M.; Hartland, G. V. J. Phys. Chem. B 2002, 106, 7029-7033.
[23] Wilson, O. M.; Hu, X.; Cahill, D. G.; Braun, P. V. Phys. Rev. B 2002, 66, 224301.
[24] Werner, D.; Hashimoto, S. J. Phys. Chem. C 2010, 115, 5063-5072.
[25] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotech. 2009, 4, 710.
[26] Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G. Nanoscale 2014, 6, 9494-9530.
[27] Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Small 2010, 6, 2272-2280.
[28] Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. J. Phys. Chem. C 2009, 113, 12090-12094.
[29] Gao, L.; Wang, L.; Li, C.; Liu, Y.; Ke, H.; Zhang, C.; Wang, L. V. J. Biomed. Opt. 2013, 18, 026003.
[30] Wang, L. V.; Hu, S. Science 2012, 335, 1458-1462.
[31] Hu, S.; Maslov, K.; Wang, L. V. Optics Lett. 2011, 36, 1134-1136.
[32] Xu, M.; Wang, L. V. Phys. Rev. E 2005, 71, 016706.
[33] Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L. V. Nat. Biotechnol. 2003, 21, 803.
[34] Zha, Z.; Zhang, S.; Deng, Z.; Li, Y.; Li, C.; Dai, Z. Chem. Commun. 2013, 49, 3455-3457.
[35] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Sens. Actuators B 2018, 255, 1285-1290.
[36] Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 14981-14989.
[37] Wan, X.; Li, C.; Yue, Y.; Xie, D.; Xue, M.; Hu, N. Nanotechnology 2016, 27, 445706.
[38] Freddi, S.; Sironi, L.; D’Antuono, R.; Morone, D.; Donà, A.; Cabrini, E.; D’Alfonso, L.; Collini, M.; Pallavicini, P.; Baldi, G. Nano Lett. 2013, 13, 2004-2010.
[39] Li, C.; Yue, Y. Nanotechnology 2014, 25, 435703.
[40] Ke, G.; Wang, C.; Ge, Y.; Zheng, N.; Zhu, Z.; Yang, C. J. J. Am. Chem. Soc. 2012, 134, 18908-18911.
[41] Arai, S.; Ishiwata, S. i.; Suzuki, M.; Sato, H. In Self-Calibrated Fluorescent Thermometer Nanoparticles Enable in Vivo Micro Thermography in Milimeter Scale Living Animal IEEE 2015
[42] Maestro, L. M.; Haro-González, P.; Del Rosal, B.; Ramiro, J.; Caamano, A.; Carrasco, E.; Juarranz, A.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. Nanoscale 2013, 5, 7882-7889.
[43] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Medical Laser Appl. 2007, 22, 199-206.
[44] Yang, C. Y. Appl. Math Model. 1998, 22, 1-9.
[45] Zhao, D.; Qian, X.; Gu, X.; Jajja, S. A.; Yang, R. J. Electron. Packag. 2016, 138, 040802.
[46] Franco, A. Appl. Therm. Eng. 2007, 27, 2495-2504.
[47] Abu-Hamdeh, N. H.; Khdair, A. I.; Reeder, R. C. Int. J. Heat Mass Transfer 2001, 44, 1073-1078.
[48] Festa, C.; Rossi, A. Ann. Glaciol. 1999, 29, 151-154.
[49] Sundar, L. S.; Ramana, E. V.; Singh, M. K.; Sousa, A. C. Int. Commun. Heat Mass 2014, 56, 86-95.
[50] Li, Y.; Shi, C.; Liu, J.; Liu, E.; Shao, J.; Chen, Z.; Dorantes-Gonzalez, D. J.; Hu, X. Meas. Sci. Technol. 2013, 25, 015006.
[51] He, Y. Thermochim Acta 2005, 436, 122-129.
[52] Gustavsson, M.; Karawacki, E.; Gustafsson, S. E. Rev. Sci. Instrum. 1994, 65, 3856-3859.
[53] Gustafsson, S. E. Rev. Sci. Instrum. 1991, 62, 797-804.
[54] Hon, Y.; Wei, T. Eng. Anal. Bound. Elem. 2004, 28, 489-495.
[55] Yang, C. Y. Int. J. Heat Mass Transfer 1999, 42, 345-356.
[56] Yang, L.; Dehghan, M.; Yu, J.-N.; Luo, G.-W. Math Comput. Simul. 2011, 81, 1656-1672.
[57] Le Niliot, C.; Lefèvre, F. Int. J. Heat Mass Transfer 2004, 47, 827-841.
[58] Ling, L.; Takeuchi, T. Commun. Comput. Phys. 2009, 5, 897-913.
[59] Stephen, A. M.; Phillips, G. O. Food Polysaccharides and Their Applications CRC press 2016
[60] Bertasa, M.; Botteon, A.; Brambilla, L.; Riedo, C.; Chiantore, O.; Poli, T.; Sansonetti, A.; Scalarone, D. J. Anal. Appl. Pyrolysis 2017, 125, 310-317.
[61] Arnott, S.; Fulmer, A.; Scott, W.; Dea, I.; Moorhouse, R.; Rees, D. J. Mol. Biol. 1974, 90, 269-284.
[62] Rees, D. A. Structure, Conformation, and Mechanism in the Formation of Polysaccharide Gels and Networks Elsevier 1969
[63] Ramzi, M.; Rochas, C.; Guenet, J.-M. Macromolecules 1998, 31, 6106-6111.
[64] Huang, J.; Holt, R. G.; Cleveland, R. O.; Roy, R. A. J. Acoust. Soc. Am. 2004, 116, 2451-2458.
[65] Madsen, E. L.; Hobson, M. A.; Shi, H.; Varghese, T.; Frank, G. R. Phys. Med. Biol. 2005, 50, 5597.
[66] Paul, A.; Narasimhan, A.; Kahlen, F. J.; Das, S. K. J. Therm Biol. 2014, 41, 77-87.
[67] Zhu, J.; Marchant, R. E. Expert. Rev. Med. Devices. 2011, 8, 607-626.
[68] Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. J. Chem. Eng. Data 2010, 56, 859-864.
[69] Leonard, J. B.; Foster, K. R.; Athley, T. W. IEEE Trans. Biomed. Eng. 1984, 533-536.
[70] Valvano, J.; Cochran, J.; Diller, K. Int. J. Thermophys. 1985, 6, 301-311.
[71] Haynes, W. M. Handbook of Chemistry and Physics CRC press 2014

