帳號:guest(18.118.19.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林育瑩
作者(外文):Lin, Yu-Ying
論文名稱(中文):利用電子自旋共振光譜研究 Bid 蛋白於變性劑溶液 中的熱穩定性
論文名稱(外文):Study of thermal stability of Bid protein in denaturant solutions using spin-label ESR
指導教授(中文):江昀緯
指導教授(外文):Chiang, Yun-Wei
口試委員(中文):洪嘉呈
胡念仁
口試委員(外文):Horng, Jia-Cherng
Hu, Nien-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023541
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:蛋白質穩定性蛋白質變性細胞凋亡電子自旋共振
外文關鍵詞:protein stabilitydenaturationapoptosisspin-label ESRBIDBCL-2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:200
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Bid蛋白在傳遞細胞凋亡的過程中扮演重要的角色,當細胞接收到凋亡訊息後,Bid蛋白會被Caspase 8蛋白酶切斷成cBid,並轉移至粒線體外膜上與其他Bcl-2家族蛋白作用。近年來,大多數研究著重於解析Bid蛋白在膜上的結構以及了解Bid如何藉由與Bcl-2家族蛋白作用來調控細胞凋亡的機制,然而其結構穩定性與其生物活性之關聯性卻未曾被深入探討。本研究利用圓二色光譜(CD)以及溫度解析連續波型電子自旋共振光譜(cw-ESR)探討Bid蛋白整體與局部結構之熱穩定性,進而了解Bid結構穩定性是如何影響其生物功能。利用圓二色光譜技術我們發現Bid蛋白在高溫(350 K以上)仍保有部分二級結構,並會產生分子間聚集。此外,我們利用GdnHCl降低其結構的熱穩定性,在3 M GdnHCl溶液中,圓二色光譜的結果顯示Bid蛋白的結構約於320 K即開始瓦解。於此研究中,我們利用ESR光譜技術,解析Bid蛋白局部的結構與其生物功能的關聯性。我們首先確認在3 M GdnHCl的環境中,於300 K時的Bid蛋白能保持其原先構形。隨後我們在Bid蛋白不同的螺旋區域,挑出30個位點並搜集其300 K至345 K的cw-ESR光譜,藉此勾勒出Bid蛋白局部結構的熱穩定性。實驗結果顯示Bid蛋白在加熱後會從螺旋3、6和8的交界面開始攤開,此交界面正是包覆BH3 domain的交界面,表示BH3 domain會在升溫的過程中最先從結構中暴露。本研究也發現,Bid蛋白在加熱至95 ℃(368 K)後,依然能正常傳遞細胞凋亡訊息,顯示即便Bid蛋白的結構已受到高溫破壞, Bid蛋白仍保持其生物功能。
BH3-interacting-domain death agonist (Bid) protein plays a key role in the induction of mitochondria-mediated apoptosis. Upon receipt of apoptotic stimuli, Bid interacts with apoptotic Bcl-2 family proteins and consequently triggers the activation of the apoptotic proteins, leading to the cell death. The structure of Bid was determined more than a decade ago, but its structure-function relation remains largely unexplored. In this study, we investigated the thermal stability of Bid protein and explored how the death-promoting function of Bid is affected by thermally-induced unfolding. First, we show by circular dichroism (CD) spectroscopy that Bid remains partially unfolded at high temperature (350-368 K). The thermal denaturation of Bid is irreversible and accompanied with intermolecular associations leading to protein aggregation. No clear melting temperature Tm is observed. We demonstrated by cw-ESR that, in 3 M GdnHCl the structure of Bid is largely preserved, but the protein stability is affected such that a clear melting temperature of Bid is determined. More than 30 single-labeled Bid mutants are studied using ESR in the temperature range of 300−345 K. The ESR results provide site-specific information about temperature dependence of local structure in Bid, thus enabling the discrimination between the onsets of unfolding and aggregation for respective sites. We map out the local thermal stability over Bid structure and reveal that the interface of helices 3, 6 and 8 is the beginning of structural unfolding. We also investigated the apoptotic activity of the thermally-induced Bid aggregates and showed that Bid retains the death-promoting function even when unfolded and aggregated.
第一章 緒論 6
1.1 細胞凋亡 6
1.2 Bcl-2家族蛋白 6
1.3 BH3-interacting domain death agonist (Bid) 8
1.4 研究動機與目的 9
第二章 儀器介紹與原理 11
2.1 電子自旋共振光譜儀 11
2.1.1儀器裝置 11
2.1.2 連續波型電子自旋共振光譜 13
2.1.3 定位自旋標記 14
2.1.4 ESR光譜線形及標記物之運動相關性 14
2.2 圓二色光譜儀 16
2.3 蛋白質沈澱與濁度 17
2.4 Thermofluor assay 18
第三章 樣品製備與儀器測量方法 20
3.1 Bid蛋白樣品製備 20
3.1.1 Bid蛋白的定點突變 20
3.1.2 Bid蛋白的表現 20
3.1.3 Bid蛋白的純化 21
3.2 ESR的樣品製備、量測和分析 22
3.2.1 ESR的樣品製備 22
3.2.2 cw-ESR的量測 23
3.2.3 ESR的數據分析 24
3.3 圓二色光譜量測 25
3.4 Thermofluor assay 25
3.5 濁度量測 26
3.6 Cytochrome c release assay 26
第四章 結果與討論 28
4.1 Bid蛋白具有高度的熱穩定性 28
4.2 利用3M GdnHCl降低Bid蛋白的熱穩定性 30
4.3 加入3M GdnHCl並不會明顯影響Bid蛋白的整體構形 32
4.4 利用SDSL-ESR對Bid蛋白進一步做位點局部區域的解析 36
4.5 分析不同區域Bid蛋白的升溫cw-ESR光譜線形 43
4.5.1 α1與α2的熱穩定性探討 43
4.5.2 Loop與α3的局部熱穩定性較低 45
4.5.3 α4與α5具有較高的熱穩定性 49
4.5.4 α6尾端與α7的具有較高的局部熱穩定性 52
4.5.5 α8的局部熱穩定性較低 56
4.6 Bid加熱過程中BH3 domain會先從結構中暴露 58
4.7 加熱後的Bid蛋白仍具有傳遞細胞凋亡訊息的功能 60
4.8 Bid和Bax蛋白因兩者功能的差異造成兩者局部結構上熱穩定性的不同 62
第五章 結論 64
第六章 參考文獻 65
1. Czabotar, P. E.; Lessene, G.; Strasser, A.; Adams, J. M., Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15 (1), 49-63.
2. Lindsay, J.; Esposti, M. D.; Gilmore, A. P., Bcl-2 proteins and mitochondria-Specificity in membrane targeting for death. Biochim. Biophys. Acta 2011, 1813 (4), 532-539.
3. Walensky, L. D.; Gavathiotis, E., BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci. 2011, 36 (12), 642-652.
4. Chipuk, J. E.; Moldoveanu, T.; Llambi, F.; Parsons, M. J.; Green, D. R., The BCL-2 Family Reunion. Mol. Cell 2010, 37 (3), 299-310.
5. Letai, A.; Bassik, M. C.; Walensky, L. D.; Sorcinelli, M. D.; Weiler, S.; Korsmeyer, S. J., Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2 (3), 183-192.
6. Kuwana, T.; Bouchier-Hayes, L.; Chipuk, J. E.; Bonzon, C.; Sullivan, B. A.; Green, D. R.; Newmeyer, D. D., BH3 domains of BH3-only proteins differentially regulate bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 2005, 17 (4), 525-535.
7. Shamas-Din, A.; Kale, J.; Leber, B.; Andrews, D. W., Mechanisms of Action of Bcl-2 Family Proteins. Csh. Perspect. Biol. 2013, 5 (4).
8. Billen, L. P.; Shamas-Din, A.; Andrews, D. W., Bid: a Bax-like BH3 protein. Oncogene 2008, 27, S93-S104.
9. Chou, J. J.; Li, H. L.; Salvesen, G. S.; Yuan, J. Y.; Wagner, G., Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 1999, 96 (5), 615-624.
10. McDonnell, J. M.; Fushman, D.; Milliman, C. L.; Korsmeyer, S. J.; Cowburn, D., Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists. Cell 1999, 96 (5), 625-634.
11. Bleicken, S.; Garcia-Saez, A. J.; Conte, E.; Bordignon, E., Dynamic Interaction of cBid with Detergents, Liposomes and Mitochondria. PLoS One 2012, 7 (4), e35910.
12. Shamas-Din, A.; Bindner, S.; Zhu, W. J.; Zaltsman, Y.; Campbell, C.; Gross, A.; Leber, B.; Andrews, D. W.; Fradin, C., tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation. J. Biol. Chem. 2013, 288 (30), 22111-22127.
13. Wang, Y.; Tjandra, N., Structural Insights of tBid, the Caspase-8-activated Bid, and Its BH3 Domain. J. Biol. Chem. 2013, 288 (50), 35840-35851.
14. Chan, C. H.; Tsai, C. J.; Chiang, Y. W., Side-Chain Packing Interactions Stabilize an Intermediate of BAX Protein against Chemical and Thermal Denaturation. J. Phys. Chem. B 2015, 119 (1), 54-64.
15. Hubbell, W. L.; Cafiso, D. S.; Altenbach, C., Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 2000, 7 (9), 735-739.
16. Hubbell, W. L.; Mchaourab, H. S.; Altenbach, C.; Lietzow, M. A., Watching proteins move using site-directed spin labeling. Structure 1996, 4 (7), 779-783.
17. Melanson, M.; Sood, A.; Torok, F.; Torok, M., Introduction to spin label electron paramagnetic resonance spectroscopy of proteins. Biochem. Mol. Biol. Educ. 2013, 41 (3), 156-162.
18. Chiang, Y. W.; Shimoyama, Y.; Feigenson, G. W.; Freed, J. H., Dynamic molecular structure of DPPC-DLPC-cholesterol ternary lipid system by spin-label electron spin resonance. Biophys. J. 2004, 87 (4), 2483-2496.
