帳號:guest(18.220.124.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡杏宜
作者(外文):Tsai, Hsin-YI
論文名稱(中文):利用氧化亞銅多面體奈米晶體進行芳基炔分子的氫硼化催化反應
論文名稱(外文):Polyhedral Cu2O Nanocrystals for Aryl Alkyne Hydroboration Reactions
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):劉青原
陳貴通
口試委員(外文):Liu, Ching-Yuan
Tan, Kui-Thong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023558
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:52
中文關鍵詞:氧化亞銅多面體奈米晶體氫硼化反應
外文關鍵詞:Cuprous oxidePolyhedral NanocrystalsHydroboration Reactions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們以前的工作發表過銅立方體可以催化芳基炔烴硼氫化反應。本研究嘗試使用氧化亞銅立方體,八面體和菱形十二面體作為類似的硼氫化反應的催化劑。使用這些具有相同總表面積的氧化亞銅奈米晶體進行活性比較,並添加苯乙炔,三苯基膦和雙聯頻哪醇硼酸酯在1,4-二噁烷中以在60℃下反應五小時,可以得到高產率,且具有100%(E)形式產物的選擇性。{110}-菱形十二面體催化該反應的效率最高,產率為99%,八面體為73%,立方體只有62%。接下來,使用最有效的氧化亞銅菱形十二面體用於廣泛範圍的芳烴炔烴硼氫化反應已經賦予良好的69至99%的優異產率。SEM圖像和PXRD圖顯示反應後晶體形態和組成並沒有變化。
Our previous work has shown that Cu cubes can catalyze aryl alkyne hydroboration reactions. This study attempts to use Cu2O cubes, octahedra, and rhombic dodecahedra as catalysts for similar hydroboration reactions. Using these Cu2O nanocrystals having the same total surface area for their activity comparison, and adding phenylacetylene, triphenylphosphine as base, and bis(pinacolato)diboron in 1,4-dioxane to perform the hydroboration reaction at 60 ºC for 5 h, 100% (E)-form products have been obtained with high yields. {110}-bound rhombic dodecahedra were the most efficient in catalyzing this reaction giving 99% yield, octahedra was 73%, and cubes only 62%. Next, use the most efficient Cu2O rhombic dodecahedra for a broad range of aromatic alkyne hydroboration reaction has given product good to excellent yields of 69 to 99%. SEM images and PXRD patterns show no change to the crystal morphology and composition after the reaction.
ABSTRACT II
ACKNOWLEDGEMENT III
LIST OF CONTENTS IV
LIST OF TABLES V
LIST OF FIGURES VI
LIST OF SCHEMES X
1.Introduction 1
1.1 Cuprous oxide and its application properties with specific facets 1
1.2 The studies of hydroboration reaction 6
1.3 Hydroboration mechanism 8
1.4 Isomers of hydroborated product 10
2. Motivation 12
3. Experimental Section 13
3.1 Chemicals 13
3.2 Synthesis of Cu2O Nanocrystals 13
3.3 Cu2O Nanocrystal-Catalyzed Hydroboration Reactions 16
3.4 Recyclability of the Hydroboration Reaction 16
3.5 Heterogeneous Catalysis Test 17
4. Instrumentation 17
5. Results and Discussion 18
6. Conclusion 31
7. References 32
Appendix 34

1.Chen, K.; Sun, C.; Song, S.; Xue, D. CrystEngComm 2014, 16, 5257‒5267.
2.Chen, K.; Sun, C.; Xue, D. Phys. Chem. Chem. Phys. 2015, 17, 732‒750.
3.Zhan, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C. 2010, 114, 5073‒5079.
4.Zhang, Y.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867‒871.
5.Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Angew. Chem., Int. Ed. 2011, 50, 12294‒12298.
6.Chanda, K.; Rej, S.; Huang, M, H. Chem.‒Eur. J. 2013, 19, 16036‒16043.
7.Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. J. Phys. Chem. C 2011, 115, 15288‒15296.
8.Wei, H. M.; Gong, H. B.; Chen, L.; Zi, M.; Cao, B. Q. J. Phys. Chem. C 2012, 116, 10510‒10515.
9.McShane, C. M.; Siripala, W. P.; Choi, K.-S. J. Phys. Chem. Lett. 2010, 1, 2666‒2670.
10.Lyu, L.-M.; Huang, M, H. J. Phyys. Chem. C 2011,115, 17768-17773.
11.Kuo, C.-H.; Huang, M, H. J. Am. Chem. Soc. 2008, 130, 12815-12820.
12.Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757–23763.
13.Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320–2354.
14.Gunanathan, C.; Hölscher, M.; Pan, F.; Leitner, W. J. Am. Chem. Soc. 2012, 134, 14349–14352.
15.Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13–31.
16.Moure, A, L.; Mauleon, P.; Arrayas, R. G.; Carretero, J. C. Org, Lett. 2013, 15, 2054–2057.
17.Kim, H. R.; Yun, J. Chem. Commun. 2011, 47, 2943–2945.
18.Zhao, J.; Niu, Z.; Fu, H.; Li, Y. Chem. Commun. 2014, 50, 2058‒2060.
19.Thoka, S; Madasu, M.; Hsia, C.-F.; Liu, S.-Y.; Huang, M. H. Chem. Asian J. 2017, 12, 2318‒2322.
20.Molander, G, A.; Ellis, N, M. J. Org. Chem. 2008, 73, 6841–6844.
21.Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261–1267.
22.Kuo, C.-H.; Huang, M, H. Nano Today 2010, 5, 106-116.
23.Kaushik, C.; Rej, S.; Huang, M. H. Nanoscale 2013, 5, 12494–12501.
24.Grirrane, A.; Corma, A.; Garcia, H. Chem. Eur. J. 2011, 17, 2467–247.
25.Verma, P, K.; Shegavi, M, L.; Bose, S, K.; Geetharani, K. Org. Biomol. Chem., 2008,16, 857 –873.
26.Yao. K. X; Yin. X.Y; Wang. T. H; Zeng. H. C. J. Am. Chem. Soc. 2010, 132, 6131–6144.
27.Hua. Q; Shang. D; Zhang. W; Chen. K; Chang. S; Ma. Y; Jiang. Z; Yang, J; Huang. W. Langmuir 2011, 27, 665–671.
28.Leng, M; Yu. C; Wang. C. CrystEngComm 2012, 14, 8454–8461.
29.Lee, J. -E; Kwon, J; Yun, J. Chem. Commun., 2008, 733-734
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *