|
1. Diggle Stephen, P.; Stacey Rachael, E.; Dodd, C.; Cámara, M.; Williams, P.; Winzer, K., The Galactophilic Lectin, LecA, Contributes to Biofilm Development in Pseudomonas aeruginosa. Environ. Microbiol. 2006, 8, 1095-1104. 2. Sommer, R.; Wagner, S.; Rox, K.; Varrot, A.; Hauck, D.; Wamhoff, E.-C.; Schreiber, J.; Ryckmans, T.; Brunner, T.; Rademacher, C.; Hartmann, R. W.; Brönstrup, M.; Imberty, A.; Titz, A., Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 2018, 140, 2537-2545. 3. Ting, S. R. S.; Chen, G.; Stenzel, M. H., Synthesis of Glycopolymers and Their Multivalent Recognitions with Lectins. Polym. Chem. 2010, 1, 1392-1412. 4. Schwefel, D.; Maierhofer, C.; Beck, J. G.; Seeberger, S.; Diederichs, K.; Möller, H. M.; Welte, W.; Wittmann, V., Structural Basis of Multivalent Binding to Wheat Germ Agglutinin. J. Am. Chem. Soc. 2010, 132, 8704-8719. 5. Drickamer, K., Two Distinct Classes of Carbohydrate-recognition Domains in Animal Lectins. J. Biol. Chem. 1988, 263, 9557-9560. 6. Yang, R.-Y.; Rabinovich, G. A.; Liu, F.-T., Galectins: Structure, Function and Therapeutic Potential. Expert Rev. Mol. Med. 2008, 10, e17. 7. Krishnamurthy, V. M.; Estroff, L. A.; Whitesides, G. M., Multivalency in Ligand Design. In Fragment‐based Approaches in Drug Discovery; Jahnke, W.; Erlanson, D. A., Eds.; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, 2006; Vol. 34, pp 11-54. 8. Kitov, P. I.; Bundle, D. R., On the Nature of the Multivalency Effect: A Thermodynamic Model. J. Am. Chem. Soc. 2003, 125, 16271-16284. 9. Fasting, C.; Schalley Christoph, A.; Weber, M.; Seitz, O.; Hecht, S.; Koksch, B.; Dernedde, J.; Graf, C.; Knapp, E.-W.; Haag, R., Multivalency as a Chemical Organization and Action Principle. Angew. Chem. Int. Ed. 2012, 51, 10472-10498. 10. Cecioni, S.; Imberty, A.; Vidal, S., Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015, 115, 525-561. 11. Boukerb, A. M.; Rousset, A.; Galanos, N.; Méar, J.-B.; Thépaut, M.; Grandjean, T.; Gillon, E.; Cecioni, S.; Abderrahmen, C.; Faure, K.; Redelberger, D.; Kipnis, E.; Dessein, R.; Havet, S.; Darblade, B.; Matthews, S. E.; de Bentzmann, S.; Guéry, B.; Cournoyer, B.; Imberty, A.; Vidal, S., Antiadhesive Properties of Glycoclusters against Pseudomonas aeruginosa Lung Infection. J. Med. Chem. 2014, 57, 10275-10289. 12. Munoz, E. M.; Correa, J.; Riguera, R.; Fernandez-Megia, E., Real-Time Evaluation of Binding Mechanisms in Multivalent Interactions: A Surface Plasmon Resonance Kinetic Approach. J. Am. Chem. Soc. 2013, 135, 5966-5969. 13. Antonik, P. M.; Eissa, A. M.; Round, A. R.; Cameron, N. R.; Crowley, P. B., Noncovalent PEGylation via Lectin–Glycopolymer Interactions. Biomacromolecules 2016, 17, 2719-2725. 14. Boden, S.; Wagner, G. K.; Karg, M.; Hartmann, L., Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding. Polymers 2017, 9, 716. 15. Iniguez, E.; Schocker, N. S.; Subramaniam, K.; Portillo, S.; Montoya, A. L.; Al-Salem, W. S.; Torres, C. L.; Rodriguez, F.; Moreira, O. C.; Acosta-Serrano, A.; Michael, K.; Almeida, I. C.; Maldonado, R. A., An α-Gal-containing Neoglycoprotein-based Vaccine Partially Protects against Murine Cutaneous Leishmaniasis caused by Leishmania Major. PLoS Neglected Trop. Dis. 2017, 11, e0006039. 16. Falenski, J. A.; Gerling, U. I. M.; Koksch, B., Multiple Glycosylation of De Novo Designed α-helical Coiled Coil Peptides. Bioorg. Med. Chem. 2010, 18, 3703-3706. 17. Scheibe, C.; Wedepohl, S.; Riese Sebastian, B.; Dernedde, J.; Seitz, O., Carbohydrate–PNA and Aptamer–PNA Conjugates for the Spatial Screening of Lectins and Lectin Assemblies. ChemBioChem 2013, 14, 236-250. 18. Ruggiero Michael, T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter Timothy, M., Measuring the Elasticity of Poly-l-Proline Helices with Terahertz Spectroscopy. Angew. Chem. Int. Ed. 2016, 55, 6877-6881. 19. Kümin, M.; Sonntag, L.-S.; Wennemers, H., Azidoproline Containing Helices: Stabilization of the Polyproline II Structure by a Functionalizable Group. J. Am. Chem. Soc. 2007, 129, 466-467. 20. Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. A., Polyproline-II Helix in Proteins: Structure and Function. J. Mol. Biol. 2013, 425, 2100-2132. 21. Wilhelm, P.; Lewandowski, B.; Trapp, N.; Wennemers, H., A Crystal Structure of an Oligoproline PPII-Helix, at Last. J. Am. Chem. Soc. 2014, 136, 15829-15832. 22. Dolghih, E.; Ortiz, W.; Kim, S.; Krueger, B. P.; Krause, J. L.; Roitberg, A. E., Theoretical Studies of Short Polyproline Systems: Recalibration of a Molecular Ruler. J. Phys. Chem. A 2009, 113, 4639-4646. 23. Fillon, Y. A.; Anderson, J. P.; Chmielewski, J., Cell Penetrating Agents Based on a Polyproline Helix Scaffold. J. Am. Chem. Soc. 2005, 127, 11798-11803. 24. Kuriakose, J.; Hernandez-Gordillo, V.; Nepal, M.; Brezden, A.; Pozzi, V.; Seleem Mohamed, N.; Chmielewski, J., Targeting Intracellular Pathogenic Bacteria with Unnatural Proline-Rich Peptides: Coupling Antibacterial Activity with Macrophage Penetration. Angew. Chem. Int. Ed. 2013, 52, 9664-9667. 25. Thangamani, S.; Nepal, M.; Chmielewski, J.; Seleem, M. N., Antibacterial Activity and Therapeutic Efficacy of Fl-P(R)P(R)P(L)-5, a Cationic Amphiphilic Polyproline Helix, in a Mouse Model of Staphylococcal Skin Infection. Drug Des., Dev. Ther. 2015, 9, 5749-5754. 26. Hung, P.-Y.; Chen, Y.-H.; Huang, K.-Y.; Yu, C.-C.; Horng, J.-C., Design of Polyproline-Based Catalysts for Ester Hydrolysis. ACS Omega 2017, 2, 5574-5581. 27. Lin, T.-H.; Lin, C.-H.; Liu, Y.-J.; Huang, C. Y.; Lin, Y.-C.; Wang, S.-K., Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate–Protein Interactions. ACS Appl. Mater. Interfaces 2017, 9, 41691-41699. 28. Deeks, S. G.; Overbaugh, J.; Phillips, A.; Buchbinder, S., HIV infection. Nat Rev Dis Primers 2015, 1, 15035. 29. Moir, S.; Chun, T.-W.; Fauci, A. S., Pathogenic Mechanisms of HIV Disease. Annu. Rev. Pathol.: Mech. Dis. 2011, 6, 223-248. 30. Eron, J. J.; Benoit, S. L.; Jemsek, J.; MacArthur, R. D.; Santana, J.; Quinn, J. B.; Kuritzkes, D. R.; Fallon, M. A.; Rubin, M., Treatment with Lamivudine, Zidovudine, or Both in HIV-Positive Patients with 200 to 500 CD4+ Cells per Cubic Millimeter. N. Engl. J. Med. 1995, 333, 1662-1669. 31. Cocohoba, J.; Dong, B. J., Raltegravir: The first HIV integrase inhibitor. Clin. Ther. 2008, 30, 1747-1765. 32. Banchereau, J.; Steinman, R. M., Dendritic Cells and the Control of Immunity. Nature 1998, 392, 245. 33. Lindquist, R. L.; Shakhar, G.; Dudziak, D.; Wardemann, H.; Eisenreich, T.; Dustin, M. L.; Nussenzweig, M. C., Visualizing Dendritic Cell Networks in vivo. Nat. Immunol. 2004, 5, 1243. 34. Granelli-Piperno, A.; Pritsker, A.; Pack, M.; Shimeliovich, I.; Arrighi, J.-F.; Park, C. G.; Trumpfheller, C.; Piguet, V.; Moran, T. M.; Steinman, R. M., Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Nonintegrin/CD209 Is Abundant on Macrophages in the Normal Human Lymph Node and Is Not Required for Dendritic Cell Stimulation of the Mixed Leukocyte Reaction. J. Immunol. 2005, 175, 4265. 35. Turville, S. G.; Cameron, P. U.; Handley, A.; Lin, G.; Pöhlmann, S.; Doms, R. W.; Cunningham, A. L., Diversity of Receptors Binding HIV on Dendritic Cell Subsets. Nat. Immunol. 2002, 3, 975. 36. Pöhlmann, S.; Baribaud, F.; Lee, B.; Leslie, G. J.; Sanchez, M. D.; Hiebenthal-Millow, K.; Münch, J.; Kirchhoff, F.; Doms, R. W., DC-SIGN Interactions with Human Immunodeficiency Virus Type 1 and 2 and Simian Immunodeficiency Virus. J. Virol. 2001, 75, 4664-4672. 37. Kwon, D. S.; Gregorio, G.; Bitton, N.; Hendrickson, W. A.; Littman, D. R., DC-SIGN-Mediated Internalization of HIV Is Required for Trans-Enhancement of T Cell Infection. Immunity 2002, 16, 135-144. 38. Sol-Foulon, N.; Moris, A.; Nobile, C.; Boccaccio, C.; Engering, A.; Abastado, J.-P.; Heard, J.-M.; van Kooyk, Y.; Schwartz, O., HIV-1 Nef-Induced Upregulation of DC-SIGN in Dendritic Cells Promotes Lymphocyte Clustering and Viral Spread. Immunity 2002, 16, 145-155. 39. Arrighi, J.-F.; Pion, M.; Wiznerowicz, M.; Geijtenbeek, T. B.; Garcia, E.; Abraham, S.; Leuba, F.; Dutoit, V.; Ducrey-Rundquist, O.; van Kooyk, Y.; Trono, D.; Piguet, V., Lentivirus-Mediated RNA Interference of DC-SIGN Expression Inhibits Human Immunodeficiency Virus Transmission from Dendritic Cells to T Cells. J. Virol. 2004, 78, 10848-10855. 40. Geijtenbeek, T. B. H.; Kwon, D. S.; Torensma, R.; van Vliet, S. J.; van Duijnhoven, G. C. F.; Middel, J.; Cornelissen, I. L. M. H. A.; Nottet, H. S. L. M.; KewalRamani, V. N.; Littman, D. R.; Figdor, C. G.; van Kooyk, Y., DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell 2000, 100, 587-597. 41. Boggiano, C.; Manel, N.; Littman, D. R., Dendritic Cell-Mediated trans-Enhancement of Human Immunodeficiency Virus Type 1 Infectivity Is Independent of DC-SIGN. J. Virol. 2007, 81, 2519-2523. 42. Tabarani, G.; Thépaut, M.; Stroebel, D.; Ebel, C.; Vivès, C.; Vachette, P.; Durand, D.; Fieschi, F., DC-SIGN Neck Domain Is a pH-sensor Controlling Oligomerization: Saxs and Hydrodynamic Studies of Extracellular Domain. J. Biol. Chem. 2009, 284, 21229-21240. 43. Varga, N.; Sutkeviciute, I.; Ribeiro-Viana, R.; Berzi, A.; Ramdasi, R.; Daghetti, A.; Vettoretti, G.; Amara, A.; Clerici, M.; Rojo, J.; Fieschi, F.; Bernardi, A., A Multivalent Inhibitor of the DC-SIGN Dependent Uptake of HIV-1 and Dengue Virus. Biomaterials 2014, 35, 4175-4184. 44. van der Aar, A. M. G.; Sylva-Steenland, R. M. R.; Bos, J. D.; Kapsenberg, M. L.; de Jong, E. C.; Teunissen, M. B. M., Cutting Edge: Loss of TLR2, TLR4, and TLR5 on Langerhans Cells Abolishes Bacterial Recognition. J. Immunol. 2007, 178, 1986. 