19. Altenbach, C.; Flitsch, S. L.; Khorana, H. G.; Hubbell, W. L., Structural Studies on Transmembrane Proteins .2. Spin Labeling of Bacteriorhodopsin Mutants at Unique Cysteines. Biochemistry 1989, 28 (19), 7806-7812.
20. Klug, C. S.; Feix, J. B., Methods and applications of site-directed spin Labeling EPR Spectroscopy. Method Cell Biol. 2008, 84, 617-658.
21. Stone, T. J.; Buckman, T.; Nordio, P. L.; Mcconnell, H. M., Spin-Labeled Biomolecules. Proc. Natl. Acad. Sci. U. S. A. 1965, 54 (4), 1010-1017.
22. Kelly, S. M.; Jess, T. J.; Price, N. C., How to study proteins by circular dichroism. Biochim. Biophys. Acta 2005, 1751 (2), 119-139.
23. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-2890.
24. Greenfield, N., Citation Classic - Computed Circular-Dichroism Spectra for the Evaluation of Protein Conformation. Biochemistry 1982, (26), 28-28.
25. Sun, Z. H.; Diaz, Z.; Fang, X. D.; Hart, M. P.; Chesi, A.; Shorter, J.; Gitler, A. D., Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS. PLoS Biol. 2011, 9 (4), e1000614.
26. Chaudhuri, R.; Cheng, Y.; Middaugh, C. R.; Volkin, D. B., High-Throughput Biophysical Analysis of Protein Therapeutics to Examine Interrelationships Between Aggregate Formation and Conformational Stability. Aaps J. 2014, 16 (1), 48-64.
27. Matulis, D.; Kranz, J. K.; Salemme, F. R.; Todd, M. J., Thermodynamic stability of carbonic anhydrase: Measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 2005, 44 (13), 5258-5266.
28. Niesen, F. H.; Berglund, H.; Vedadi, M., The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007, 2 (9), 2212-2221.
29. Lavinder, J. J.; Hari, S. B.; Sullivan, B. J.; Magliery, T. J., High-Throughput Thermal Scanning: A General, Rapid Dye-Binding Thermal Shift Screen for Protein Engineering. J. Am. Chem. Soc. 2009, 131 (11), 3794-3795.
30. Layton, C. J.; Hellinga, H. W., Thermodynamic Analysis of Ligand-Induced Changes in Protein Thermal Unfolding Applied to High-Throughput Determination of Ligand Affinities with Extrinsic Fluorescent Dyes. Biochemistry 2010, 49 (51), 10831-10841.
31. Oh, K. J.; Barbuto, S.; Meyer, N.; Kim, R. S.; Collier, R. J.; Korsmeyer, S. J., Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding - A site-directed spin labeling study. J. Biol. Chem. 2005, 280 (1), 753-767.
32. Vanzi, F.; Madan, B.; Sharp, K., Effect of the protein denaturants urea and guanidinium on water structure: A structural and thermodynamic study. J. Am. Chem. Soc. 1998, 120 (41), 10748-10753.
33. Klug, C. S.; Feix, J. B., Guanidine hydrochloride unfolding of a transmembrane beta-strand in FepA using site-directed spin labeling. Protein Sci. 1998, 7 (6), 1469-1476.
34. England, J. L.; Haran, G., Role of Solvation Effects in Protein Denaturation: From Thermodynamics to Single Molecules and Back. Annu. Rev. Phys. Chem. 2011, 62, 257-277.
35. Klug, C. S.; Su, W. Y.; Liu, J.; Klebba, P. E.; Feix, J. B., Denaturant Unfolding of the Ferric Enterobactin Receptor and Ligand-Induced Stabilization Studied by Site-Directed Spin-Labeling. Biochemistry 1995, 34 (43), 14230-14236.
36. Myers, J. K.; Pace, C. N.; Scholtz, J. M., Denaturant M-Values and Heat-Capacity Changes - Relation to Changes in Accessible Surface-Areas of Protein Unfolding. Protein Sci. 1995, 4 (10), 2138-2148.
37. Hua, L.; Zhou, R. H.; Thirumalai, D.; Berne, B. J., Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (44), 16928-16933.
38. Dill, K. A.; Alonso, D. O. V.; Hutchinson, K., Thermal Stabilities of Globular-Proteins. Biochemistry 1989, 28 (13), 5439-5449.
39. Wallqvist, A.; Covell, D. G.; Thirumalai, D., Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. J. Am. Chem. Soc. 1998, 120 (2), 427-428.
40. Kouri, F. M.; Jensen, S. A.; Stegh, A. H., The Role of Bcl-2 Family Proteins in Therapy Responses of Malignant Astrocytic Gliomas: Bcl2L12 and Beyond. Sci. World J. 2012, 1-8.
41. Lalier, L.; Cartron, P. F.; Juin, P.; Nedelkina, S.; Manon, S.; Bechinger, B.; Vallette, F. M., Bax activation and mitochondrial insertion during apoptosis. Apoptosis 2007, 12 (5), 887-896.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *