帳號:guest(3.133.136.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊博竣
作者(外文):Yang, Po-Chun
論文名稱(中文):超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究
論文名稱(外文):Ultrafast Photoionization Induced Charge-Transfer Dynamic in 2-phenylethyl-N,N-dimethylamine Cation
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):周佳駿
劉振霖
口試委員(外文):Chou, Chia-Chun
Liu, Chen-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023560
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:67
中文關鍵詞:電荷轉移電子轉移2-苯基乙基-N,N-二甲基胺飛秒雷射飛行時間質譜儀系統
外文關鍵詞:charge transferelectron transfer2-phenylethyl-N,N-dimethylaminefemtosecond laserTOF Mass system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:165
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
本論文利用飛秒泵浦-探測光游離-光裂解(Femtosecond Pump-Probe Photoionization-Photofragmentation)光譜術結合質譜偵測技術研究2-phenylethyl-N,N-dimethylamine (PENNA), N-methylphenethylamine (MPEA) 及 2-phenylethylamine (PEA)陽離子的電荷轉移反應及離子基態構型緩解動力學。本實驗利用1+1 REMPI技術使S0 state分子先吸收一個泵浦雷射光子(λpump = 265.9 nm)到達S1 state再吸收第二個泵浦雷射光子以游離化PENNA等分子,接著導入探測雷射(λprobe = 800 nm)將PENNA+等離子打到更高能的激發態後碎裂,我們藉由調控不同的泵浦-探測脈衝延遲時間擷取離子訊號,得到離子損耗瞬時光譜,並以連續反應動力學模型進行適解,進而獲取PENNA+等離子態之動力學資訊。 PENNA+、MPEA+和PEA+的損耗瞬時光譜皆分別得到三個時間常數,在和無電荷轉移的分子—PEAL+離子之瞬時訊號適解結果比較後,我們認為PENNA+、MPEA+及PEA+這些陽離子內的電子轉移過程約為0.2、0.3及0.1 ps,和Schlag團隊2005年研究結果的80 fs略有差異。我們也對PENNA等分子進行理論計算及結構優化,並根據所得之離子基態穩定構型推斷PENNA+、MPEA+、PEA+及PEAL+電子轉移後皆會發生兩段構型緩解過程,最後變為離子基態最穩定之間扭式構型,這兩段構型緩解過程約為數個至數十皮秒時間尺度。
We study the ultrafast charge transfer (CT) dynamics in the cations of 2-phenylethyl-N,N-dimethylamine (PENNA), N-methylphenethylamine (MPEA) and their non-methylated counterpart, 2-phenylethylamine (PEA) after photoionization using the femtosecond pump-probe photoionization-photofragmentation (fs-PIPF) spectroscopy. Neutral PENNA, MPEA, PEA seeded in a He free jet are photoionized by femtosecond 1+1 resonance-enhanced multiphoton ionization via their S1 state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. Using a kinetics model to fit our transients, we obtained three time constants from the PENNA+, MPEA+ and PEA+ ion depletion transients. We ascribed the sub-picoseconds time constants of PENNA+ (0.2 ps), MPEA+ (0.3 ps) and PEA+ (0.1 ps) to the CT dynamics by comparing them with a non-CT system 2-phenylethyl alcohol cation. Our results are quite different from those reported by the Schlag group in 2005. Besides, we also find some much shower components with time constants of few to few tens of picoseconds. These slower components were attributed to conformational relaxation of cations after CT.
