帳號:guest(18.191.87.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):溫興荃
作者(外文):Wen, Hsin-Chuan
論文名稱(中文):聚脯胺酸環肽的合成及其在DC-SIGN和Langerin之應用
論文名稱(外文):Synthesis of Cyclic Polyproline Scaffold and Their Applications for DC-SIGN and Langerin Binding
指導教授(中文):王聖凱
指導教授(外文):Wang, Sheng-Kai
口試委員(中文):洪嘉呈
許銘華
口試委員(外文):Horng, Jia-Cherng
Hsu, Ming-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023542
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:多價交互作用聚脯胺酸多肽醣與蛋白質之交互作用表面電漿共振凝集素
外文關鍵詞:multivalent interactionpolyprolinecarbohydrate-protein interactionsDC-SIGNLangerinSurface plasmon resonanceLectin
相關次數:
  • 推薦推薦:2
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
人類免疫缺乏病毒(HIV)能夠透過其表面糖蛋白gp120的多糖與DC-SIGN和Langerin兩種凝集素結合,其中與DC-SIGN結合後會增強其感染能力,而與Langerin結合後病毒會被細胞所降解,因此許多研究嘗試針對DC-SIGN進行抑制,以減低HIV於體內的感染性。在生物系統中,凝集素與單一醣體的微弱交互作用會以多價交互作用形式增強凝集素與醣體的結合能力,因此本論文運用多價交互作用原理,將數個醣體連接於所開發之聚脯胺酸環肽骨架,並針對DC-SIGN和Langerin進行結合能力之研究。於本論文的第一部分中,我們以具PPII剛性與規律性之聚脯胺酸多肽組裝之聚脯胺酸環肽骨架,並針對其結構及構形進行核磁共振及圓二色性分析。而於第二部分中,我們針對DC-SIGN和Langerin兩種凝集素設計聚脯胺酸環肽骨架,並藉由引入具官能基之脯胺酸衍生物至多肽序列中,以連接高甘露糖醣體而完成聚脯胺酸環醣肽;除此之外,我們利用大腸桿菌表現並純化DC-SIGN和Langerin之細胞外結構域(ECD)供結合能力研究使用。最後我們以表面電漿共振(SPR)對兩種凝集素進行結合能力實驗,以評估此類骨架設計的成效,得到的結果對於將來設計DC-SIGN抑制物有幫助。
Human immunodeficiency virus (HIV) binds to human lectins DC-SIGN and langerin through the glycan on its glycoprotein gp120. Interestingly, viral interaction to langerin leads to virus degradation, but binding to DC-SIGN would enhance T cell infection. Thus, many studies tried to develop selective inhibitor for DC-SIGN. In biological system, the weak affinity between lectin and single glycan would be enhanced through multivalent interaction. In this study, we conjugated multiple glycans to the cyclic polyproline scaffold and examined the interaction toward DC-SIGN and langerin. In the first part of this thesis, we synthesized cyclic polyproline scaffolds and analyzed their structures by NMR and CD. In the second part, we designed glycoconjugates based on cyclic polyproline helix scaffolds for DC-SIGN and langerin. To test the interaction of the glycoconjugates, we expressed DC-SIGN ECD and langerin ECD from E. coli and utilized surface plasmon resonance (SPR) analysis to evaluate the binding avidity. The obtain information are useful for future DC-SIGN inhibitor design.
