帳號:guest(3.139.236.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳宸瑋
作者(外文):Wu, Chen-Wei
論文名稱(中文):新穎水相鈷金屬錯合物調控之活性自由基聚合系統:從水溶性高分子的合成到嵌段共聚物的微結構探討
論文名稱(外文):A Novel System of Cobalt-Mediated Radical Polymerization in Water: From Synthesis of Water-Soluble Polymers to Nano-Structure of Block Copolymers
指導教授(中文):彭之皓
指導教授(外文):Peng, Chi-How
口試委員(中文):王潔
陳俊太
口試委員(外文):Wang, Jane
Chen, Jiun-Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023563
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:活性自由基聚合鈷金屬錯合物調控活性自由基聚合環糊精紫質鈷錯合物聚合反應誘發之自組裝行為奈米微胞
外文關鍵詞:Living radical polymerizationCobalt-mediated radical polymerizationβ-cyclodextrinCobalt porphyrinPolymerization-induced self-assemblyMicelle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
水溶性鈷金屬錯合物的高合成困難度是阻礙鈷金屬錯合物調控自由基聚合在水相中發展的重要原因,於是,我們成功設計一個新穎系統並應用在水相鈷金屬錯合物調控自由基聚合當中。本研究透過藉由水溶性環糊精β-cyclodextrin與紫質鈷錯合物之間的主客作用力,將不具水溶性的紫質鈷錯合物CoII(TMP)成功帶入水相中並應用於N-乙烯基吡咯烷酮的活性自由基聚合當中。此外,具有親疏水端的兩性嵌段共聚物PVP-b-PVAc藉由乳液聚合被成功合成,並透過動態光散射儀以及穿透性電子顯微鏡來鑑定其粒徑分布。除了使用主客作用力改變鈷錯合物的性質之外,本研究也將本實驗室發表的CoII(salen*)錯合物進行改良,在兩側修飾上二乙基胺來增加其水溶性,並改變其錯合物構形來觀察聚合反應效率,已成功應用在N-乙烯基吡咯烷酮及2-丙烯酸羥乙酯的活性自由基聚合中。透過此雙向系統,對於進行水相鈷金屬錯合物調控自由基聚合的研究上應能成為重要的助力。
The difficulty of synthesizing water-soluble cobalt complexes is the mainly reason to obstruct the development of cobalt-mediated radical polymerization (CMRP) in aqueous phase. Therefore, we design a novel CMRP system to achieve the research of CMRP in water. In this research, β-cyclodextrin was used to combine with water-insoluble cobalt porphyrin via host-guest interaction and formed a water-soluble complex. This inclusion complex was used to control the polymerization of N-vinylpyrrolidone and the amphiphilic block copolymer PVP-b-PVAc was synthesized by emulsion polymerization in water. The size distributions of PVP-b-PVAc were determined by DLS and TEM images. In addition to host-guest chemistry, we also modified the diethyl amine group on the CoII(salen) complexes to increase its water-solubility and be used to the polymerization of N-vinylpyrrolidone and 2-hydroxyethyl acrylate. Via this system, it should be a great help to the development of CMRP in aqueous phase.
摘要 2
Abstract 3
謝誌 4
目錄 5
圖目錄 8
第一章 緒論 14
1.1 活性自由基聚合 (Controlled/Living radical polymerization, LRP) 14
1.2 鈷金屬錯合物調控自由基聚合 (Cobalt-mediated radical polymerization, CMRP) 17
1.3 水相鈷金屬錯合物調控活性自由基聚合 (Cobalt-mediated radical polymerization in aqueous phase) 20
1.4 紫質鈷錯合物與環糊精 (β-cyclodextrin) 之主客化學 (Host-Guest Chemistry) 21
1.5 聚合反應誘發之自組裝行為 (Polymerization-induced self-assembly) 22
1.6 研究動機 23
第二章 實驗方法與步驟 24
2.1 原料、藥劑 24
2.2 β-cyclodextrin與紫質鈷錯合物之相關實驗步驟 25
2.2.1 β-cyclodextrin與TMP之螢光光譜測量 25
2.2.2 β-cyclodextrin與CoII(TMP)之紫外可見光光譜測量 25
2.2.3 β-cyclodextrin與CoII(TMP)調控NVP之活性自由基聚合 25
2.2.4 PVP-b-PVAc之乳液聚合反應 26
2.2.5 PVP-b-PVAc之粒徑分布量測 26
2.3 水相CoII(salen)及CoII(salphen)錯合物合成 27
2.3.1 5-Chloromethyl-2-hydroxybenzaldehyde之合成步驟 27
2.3.2 5-Diethylaminomethylsalicylaldehyde之合成步驟 28
2.3.3 Salphen-NEt2之合成步驟 29
2.3.4 Salen-NEt2之合成步驟 30
2.3.5 CoII(salen-NEt2) and CoII(salphene-NEt2) 30
第三章 非水溶性紫質之水相活性自由基聚合及聚合反應誘發之自組裝行為 31
3.1 實驗設計 31
3.2 紫質鈷與環糊精之錯合物鑑定 32
3.3 藉由紫質鈷與環糊精錯合物用以調控N-乙烯基吡咯烷酮聚合反應 35
3.4 PVP-b-PVAc之聚合反應誘發之自組裝行為 40
3.5 結論 45
第四章 以水溶性CoII(salen)錯合物調控水溶性單體之活性自由基聚合反應 46
4.1 實驗設計 46
4.2 N-乙烯基吡咯烷酮之水相活性自由基聚合 47
4.3 2-丙烯酸羥乙酯之活性自由基聚合 51
4.4 結論 54
第五章 附錄 55
儀器 64
參考文獻 67
1. Braunecker, W. A.; Matyjaszewski, K., Prog. Polym. Sci. 2007, 32, 93-146.
2. Cunningham, M. F., Prog. Polym. Sci. 2008, 33, 365-398.
3. Georges, M. K.; Veregin, R. P.; Karzmaier, P. M.; Hamer, G. K., Macromolecules 1993, 26, 2987-2988.
4. Kamigaito, M.; Ando, T.; Sawamoto, M.; Higashimura, T., Chem. Rev. 2001, 101, 3689-3746.
5. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Macromolecules 1995, 28, 1721-1723.
6. Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921-2990.
7. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2005, 58, 379-410.
8. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2009, 58, 1402-1472.
9. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2012, 65, 985-1076.
10. Ouchi, M.; Terashima, T.; Sawamoto, M., Chem. Rev. 2009, 109, 4963-5050.
11. Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B.; Peng, C.-H., Polym. Chem. 2013, 4, 3098-3104.
12. Percec, V.; Barboiu, B., Macromolecules 1995, 28, 7970-7972.
13. Perrier, S.; Takolpuckdee, P., J. Polym. Sci. Pol. Chem. 2005, 43, 5347-5393.
14. Rosen, B. M.; Percec, V., Chem. Rev. 2009, 109, 5069-5119.
15. Wang, J. S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614-5615.
16. Yamago, S.; Iida, K.; Yoshida, J.-I., J. Am. Chem. Soc. 2002, 124, 2874-2875.
17. Gao, H.; Matyjaszewski, K., Prog. Polym. Sci. 2009, 34, 317-350.
18. Chen, H.-Y.; Lahann, J.-I., Langmuir 2010, 27, 34-48.
19. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K., Prog. Polym. Sci. 2012, 37, 18-37.
20. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K., Chem. Rev. 2012, 112, 3959-4015.
21. Matyjaszewski, K.; Tsarevsky, N. V., Nat. Chem 2009, 1, 276-288.
22. Matyjaszewski, K., Macromolecules 2012, 45, 4015-4039.
23. Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G., Macromolecules 1998, 31, 5559-5562.
24. Hawker, C. J.; Bosman, A. W.; Harth, E., Chem. Rev. 2001, 101, 3661-3688.
25. Debuigne, A.; Caille, J. R.; Jerome, R., Angew. Chem. 2005, 117, 1125-1128.
26. Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Macromolecules 2008, 41, 2368-2373.
27. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M., Living radical polymerization of acrylates by organocobalt porphyrin complexes. J. Am. Chem. Soc. 1994, 116 (17), 7943-7944.
28. Liu, F.; Urban, M. W., Prog. Polym. Sci. 2010, 35 (1–2), 3-23.
29. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S., Nature Mater. 2010, 9 (2), 101-113.
30. Xiong, Z.; Peng, B.; Han, X.; Peng, C.; Liu, H.; Hu, Y., Journal of colloid and interface science 2011, 356 (2), 557-65.
31. O'Reilly, E. J.; Dennany, L.; Griffith, D.; Moser, F.; Keyes, T. E.; Forster, R. J., Phys. Chem. Chem. Phys. 2011, 13 (15), 7095-7101.
32. Reggelin, M.; Doerr, S.; Klussmann, M.; Schultz, M.; Holbach, M., Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (15), 5461-6.
33. Ott, C.; Ulbricht, C.; Hoogenboom, R.; Schubert, U. S., Macromol. Rapid Commun. 2012, 33 (6-7), 556-561.
34. Housni, A.; Zhao, Y., Langmuir 2010, 26 (15), 12933-12939.
35. Peeler, J. C.; Woodman, B. F.; Averick, S.; Miyake-Stoner, S. J.; Stokes, A. L.; Hess, K. R.; Matyjaszewski, K.; Mehl, R. A., J. Am. Chem. Soc. 2010, 132 (39), 13575-13577.
36. Peng, C. H.; Fryd, M.; Wayland, B. B., Macromolecules 2007, 40 (19), 6814-6819.
37. Cordella, D.; Kermagoret, A.; Debuigne, A.; Riva, R.; German, I.; Isik, M.; Jérôme, C.; Mecerreyes, D.; Taton, D.; Detrembleur, C., ACS Macro Lett. 2014, 3, 1276-1280.
38. Yang, R.; Li, K. a.; Wang, K.; Zhao, F.; Li, N.; Liu, F., Anal. Chem 2003, 75 (3), 612-621.
39. Theodossiou, T. A.; Gonçalves, R. A.; Yannakopoulou, K.; Skarpen, E.; Berg, K., Angew. Chem.-Int. Edit 2015, 54 (16), 4885-4889.
40. Zhang, L.; Eisenberg, A., Science 1995, 268 (5218), 1728-1731.
41. Blanazs, A.; Ryan, A. J.; Armes, S. P., Macromolecules 2012, 45 (12), 5099-5107.
42. Meléndez, J.; North, M.; Villuendas, P., ChemComm 2009, 0 (18), 2577-2579.
43. Wang, F. S.; Yang, T. Y.; Hsu, C. C.; Chen, Y. J.; Li, M. H.; Hsu, Y. J.; Chuang, M. C.; Peng, C. H., Macromol. Chem. Phys. 2016, 217, 422-432.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *