|
1.Vardar, D.; Chishti, A. H.; Frank, B. H.; Luna, E. J.; Noegel, A. A.; Oh, S.W.; Schleicher, M.; McKnight, C. J., Villin‐Type Headpiece Domains Show a Wide Range of F‐actin‐binding Affinities. Cell Motility. Cytoskeleton 2002, 52, 9-21. 2.Bazari, W. L.; Matsudaira, P.; Wallek, M.; Smeal, T.; Jakes, R.; Ahmed, Y., Villin Sequence and Peptide Map Identify Six Homologous Domains. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4986-90. 3.McKnight, J. C.; Doering, D. S.; Matsudaira, P. T.; Kim, P. S., A Thermostable 35-Residue Subdomain within Villin Headpiece. J. Mol. Biol. 1996, 260, 126-134. 4.Xiao, S.; Bi, Y.; Shan, B.; Raleigh, D. P., Analysis of Core Packing in a Cooperatively Folded Miniature Protein: The Ultrafast Folding Villin Headpiece Helical Subdomain. Biochemistry 2009, 48, 4607-4616. 5.Sudol, M., Structure and Function of the WW domain. Prog. Biophys. Mol. Biol. 1996, 65, 113-132. 6.Ranganathan, R.; Lu, K. P.; Hunter, T.; Noel, J. P., Structural and Functional Analysis of the Mitotic Rotamase Pin1 Suggests Substrate Recognition Is Phosphorylation Dependent. Cell 1997, 89, 875-886. 7.A., K. J.; Kai, L.; W., K. J., NMR Solution Structure of the Isolated Apo Pin1 WW domain: Comparison to the X‐ray Crystal Structures of Pin1. Biopolymers 2002, 63, 111-121. 8.Zarrinpar, A.; Lim, W. A., Converging on proline: the mechanism of WW domain peptide recognition. Nat. Struct. Biol. 2000, 7, 611-613. 9.陳柏翰、劉中行, 科學發展期刊 2004, 380期, 4-35. 10.黃彥富、湯正明、徐善慧, 科學發展期刊 2003, 362期, 44-47. 11.Cowan, P. M.; McGavin, S.; North, A. C. T., The Polypeptide Chain Configuration of Collagen. Nature 1955, 176, 1062. 12.Rich, A.; Crick, F. H. C., The Molecular Structure of Collagen. J. Mol. Biol. 1961, 3, 483-IN4. 13.Sakakibara, S.; Inouye, K.; Shudo, K.; Kishida, Y.; Kobayashi, Y.; Prockop, D. J., Synthesis of (Pro-Hyp-Gly)n of Defined Molecular Weights Evidence for the Stabilization of Collagen Triple Helix by Hydroxyproline. BBA.- Protein Structure 1973, 303, 198-202. 14.Brodsky, B.; Ramshaw, J. A. M., The Collagen Triple-Helix Structure. Matrix Biol. 1997, 15, 545-554. 15.Kuznetsova, I. M.; Turoverov, K. K.; Uversky, V. N., What Macromolecular Crowding Can Do to a Protein. Int. J. Mol. Sci. 2014, 15, 23090-23140. 16.Zimmerman, S. B.; Minton, A. P., Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 27-65. 17.Kim, J. S.; Yethiraj, A., Crowding Effects on Protein Association: Effect of Interactions between Crowding Agents. J. Phys. Chem. B. 2011, 115, 347-353. 18.Sharma, G. S.; Mittal, S.; Singh, L. R., Effect of Dextran 70 on the Thermodynamic and Structural Properties of Proteins. Int. J. Biol. Macromol. 2015, 79, 86-94. 19.Guseman, A. J.; Pielak, G. J., Cosolute and Crowding Effects on a Side-By-Side Protein Dimer. Biochemistry 2017, 56, 971-976. 20.Bhakuni, K.; Venkatesu, P., Crowded Milieu Tuning the Stability and Activity of Stem Bromelain. Int. J. Biol. Macromol 2018, 109, 114-123. 21.D., C. R.; J., G. A.; J., P. G., Intracellular pH Modulates Quinary Structure. Protein Sci. 2015, 24, 1748-1755. 22.Benton, L. A.; Smith, A. E.; Young, G. B.; Pielak, G. J., Unexpected Effects of Macromolecular Crowding on Protein Stability. Biochemistry 2012, 51, 9773-9775. 23.Sarkar, M.; Lu, J.; Pielak, G. J., Protein Crowder Charge and Protein Stability. Biochemistry 2014, 53, 1601-1606. 24.Rubinstein, M.; Colby, R. H., Polymer Physics, OUP Oxford, 2003. 25.Huggins, M. L., Solutions of Long Chain Compounds. J. Chem. Phys. 1941, 9, 440-440. 26.Flory, P. J., Thermodynamics of High Polymer Solutions. J. Chem. Phys. 1942, 10, 51-61. 27.Sigma-Aldrich Co. Basic steps in solid peptide synthesis using Fmoc-chemistry. http://www.sigmaaldrich.com/life-science/custom-oligos/custom-peptides/learning-center/solid-phase-synthesis.html (accessed June 28, 2018). 28.Merrifield, B., Solid Phase Synthesis. Science 1986, 232, 341-347. 29.Chan, W. C.; White, P. D. Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford University Press, 2000. 30. Skoog, D. A. H.; Crouch, S. R., Principles of Instrumental Analysis. Cengage Learning. 2007. 31.Purdie, N.; Fasman G.D. Circular Dichroism and the Conformational Analysis of Biomolecules. Springer Science & Business Media, 2013 32.Webb, R. L., Nina Berova, Koji Nakanishi, and Robert W., Circular Dichroism. Principles and Applications, Wiley-VCH, 2000 33.Zaki, A.; Dave, N.; Liu, J., Amplifying the Macromolecular Crowding Effect Using Nanoparticles. J. Am. Chem. Soc. 2012, 134, 35-38. 34.Kumar, S.; Sharma, D.; Kumar, R., Role of Macromolecular Crowding on Stability and Iron Release Kinetics of Serum Transferrin. J. Phys. Chem. B. 2017, 121, 8669-8683. 35.N ozaki, Y., The Preparation of Guanidine Hydrochloride. Methods Enzymol. 1972, 26, 43-50. 36.Kaul, R.; Angeles, A. R.; Jäger, M.; Powers, E. T.; Kelly, J. W., Incorporating β-Turns and a Turn Mimetic out of Context in Loop 1 of the WW Domain Affords Cooperatively Folded β-Sheets. J. Am. Chem. Soc. 2001, 123, 5206-5212. 37.Zhu, T.-T.; Zhang, Y.; Luo, X.-A.; Wang, S.-Z.; Jia, M.-Q.; Chen, Z.-X., Difference in Binding of Long- and Medium-Chain Fatty Acids with Serum Albumin: The Role of Macromolecular Crowding Effect. J. Agric. Food. Chem. 2018, 66, 1242-1250. 38.Somendra, M. B.; Achille, G.; Amos, M., Flory Theory for Polymers. J. Phys.: Condens. Matter 2013, 25, 503101 39.Hong, J.; Gierasch, L. M., Macromolecular Crowding Remodels the Energy Landscape of a Protein by Favoring a More Compact Unfolded State. J. Am. Chem. Soc. 2010, 132, 10445-10452 40.Jäger, M.; Dendle, M.; Fuller, A. A.; Kelly, J. W., A Cross-Strand Trp–Trp Pair Stabilizes the hPin1 WW domain at the Expense of Function. Protein Sci. 2007, 16, 2306-2313.
|