目錄
第 1 章 緒論 1
1.1 引文 1
1.2 文獻回顧 4
第 2 章 實驗系統與技術 8
2.1激發-探測共振增強多光子游離技術 8
2.2 超快飛秒雷射系統 11
2.2.1 雷射產生源 11
2.2.2.能量再生放大器: 16
2.3波長調變器 22
2.3.1 倍頻與混頻技術 22
2.4分子束系統 23
2.4.1分子束樣品進氣裝置 27
2.5飛行時間質譜儀 29
2.6 實驗架設圖 33
2.7訊號擷取系統 34
2.8儀器響應函數(Instrument response function, IRF) 36
第 3 章 實驗結果與討論 38
3.1 PENNA+泵浦-探測光游離-光裂解實驗條 38
3.1.1 PENNA+質譜圖 38
3.1.2 PEA+質譜圖 39
3.1.3 PENNA+陽離子光游離-光裂解離子損耗光譜 41
3.1.4雷射能量依存性 42
3.2 PENNA、MPEA、PEA離子損耗瞬時光譜比較 46
3.2.1 PENNA、PEA、MPEA之結構及離子態能量比較 46
3.2.2 PENNA、PEA、MPEA之離子損耗瞬時光譜圖比較 47
3.3數據分析:以動力學模型適解瞬時損耗訊號 49
3.3.1適解PENNA+、MPEA+、PEA+之損耗瞬時訊號 49
3.3.2 無電子轉移對照組:PEAL+離子損耗瞬時訊號 54
3.4綜合討論 56
3.4.1 PENNA+、MPEA+、PEA+之電子轉移時間常數比較 56
3.4.2 PENNA+、MPEA+、PEA+、PEAL+之理論計算結果討論 57
第 4 章 結論 64
參考文獻 66
參考文獻
1. J. Barber and B. Andersson, Nature 370, 31 (1994)
2. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat Chem 3, 763 (2011)
3. A. Shah, B. Adhikari, S. Martic, A. Munir, S. Shahzad, K. Ahmad, and H.-B. Kraatz, Chem Soc Rev 44, 1015 (2015)
4. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Angewandte Chemie-International Edition 46, 3196 (2007)
5. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Proceedings of the National Academy of Sciences of the United States of America 97, 1068 (2000)
6. E. Meggers, M. E. Michel-Beyerle, and B. Giese, J Am Chem Soc 120, 12950 (1998)
7. K. Kawai and T. Majima, Accounts of Chemical Research 46, 2616 (2013)
8. S. S. Isied, M. Y. Ogawa, and J. F. Wishart, Chemical Reviews 92, 381 (1992)
9. M. R. Wasielewski, Chem. Rev. 92, 435 (1992)
10. M. Gilbert and B. Albinsson, Chem Soc Rev 44, 845 (2015)
11. F. D. Lewis, R. L. Letsinger, and M. R. Wasielewski, Accounts of Chemical Research 34, 159 (2001)
12. D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, and X. Y. Zhu, J Phys Chem B 107, 6668 (2003)
13. W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature 396, 60 (1998)
14. J. Jortner, M. Bixon, H. Heitele, and M. E. Michelbeyerle, Chem Phys Lett 197, 131 (1992)
15. J. Jortner, M. Bixon, B. Wegewijs, J. W. Verhoeven, and R. P. H. Rettschnick, Chem Phys Lett 205, 451 (1993)
16. R. Weinkauf, P. Schanen, D. Yang, S. Sonkara, and E. W. Schlag, J Phys Chem-Us 99, 11255 (1995)
17. R. Weinkauf, P. Schanen, A. Metsala, E. W. Schlag, M. Burgle, and H. Kessler, J. Phys. Chem. 100, 18567 (1996)
18. P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 100, 13148 (1996)
19. J. Jiang, A. Alsam, S. Wang, S. M. Aly, Z. Pan, O. F. Mohammed, and K. S. Schanze, The Journal of Physical Chemistry A 121, 4891 (2017)

20. Y. Shibano, H. Imahori, P. Sreearunothai, A. R. Cook, and J. R. Miller, The Journal of Physical Chemistry Letters 1, 1492 (2010)
21. J. W. Ho, W. K. Chen, and P. Y. Cheng, J. Chem. Phys. 131, 134308 (2009)
22. C. C. Shen, T. T. Tsai, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J. Chem. Phys. 141 (2014)
23. C. C. Shen, T. T. Tsai, J. Y. Wu, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J Chem Phys 147 (2017)
24. J. Yao, H. S. Im, M. Foltin, and E. R. Bernstein, J Phys Chem A 104, 6197 (2000)
25. R. Weinkauf, L. Lehr, and A. Metsala, J Phys Chem A 107, 2787 (2003)
26. W. Cheng, N. Kuthirummal, J. L. Gosselin, T. I. Solling, R. Weinkauf, and P. M. Weber, J Phys Chem A 109, 1920 (2005)
27. L. Lehr, T. Horneff, R. Weinkauf, and E. W. Schlag, J Phys Chem A 109, 8074 (2005)
28. E. W. Schlag, H. L. Selzle, P. Schanen, R. Weinkauf, and R. D. Levine, J Phys Chem A 110, 8497 (2006)
29. S. T. Sun, B. Mignolet, L. Fan, W. Li, R. D. Levine, and F. Remacle, J Phys Chem A 121, 1442 (2017)
30. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, and J. R. Miller, J Phys Chem-Us 90, 3673 (1986)
31. G. L. CLOSS and J. R. MILLER, Science 240, 440 (1988)
32. M. D. Johnson, J. R. Miller, N. S. Green, and G. L. Closs, J Phys Chem-Us 93, 1173 (1989)
33. 周威銧, 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性,in 化學系. 2008, 國立清華大學: 新竹市. p. 106.
34. 蔡宗廷, 超快光游離誘發酚-氨錯合物陽離子內之質子轉移動態學研究,in 化學系. 2015, 國立清華大學: 新竹市. p. 106.
35. 陳依微, 酚-氨陽離子錯合物中之超快質子轉移反應動態學研究,in 化學系. 2011, 國立清華大學: 新竹市. p. 91.
36. 何智偉, 氣相飛秒化學反應動態學研究1.二甲基亞碸之超快三體光解反應動態學2.偶氮苯陽離子在異構化途徑之同調振動,in 化學系. 2008, 國立清華大學: 新竹市. p. 226.
37. Eldredge, B.A.A.P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 Volume Set).
38. Smalley, R.E., L. Wharton, and D.H. Levy, Acc. Chem. Res. 10, 139 (1977)
39. Wiley, W.C. and I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)
40. 鄭博元教授, Conference in Memory of the Nobel Laureate Ahmed Zewail 演講之投影片(2018)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 雙官能基陽離子電荷轉移超快動態學之距離相依性研究
2. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究
3. 飛秒光游離誘發雙官能基陽離子之電荷轉移動態學研究
4. 以超快時間解析螢光光譜研究烯烴類-四氰基乙烯錯合物之分子間電荷轉移動力學
5. N,N-二甲基-3-苯基丙基胺陽離子內之超快光游離誘發電荷轉移動態學研究
6. 利用飛秒雷射光譜技術研究丙酮與二甲基亞碸分子之三體光分解反應動態學
7. 大氣中小分子吸收光譜之研究 1. 利用共振腔振盪衰減法研究CO及CH3OO近紅外吸收光譜 2. 利用同步輻射光研究H2O及其同位素分子之真空紫外吸收光譜
8. 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動
9. 以時間解析螢光光譜研究苯乙烯比啶分子及其銥錯合物之光化學
10. 分子衍生物在溶液中單體與聚集體之光譜研究
11. 氣相飛秒瞬時吸收光譜之建立與應用
12. 1.反應S(3P)+OCS、S(3P)+O2、及O(3P)+SO2之高溫化學動力學研究。2.敏化InN/TiO2太陽能電池材料之研究
13. 利用簡併四波混頻光譜法在超音波射束中研究HS自由基之高預解離電子態A2Σ+
14. Coumarin 481在環糊精水溶液中的超快動態學研究
15. Hexa-Peri-Hexabenzocoronene (HBC)分子衍生物之單體、聚集體與奈米顆粒的研究
 
* *