第一章、 緒論 1
1.1. 前言 1
1.2. 凝集素 3
1.3. 多價交互作用 5
1.3.1. 多價交互作用原理 5
1.3.2. 多價交互作用於凝集素之研究 8
1.3.3. 多價交互作用之骨架 9
1.4. 聚脯胺酸多肽 10
1.4.1. 聚脯胺酸多肽之特性 10
1.4.2. 聚脯胺酸多肽之應用 11
1.5. 人類免疫缺乏病毒 13
1.5.1. 人類免疫缺乏病毒簡介 13
1.5.2. 抗HIV藥物的發展及困境 15
1.6. 樹突細胞與DC-SIGN 16
1.6.1. 樹突細胞簡介 16
1.6.2. DC-SIGN結構解析 17
1.7. 蘭格漢氏細胞與Langerin 18
1.7.1. 蘭格漢氏細胞簡介 18
1.7.2. Langerin結構解析 19
1.8. 研究動機 20
1.9. 實驗設計 21
第二章、 結果與討論 23
2.1. 構築單元之合成 23
2.1.1. 脯胺酸構築單元合成 23
2.1.2. 轉角分子合成 24
2.2. 模型脯胺酸環肽四聚體之合成與分析 25
2.2.1. 聚脯胺酸環肽四聚體合成策略 25
2.2.3.最佳化組裝之CuAAC反應條件 29
2.2.4. 模型脯胺酸環肽四聚體合成 31
2.2.5. 圓二色光譜分析 34
2.2.6. 核磁共振光譜分析 35
2.3. 聚脯胺酸環醣肽寡聚體之合成與分析 36
2.3.1. 聚脯胺酸環肽寡聚體合成 36
2.3.2. 聚脯胺酸環醣肽寡聚體合成 39
2.3.3. 圓二色光譜分析 40
2.4. 蛋白質的表現與純化 41
2.4.1. Langerin ECD (Lg-ECD) 41
2.4.2. DC-SIGN ECD (DC-ECD) 42
2.5. 聚脯胺酸環醣肽寡聚體與凝集素之結合能力 44
2.5.1. 表面電漿共振 44
2.5.2. 多價醣樹狀化合物合成 45
2.5.3. Langerin的結合能力實驗 45
2.5.4. DC-SIGN的結合能力實驗 48
2.5.5. 對於Langerin和DC-SIGN之選擇性比較 50
2.6. 結論 52
第三章、 實驗方法與材料 54
3.1. General Methods for Synthesis and Characterization 54
3.2. Synthesis of Peptide Building Blocks and Connector 55
3.3. Synthesis of Peptide and Glycopeptide Oligomers 65
3.4. Expression and Purification of target Lectins 91
3.5. Synthesis of Glycodendrimers 93
3.6. Surface Plasmon Resonance Assay 94
第四章、 參考資料 96

1. Diggle Stephen, P.; Stacey Rachael, E.; Dodd, C.; Cámara, M.; Williams, P.; Winzer, K., The Galactophilic Lectin, LecA, Contributes to Biofilm Development in Pseudomonas aeruginosa. Environ. Microbiol. 2006, 8, 1095-1104.
2. Sommer, R.; Wagner, S.; Rox, K.; Varrot, A.; Hauck, D.; Wamhoff, E.-C.; Schreiber, J.; Ryckmans, T.; Brunner, T.; Rademacher, C.; Hartmann, R. W.; Brönstrup, M.; Imberty, A.; Titz, A., Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 2018, 140, 2537-2545.
3. Ting, S. R. S.; Chen, G.; Stenzel, M. H., Synthesis of Glycopolymers and Their Multivalent Recognitions with Lectins. Polym. Chem. 2010, 1, 1392-1412.
4. Schwefel, D.; Maierhofer, C.; Beck, J. G.; Seeberger, S.; Diederichs, K.; Möller, H. M.; Welte, W.; Wittmann, V., Structural Basis of Multivalent Binding to Wheat Germ Agglutinin. J. Am. Chem. Soc. 2010, 132, 8704-8719.
5. Drickamer, K., Two Distinct Classes of Carbohydrate-recognition Domains in Animal Lectins. J. Biol. Chem. 1988, 263, 9557-9560.
6. Yang, R.-Y.; Rabinovich, G. A.; Liu, F.-T., Galectins: Structure, Function and Therapeutic Potential. Expert Rev. Mol. Med. 2008, 10, e17.
7. Krishnamurthy, V. M.; Estroff, L. A.; Whitesides, G. M., Multivalency in Ligand Design. In Fragment‐based Approaches in Drug Discovery; Jahnke, W.; Erlanson, D. A., Eds.; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, 2006; Vol. 34, pp 11-54.
8. Kitov, P. I.; Bundle, D. R., On the Nature of the Multivalency Effect:  A Thermodynamic Model. J. Am. Chem. Soc. 2003, 125, 16271-16284.
9. Fasting, C.; Schalley Christoph, A.; Weber, M.; Seitz, O.; Hecht, S.; Koksch, B.; Dernedde, J.; Graf, C.; Knapp, E.-W.; Haag, R., Multivalency as a Chemical Organization and Action Principle. Angew. Chem. Int. Ed. 2012, 51, 10472-10498.
10. Cecioni, S.; Imberty, A.; Vidal, S., Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015, 115, 525-561.
11. Boukerb, A. M.; Rousset, A.; Galanos, N.; Méar, J.-B.; Thépaut, M.; Grandjean, T.; Gillon, E.; Cecioni, S.; Abderrahmen, C.; Faure, K.; Redelberger, D.; Kipnis, E.; Dessein, R.; Havet, S.; Darblade, B.; Matthews, S. E.; de Bentzmann, S.; Guéry, B.; Cournoyer, B.; Imberty, A.; Vidal, S., Antiadhesive Properties of Glycoclusters against Pseudomonas aeruginosa Lung Infection. J. Med. Chem. 2014, 57, 10275-10289.
12. Munoz, E. M.; Correa, J.; Riguera, R.; Fernandez-Megia, E., Real-Time Evaluation of Binding Mechanisms in Multivalent Interactions: A Surface Plasmon Resonance Kinetic Approach. J. Am. Chem. Soc. 2013, 135, 5966-5969.
13. Antonik, P. M.; Eissa, A. M.; Round, A. R.; Cameron, N. R.; Crowley, P. B., Noncovalent PEGylation via Lectin–Glycopolymer Interactions. Biomacromolecules 2016, 17, 2719-2725.
14. Boden, S.; Wagner, G. K.; Karg, M.; Hartmann, L., Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding. Polymers 2017, 9, 716.
15. Iniguez, E.; Schocker, N. S.; Subramaniam, K.; Portillo, S.; Montoya, A. L.; Al-Salem, W. S.; Torres, C. L.; Rodriguez, F.; Moreira, O. C.; Acosta-Serrano, A.; Michael, K.; Almeida, I. C.; Maldonado, R. A., An α-Gal-containing Neoglycoprotein-based Vaccine Partially Protects against Murine Cutaneous Leishmaniasis caused by Leishmania Major. PLoS Neglected Trop. Dis. 2017, 11, e0006039.
16. Falenski, J. A.; Gerling, U. I. M.; Koksch, B., Multiple Glycosylation of De Novo Designed α-helical Coiled Coil Peptides. Bioorg. Med. Chem. 2010, 18, 3703-3706.
17. Scheibe, C.; Wedepohl, S.; Riese Sebastian, B.; Dernedde, J.; Seitz, O., Carbohydrate–PNA and Aptamer–PNA Conjugates for the Spatial Screening of Lectins and Lectin Assemblies. ChemBioChem 2013, 14, 236-250.
18. Ruggiero Michael, T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter Timothy, M., Measuring the Elasticity of Poly-l-Proline Helices with Terahertz Spectroscopy. Angew. Chem. Int. Ed. 2016, 55, 6877-6881.
19. Kümin, M.; Sonntag, L.-S.; Wennemers, H., Azidoproline Containing Helices:  Stabilization of the Polyproline II Structure by a Functionalizable Group. J. Am. Chem. Soc. 2007, 129, 466-467.
20. Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. A., Polyproline-II Helix in Proteins: Structure and Function. J. Mol. Biol. 2013, 425, 2100-2132.
21. Wilhelm, P.; Lewandowski, B.; Trapp, N.; Wennemers, H., A Crystal Structure of an Oligoproline PPII-Helix, at Last. J. Am. Chem. Soc. 2014, 136, 15829-15832.
22. Dolghih, E.; Ortiz, W.; Kim, S.; Krueger, B. P.; Krause, J. L.; Roitberg, A. E., Theoretical Studies of Short Polyproline Systems: Recalibration of a Molecular Ruler. J. Phys. Chem. A 2009, 113, 4639-4646.
23. Fillon, Y. A.; Anderson, J. P.; Chmielewski, J., Cell Penetrating Agents Based on a Polyproline Helix Scaffold. J. Am. Chem. Soc. 2005, 127, 11798-11803.
24. Kuriakose, J.; Hernandez-Gordillo, V.; Nepal, M.; Brezden, A.; Pozzi, V.; Seleem Mohamed, N.; Chmielewski, J., Targeting Intracellular Pathogenic Bacteria with Unnatural Proline-Rich Peptides: Coupling Antibacterial Activity with Macrophage Penetration. Angew. Chem. Int. Ed. 2013, 52, 9664-9667.
25. Thangamani, S.; Nepal, M.; Chmielewski, J.; Seleem, M. N., Antibacterial Activity and Therapeutic Efficacy of Fl-P(R)P(R)P(L)-5, a Cationic Amphiphilic Polyproline Helix, in a Mouse Model of Staphylococcal Skin Infection. Drug Des., Dev. Ther. 2015, 9, 5749-5754.
26. Hung, P.-Y.; Chen, Y.-H.; Huang, K.-Y.; Yu, C.-C.; Horng, J.-C., Design of Polyproline-Based Catalysts for Ester Hydrolysis. ACS Omega 2017, 2, 5574-5581.
27. Lin, T.-H.; Lin, C.-H.; Liu, Y.-J.; Huang, C. Y.; Lin, Y.-C.; Wang, S.-K., Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate–Protein Interactions. ACS Appl. Mater. Interfaces 2017, 9, 41691-41699.
28. Deeks, S. G.; Overbaugh, J.; Phillips, A.; Buchbinder, S., HIV infection. Nat Rev Dis Primers 2015, 1, 15035.
29. Moir, S.; Chun, T.-W.; Fauci, A. S., Pathogenic Mechanisms of HIV Disease. Annu. Rev. Pathol.: Mech. Dis. 2011, 6, 223-248.
30. Eron, J. J.; Benoit, S. L.; Jemsek, J.; MacArthur, R. D.; Santana, J.; Quinn, J. B.; Kuritzkes, D. R.; Fallon, M. A.; Rubin, M., Treatment with Lamivudine, Zidovudine, or Both in HIV-Positive Patients with 200 to 500 CD4+ Cells per Cubic Millimeter. N. Engl. J. Med. 1995, 333, 1662-1669.
31. Cocohoba, J.; Dong, B. J., Raltegravir: The first HIV integrase inhibitor. Clin. Ther. 2008, 30, 1747-1765.
32. Banchereau, J.; Steinman, R. M., Dendritic Cells and the Control of Immunity. Nature 1998, 392, 245.
33. Lindquist, R. L.; Shakhar, G.; Dudziak, D.; Wardemann, H.; Eisenreich, T.; Dustin, M. L.; Nussenzweig, M. C., Visualizing Dendritic Cell Networks in vivo. Nat. Immunol. 2004, 5, 1243.
34. Granelli-Piperno, A.; Pritsker, A.; Pack, M.; Shimeliovich, I.; Arrighi, J.-F.; Park, C. G.; Trumpfheller, C.; Piguet, V.; Moran, T. M.; Steinman, R. M., Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Nonintegrin/CD209 Is Abundant on Macrophages in the Normal Human Lymph Node and Is Not Required for Dendritic Cell Stimulation of the Mixed Leukocyte Reaction. J. Immunol. 2005, 175, 4265.
35. Turville, S. G.; Cameron, P. U.; Handley, A.; Lin, G.; Pöhlmann, S.; Doms, R. W.; Cunningham, A. L., Diversity of Receptors Binding HIV on Dendritic Cell Subsets. Nat. Immunol. 2002, 3, 975.
36. Pöhlmann, S.; Baribaud, F.; Lee, B.; Leslie, G. J.; Sanchez, M. D.; Hiebenthal-Millow, K.; Münch, J.; Kirchhoff, F.; Doms, R. W., DC-SIGN Interactions with Human Immunodeficiency Virus Type 1 and 2 and Simian Immunodeficiency Virus. J. Virol. 2001, 75, 4664-4672.
37. Kwon, D. S.; Gregorio, G.; Bitton, N.; Hendrickson, W. A.; Littman, D. R., DC-SIGN-Mediated Internalization of HIV Is Required for Trans-Enhancement of T Cell Infection. Immunity 2002, 16, 135-144.
38. Sol-Foulon, N.; Moris, A.; Nobile, C.; Boccaccio, C.; Engering, A.; Abastado, J.-P.; Heard, J.-M.; van Kooyk, Y.; Schwartz, O., HIV-1 Nef-Induced Upregulation of DC-SIGN in Dendritic Cells Promotes Lymphocyte Clustering and Viral Spread. Immunity 2002, 16, 145-155.
39. Arrighi, J.-F.; Pion, M.; Wiznerowicz, M.; Geijtenbeek, T. B.; Garcia, E.; Abraham, S.; Leuba, F.; Dutoit, V.; Ducrey-Rundquist, O.; van Kooyk, Y.; Trono, D.; Piguet, V., Lentivirus-Mediated RNA Interference of DC-SIGN Expression Inhibits Human Immunodeficiency Virus Transmission from Dendritic Cells to T Cells. J. Virol. 2004, 78, 10848-10855.
40. Geijtenbeek, T. B. H.; Kwon, D. S.; Torensma, R.; van Vliet, S. J.; van Duijnhoven, G. C. F.; Middel, J.; Cornelissen, I. L. M. H. A.; Nottet, H. S. L. M.; KewalRamani, V. N.; Littman, D. R.; Figdor, C. G.; van Kooyk, Y., DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell 2000, 100, 587-597.
41. Boggiano, C.; Manel, N.; Littman, D. R., Dendritic Cell-Mediated trans-Enhancement of Human Immunodeficiency Virus Type 1 Infectivity Is Independent of DC-SIGN. J. Virol. 2007, 81, 2519-2523.
42. Tabarani, G.; Thépaut, M.; Stroebel, D.; Ebel, C.; Vivès, C.; Vachette, P.; Durand, D.; Fieschi, F., DC-SIGN Neck Domain Is a pH-sensor Controlling Oligomerization: Saxs and Hydrodynamic Studies of Extracellular Domain. J. Biol. Chem. 2009, 284, 21229-21240.
43. Varga, N.; Sutkeviciute, I.; Ribeiro-Viana, R.; Berzi, A.; Ramdasi, R.; Daghetti, A.; Vettoretti, G.; Amara, A.; Clerici, M.; Rojo, J.; Fieschi, F.; Bernardi, A., A Multivalent Inhibitor of the DC-SIGN Dependent Uptake of HIV-1 and Dengue Virus. Biomaterials 2014, 35, 4175-4184.
44. van der Aar, A. M. G.; Sylva-Steenland, R. M. R.; Bos, J. D.; Kapsenberg, M. L.; de Jong, E. C.; Teunissen, M. B. M., Cutting Edge: Loss of TLR2, TLR4, and TLR5 on Langerhans Cells Abolishes Bacterial Recognition. J. Immunol. 2007, 178, 1986.
45. Flacher, V.; Bouschbacher, M.; Verronèse, E.; Massacrier, C.; Sisirak, V.; Berthier-Vergnes, O.; de Saint-Vis, B.; Caux, C.; Dezutter-Dambuyant, C.; Lebecque, S.; Valladeau, J., Human Langerhans Cells Express a Specific TLR Profile and Differentially Respond to Viruses and Gram-Positive Bacteria. J. Immunol. 2006, 177, 7959.