45. Flacher, V.; Bouschbacher, M.; Verronèse, E.; Massacrier, C.; Sisirak, V.; Berthier-Vergnes, O.; de Saint-Vis, B.; Caux, C.; Dezutter-Dambuyant, C.; Lebecque, S.; Valladeau, J., Human Langerhans Cells Express a Specific TLR Profile and Differentially Respond to Viruses and Gram-Positive Bacteria. J. Immunol. 2006, 177, 7959. 46. Valladeau, J.; Ravel, O.; Dezutter-Dambuyant, C.; Moore, K.; Kleijmeer, M.; Liu, Y.; Duvert-Frances, V.; Vincent, C.; Schmitt, D.; Davoust, J.; Caux, C.; Lebecque, S.; Saeland, S., Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules. Immunity 2000, 12, 71-81. 47. de Witte, L.; Nabatov, A.; Pion, M.; Fluitsma, D.; de Jong, M. A. W. P.; de Gruijl, T.; Piguet, V.; van Kooyk, Y.; Geijtenbeek, T. B. H., Langerin Is a Natural Barrier to HIV-1 Transmission by Langerhans Cells. Nat. Med. 2007, 13, 367. 48. Vlist, M.; Geijtenbeek Teunis, B. H., Langerin Functions as an Antiviral Receptor on Langerhans Cells. Immunol. Cell Biol. 2010, 88, 410-415. 49. Thépaut, M.; Valladeau, J.; Nurisso, A.; Kahn, R.; Arnou, B.; Vivès, C.; Saeland, S.; Ebel, C.; Monnier, C.; Dezutter-Dambuyant, C.; Imberty, A.; Fieschi, F., Structural Studies of Langerin and Birbeck Granule: A Macromolecular Organization Model. Biochemistry 2009, 48, 2684-2698. 50. Feinberg, H.; Powlesland, A. S.; Taylor, M. E.; Weis, W. I., Trimeric Structure of Langerin. J. Biol. Chem. 2010, 285, 13285-13293. 51. Porkolab, V.; Chabrol, E.; Varga, N.; Ordanini, S.; Sutkevičiu̅tė, I.; Thépaut, M.; García-Jiménez, M. J.; Girard, E.; Nieto, P. M.; Bernardi, A.; Fieschi, F., Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. ACS Chem. Biol. 2018, 13, 600-608. 52. Lopes Jose, L. S.; Miles Andrew, J.; Whitmore, L.; Wallace, B. A., Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: Applications in Secondary Structure Analyses. Protein Sci. 2014, 23, 1765-1772. 53. Mitchell, D. A.; Fadden, A. J.; Drickamer, K., A Novel Mechanism of Carbohydrate Recognition by the C-type Lectins DC-SIGN and DC-SIGNR: Subunit Organization and Binding to Multivalent Ligands. J. Biol. Chem. 2001, 276, 28939-28945. 54. Pednekar, L.; Pandit, H.; Paudyal, B.; Kaur, A.; Al-Mozaini, M. A.; Kouser, L.; Ghebrehiwet, B.; Mitchell, D. A.; Madan, T.; Kishore, U., Complement Protein C1q Interacts with DC-SIGN via Its Globular Domain and Thus May Interfere with HIV-1 Transmission. Front. Immunol. 2016, 7. 55. Zhang, H.; Yang, L.; Zhou, B.; Wang, X.; Liu, G.; Liu, W.; Wang, P., Investigation of Biological Cell–protein Interactions Using SPR Sensor through Laser Scanning Confocal Imaging–surface Plasmon Resonance System. Spectrochim. Acta, Part A 2014, 121, 381-386. 56. Wang, W.; Yin, L.; Gonzalez-Malerva, L.; Wang, S.; Yu, X.; Eaton, S.; Zhang, S.; Chen, H.-Y.; LaBaer, J.; Tao, N., In situ Drug-receptor Binding Kinetics in Single Cells: A Quantitative Label-free Study of Anti-tumor Drug Resistance. Sci. Rep. 2014, 4, 6609. 57. Day, C. J.; Tran, E. N.; Semchenko, E. A.; Tram, G.; Hartley-Tassell, L. E.; Ng, P. S. K.; King, R. M.; Ulanovsky, R.; McAtamney, S.; Apicella, M. A.; Tiralongo, J.; Morona, R.; Korolik, V.; Jennings, M. P., Glycan:glycan Interactions: High Affinity Biomolecular Interactions that can Mediate Binding of Pathogenic Bacteria to Host Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E7266. 58. Weinberger, S. R.; Morris, T. S.; Pawlak, M., Recent Trends in Protein Biochip Technology. Pharmacogenomics 2000, 1, 395-416. 59. Habauzit, D.; Chopineau, J.; Roig, B., SPR-based Biosensors: A Tool for Biodetection of Hormonal Compounds. Anal. Bioanal. Chem. 2007, 387, 1215-1223. 60. Nguyen, H. H.; Park, J.; Kang, S.; Kim, M., Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15. 61. Madeira, A.; Öhman, E.; Nilsson, A.; Sjögren, B.; Andrén, P. E.; Svenningsson, P., Coupling Surface Plasmon Resonance to Mass Spectrometry to Discover Novel Protein–protein Interactions. Nat. Protoc. 2009, 4, 1023. 62. Holla, A.; Skerra, A., Comparative Analysis Reveals Selective Recognition of Glycans by the Dendritic Cell Receptors DC-SIGN and Langerin. Protein Eng., Des. Sel. 2011, 24, 659-669. 63. Yang, S.; He, J., Heterogeneous Asymmetric Henry–Michael One-pot Reaction Synergically Catalyzed by Grafted Chiral Bases and Inherent Achiral Hydroxyls on Mesoporous Silica Surface. Chem. Commun. 2012, 48, 10349-10351. 64. Chorghade, M. S.; Mohapatra, D. K.; Sahoo, G.; Gurjar, M. K.; Mandlecha, M. V.; Bhoite, N.; Moghe, S.; Raines, R. T., Practical Syntheses of 4-Fluoroprolines. J. Fluorine Chem. 2008, 129, 781-784. 65. Llanes, P.; Rodríguez-Escrich, C.; Sayalero, S.; Pericàs, M. A., Organocatalytic Enantioselective Continuous-Flow Cyclopropanation. Org. Lett. 2016, 18, 6292-6295. 66. Hollenstein, M., Synthesis of Deoxynucleoside Triphosphates that Include Proline, Urea, or Sulfonamide Groups and Their Polymerase Incorporation into DNA. Chem. - Eur. J. 2012, 18, 13320-13330. 67. Zhang, A.; Schlüter, A. D., Multigram Solution-Phase Synthesis of Three Diastereomeric Tripeptidic Second-Generation Dendrons Based on (2S,4S)-, (2S,4R)-, and (2R,4S)-4-Aminoprolines. Chem. - Asian J. 2007, 2, 1540-1548. 68. Cui, B.; Yu, J.; Yu, F.-C.; Li, Y.-M.; Chang, K.-J.; Shen, Y., Synthesis of (1R,4R)-2,5-diazabicyclo[2.2.1]heptane Derivatives by an Epimerization–lactamization Cascade Reaction. RSC Adv. 2015, 5, 10386-10392. 69. Yao, N.; Xiao, W.; Meza, L.; Tseng, H.; Chuck, M.; Lam, K. S., Structure −Activity Relationship Studies of Targeting Ligands against Breast Cancer Cells. J. Med. Chem. 2009, 52, 6744-6751. 70. Tesch, M.; Kudruk, S.; Letzel, M.; Studer, A., Orthogonal Click Postfunctionalization of Alternating Copolymers Prepared by Nitroxide-Mediated Polymerization. Chem. - Eur. J. 2017, 23, 5915-5919. 71. DeForest, C. A.; Tirrell, D. A., A Photoreversible Protein-patterning Approach for Guiding Stem Cell Fate in Three-dimensional Gels. Nat. Mater. 2015, 14, 523. 72. Tian, X.; Yu, P.; Tang, Y.; Le, Z.; Huang, W., Aspartic Acid Side-Chain Benzyl Ester as a Multifunctionalization Precursor for Synthesis of Branched and Cyclic Arginylglycylaspartic Acid Peptides. Synlett 2017, 28, 1966-1970. 73. Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln, P.; Wilhelmsson, L. M.; Brown, T., Template-Directed Oligonucleotide Strand Ligation, Covalent Intramolecular DNA Circularization and Catenation Using Click Chemistry. J. Am. Chem. Soc. 2007, 129, 6859-6864.
|