[1] Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. Fundamentals of Analytical Chemistry Nelson Education 2013
[2] Faust, C. B. Modern Chemical Techniques Royal Soc. of Chemistry, Educ. Divn. 1992
[3] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[4] Erni, R.; Rossell, M. D.; Kisielowski, C.; Dahmen, U. Phys. Rev. Lett. 2009, 102, 096101.
[5] Aarhus UniversityTransmission and Scanning Electron Microscopy
http://inano.au.dk/research/research-platforms/nanoanalysis/transmission-and-scanning-electron-microscopy/
[6] Williams, D. B.; Carter, C. B. The Transmission Electron Microscope Springer 1996
[7] Japan Association of Remote Sensing Remote Sensing Notes 1999
http://wtlab.iis.u-tokyo.ac.jp/wataru/lecture/rsgis/rsnote/cp1/cp1-7.htm
[8] FLIR User’s Manual Flir A6xx Series FLIR 2016
[9] Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450-1457.

[1] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504.
[2] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[3] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[4] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142.
[5] Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. J. Chem. Eng. Data 2010, 56, 859-864.
[6] Valvano, J.; Cochran, J.; Diller, K. Int. J. Thermophys. 1985, 6, 301-311.
[7] Bates, O. K. Ind. Eng. Chem. 1949, 41, 1966-1968.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以紅外線熱像儀搭配數學建模分析不同金奈米棒假體之光熱效應於洋菜膠中之熱傳導過程
2. 利用具空間及時間解析能力的螢光溫度計偵測金奈米棒溶液之光熱過程
3. 研究不同二氧化矽包覆厚度之金奈米棒經光激發後之熱傳遞過程及形貌變化
4. 以時間解析紅外放光光譜法研究不同二氧化矽厚度包覆之金奈米棒經光激發後之輻射緩解
5. 界面活性劑對紫膜及細菌視紫質結構的影響
6. 在不同pH值下細菌視紫質光迴圈反應M態生成量子產率的激發波長相依性
7. 細菌視紫質受脈衝光源誘發之光電流動力學與環境pH值相依性
8. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應-HmbRI與HmbRII
9. 以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
10. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
11. 藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應
12. I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用
13. I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
14. 以步進式掃描傅氏轉換光譜儀 研究光激發金奈米粒子之瞬態紅外放光
15. 以二氧化矽包覆之金奈米棒光熱轉換作為溫度躍升法搭配共軛焦螢光系統研究牛血清白蛋白之去摺疊過程
 
* *