46. Valladeau, J.; Ravel, O.; Dezutter-Dambuyant, C.; Moore, K.; Kleijmeer, M.; Liu, Y.; Duvert-Frances, V.; Vincent, C.; Schmitt, D.; Davoust, J.; Caux, C.; Lebecque, S.; Saeland, S., Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules. Immunity 2000, 12, 71-81.
47. de Witte, L.; Nabatov, A.; Pion, M.; Fluitsma, D.; de Jong, M. A. W. P.; de Gruijl, T.; Piguet, V.; van Kooyk, Y.; Geijtenbeek, T. B. H., Langerin Is a Natural Barrier to HIV-1 Transmission by Langerhans Cells. Nat. Med. 2007, 13, 367.
48. Vlist, M.; Geijtenbeek Teunis, B. H., Langerin Functions as an Antiviral Receptor on Langerhans Cells. Immunol. Cell Biol. 2010, 88, 410-415.
49. Thépaut, M.; Valladeau, J.; Nurisso, A.; Kahn, R.; Arnou, B.; Vivès, C.; Saeland, S.; Ebel, C.; Monnier, C.; Dezutter-Dambuyant, C.; Imberty, A.; Fieschi, F., Structural Studies of Langerin and Birbeck Granule: A Macromolecular Organization Model. Biochemistry 2009, 48, 2684-2698.
50. Feinberg, H.; Powlesland, A. S.; Taylor, M. E.; Weis, W. I., Trimeric Structure of Langerin. J. Biol. Chem. 2010, 285, 13285-13293.
51. Porkolab, V.; Chabrol, E.; Varga, N.; Ordanini, S.; Sutkevičiu̅tė, I.; Thépaut, M.; García-Jiménez, M. J.; Girard, E.; Nieto, P. M.; Bernardi, A.; Fieschi, F., Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. ACS Chem. Biol. 2018, 13, 600-608.
52. Lopes Jose, L. S.; Miles Andrew, J.; Whitmore, L.; Wallace, B. A., Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: Applications in Secondary Structure Analyses. Protein Sci. 2014, 23, 1765-1772.
53. Mitchell, D. A.; Fadden, A. J.; Drickamer, K., A Novel Mechanism of Carbohydrate Recognition by the C-type Lectins DC-SIGN and DC-SIGNR: Subunit Organization and Binding to Multivalent Ligands. J. Biol. Chem. 2001, 276, 28939-28945.
54. Pednekar, L.; Pandit, H.; Paudyal, B.; Kaur, A.; Al-Mozaini, M. A.; Kouser, L.; Ghebrehiwet, B.; Mitchell, D. A.; Madan, T.; Kishore, U., Complement Protein C1q Interacts with DC-SIGN via Its Globular Domain and Thus May Interfere with HIV-1 Transmission. Front. Immunol. 2016, 7.
55. Zhang, H.; Yang, L.; Zhou, B.; Wang, X.; Liu, G.; Liu, W.; Wang, P., Investigation of Biological Cell–protein Interactions Using SPR Sensor through Laser Scanning Confocal Imaging–surface Plasmon Resonance System. Spectrochim. Acta, Part A 2014, 121, 381-386.
56. Wang, W.; Yin, L.; Gonzalez-Malerva, L.; Wang, S.; Yu, X.; Eaton, S.; Zhang, S.; Chen, H.-Y.; LaBaer, J.; Tao, N., In situ Drug-receptor Binding Kinetics in Single Cells: A Quantitative Label-free Study of Anti-tumor Drug Resistance. Sci. Rep. 2014, 4, 6609.
57. Day, C. J.; Tran, E. N.; Semchenko, E. A.; Tram, G.; Hartley-Tassell, L. E.; Ng, P. S. K.; King, R. M.; Ulanovsky, R.; McAtamney, S.; Apicella, M. A.; Tiralongo, J.; Morona, R.; Korolik, V.; Jennings, M. P., Glycan:glycan Interactions: High Affinity Biomolecular Interactions that can Mediate Binding of Pathogenic Bacteria to Host Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E7266.
58. Weinberger, S. R.; Morris, T. S.; Pawlak, M., Recent Trends in Protein Biochip Technology. Pharmacogenomics 2000, 1, 395-416.
59. Habauzit, D.; Chopineau, J.; Roig, B., SPR-based Biosensors: A Tool for Biodetection of Hormonal Compounds. Anal. Bioanal. Chem. 2007, 387, 1215-1223.
60. Nguyen, H. H.; Park, J.; Kang, S.; Kim, M., Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15.
61. Madeira, A.; Öhman, E.; Nilsson, A.; Sjögren, B.; Andrén, P. E.; Svenningsson, P., Coupling Surface Plasmon Resonance to Mass Spectrometry to Discover Novel Protein–protein Interactions. Nat. Protoc. 2009, 4, 1023.
62. Holla, A.; Skerra, A., Comparative Analysis Reveals Selective Recognition of Glycans by the Dendritic Cell Receptors DC-SIGN and Langerin. Protein Eng., Des. Sel. 2011, 24, 659-669.
63. Yang, S.; He, J., Heterogeneous Asymmetric Henry–Michael One-pot Reaction Synergically Catalyzed by Grafted Chiral Bases and Inherent Achiral Hydroxyls on Mesoporous Silica Surface. Chem. Commun. 2012, 48, 10349-10351.
64. Chorghade, M. S.; Mohapatra, D. K.; Sahoo, G.; Gurjar, M. K.; Mandlecha, M. V.; Bhoite, N.; Moghe, S.; Raines, R. T., Practical Syntheses of 4-Fluoroprolines. J. Fluorine Chem. 2008, 129, 781-784.
65. Llanes, P.; Rodríguez-Escrich, C.; Sayalero, S.; Pericàs, M. A., Organocatalytic Enantioselective Continuous-Flow Cyclopropanation. Org. Lett. 2016, 18, 6292-6295.
66. Hollenstein, M., Synthesis of Deoxynucleoside Triphosphates that Include Proline, Urea, or Sulfonamide Groups and Their Polymerase Incorporation into DNA. Chem. - Eur. J. 2012, 18, 13320-13330.
67. Zhang, A.; Schlüter, A. D., Multigram Solution-Phase Synthesis of Three Diastereomeric Tripeptidic Second-Generation Dendrons Based on (2S,4S)-, (2S,4R)-, and (2R,4S)-4-Aminoprolines. Chem. - Asian J. 2007, 2, 1540-1548.
68. Cui, B.; Yu, J.; Yu, F.-C.; Li, Y.-M.; Chang, K.-J.; Shen, Y., Synthesis of (1R,4R)-2,5-diazabicyclo[2.2.1]heptane Derivatives by an Epimerization–lactamization Cascade Reaction. RSC Adv. 2015, 5, 10386-10392.
69. Yao, N.; Xiao, W.; Meza, L.; Tseng, H.; Chuck, M.; Lam, K. S., Structure −Activity Relationship Studies of Targeting Ligands against Breast Cancer Cells. J. Med. Chem. 2009, 52, 6744-6751.
70. Tesch, M.; Kudruk, S.; Letzel, M.; Studer, A., Orthogonal Click Postfunctionalization of Alternating Copolymers Prepared by Nitroxide-Mediated Polymerization. Chem. - Eur. J. 2017, 23, 5915-5919.
71. DeForest, C. A.; Tirrell, D. A., A Photoreversible Protein-patterning Approach for Guiding Stem Cell Fate in Three-dimensional Gels. Nat. Mater. 2015, 14, 523.
72. Tian, X.; Yu, P.; Tang, Y.; Le, Z.; Huang, W., Aspartic Acid Side-Chain Benzyl Ester as a Multifunctionalization Precursor for Synthesis of Branched and Cyclic Arginylglycylaspartic Acid Peptides. Synlett 2017, 28, 1966-1970.
73. Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln, P.; Wilhelmsson, L. M.; Brown, T., Template-Directed Oligonucleotide Strand Ligation, Covalent Intramolecular DNA Circularization and Catenation Using Click Chemistry. J. Am. Chem. Soc. 2007, 129, 6859-6864.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *