帳號:guest(18.219.236.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張恩豪
作者(外文):Chang, En-Hao
論文名稱(中文):開發新型可轉換式近紅外光之螢光探針及蛋白激活化學探針
論文名稱(外文):Development of New Fluorescent Switchable Near-Infrared Dyes and Protein-Activated Chemical Probes
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):林俊成
王宗興
口試委員(外文):Lin, Chun-Cheng
Wang, Tsung-Shing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023530
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:224
中文關鍵詞:螢光探針部分花青染料細胞顯影體內成像香豆素蛋白激活
外文關鍵詞:fluorescent probesmerocyaninecell imagein vivocoumarinprotein-activated
相關次數:
  • 推薦推薦:0
  • 點閱點閱:192
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
螢光探針能夠快速且靈敏的偵測目標分析物,因此在化學與生物科學領域中迅速發展且已成為醫學診斷方面中不可或缺的工具。在本論文的第一部分,我們開發出了一種新型可轉換式近紅外光之部分花青染料,並且應用於生物成像。大多數的螢光分子都是通過延伸π-共軛系統使其整體波長紅移;而我們設計出的部分花青染料則是以不尋常的S-cis構型穩定存在而導致其波長紅移進入近紅外光區。此外,在探針上修飾蛋白質配體,可讓探針與蛋白質結合時表現出顯著的螢光增益,使我們進行細胞顯影時可以免去清洗的步驟。我們期望這項研究能夠帶給相關領域一個新的近紅外光螢光染料設計策略。
在本論文的第二部分,我們發展出了一種新型的蛋白質偵測策略。藉由引入鄰-二氟苯基和優化香豆素衍生物的穩定性,我們合成出Coumarin-Carbamate-SA做為探針用以偵測蛋白質。在水溶液中五個小時後還能保持一樣的螢光背景,說明了探針具有足夠的穩定度。透過增加驅動力的模式,使得蛋白質上的親和基成功地和探針上的酯基進行加成消去反應並且斷鍵,釋放出螢光基團,分析螢光訊號的改變以實現偵測。由於此探針具有快速偵測和高選擇性的優點,我們相信此策略非常適合用於蛋白質檢測,同時期望可以廣泛應用於相關領域。
Fluorescent probes are a flourishing field of research in chemical and biological science and they have emerged as an important tool in medical diagnosis owing to their rapid response and high sensitivity to target analytes.
In the first part of our thesis, we introduce a new fluorescent switchable near-infrared merocyanine dye and demonstrate its imaging applications. Compared with the classical bathochromic shift approach which relies on the extension of the π-conjugation system, our novel approach of the bathochromic shift is based on an unusual S-cis diene conformer. By incorporating a protein specific ligand to the dye, the probes exhibited dramatic fluorescence enhancement upon binding with its target protein which enabled no-wash and site-specific imaging of target proteins in vitro and in vivo. We believe that our unconventional approach can lead to new strategies for the design of near-IR dyes.
In the second part, we developed a new strategy for the detection of target proteins. By incorporating an ortho-difluorophenyl group and optimizing the stability of the coumarin derivatives, we have successfully identified Coumarin- Carbamate-SA as the optimal probe. It was sufficiently stable in aqueous buffer, achieving low fluorescent background for at least 5 hours. Yet, the probe is reactive enough for protein detection through the cleavage of the ester bond next to the difluorophenyl group which leads to an excellent fluorescence enhancement upon releasing the fluorophore. Due to the rapid response and high selectivity, we believe this strategy can be particularly useful for protein detection and imaging in living cells.
摘要 I
Abstract II
謝誌 IV
著作列表 VI
第一章、緒論 1
§ 1-1 螢光探針 1
1-1.1 近紅外光螢光探針 3
§ 1-2 蛋白質 5
1-2.1 酶與非酶蛋白 7
§ 1-3蛋白質偵測方法 8
1-3.1 西方墨點法 8
1-3.2 免疫分析法 9
1-3.3 質譜分析法 10
第二章、文獻回顧 13
§ 2-1螢光探針種類 14
2-1.1 超分子自組裝螢光探針 14
2-1.2 共振能量轉移探針 16
2-1.3 聚集誘導螢光放射型探針 18
2-1.4 環境敏感型螢光探針 21
2-1.5 反應型籠閉螢光探針 33
§ 2-2螢光探針限制 35
第三章、螢光探針之設計與探討 37
§ 3-1 探針設計與實驗回顧 37
§ 3-2 理論計算與實驗方向 41
第四章、實驗結果及討論 43
§ 4-1 染料P-Mero4之測試與討論 43
4-1.1 染料P-Mero4與Mero4之常溫及低溫吸收光譜 43
4-1.2 染料與Mero4之理論計算及二維核磁共振光譜 44
§ 4-2 染料P-Mero4S與NAPH-Mero4S之測試與討論 50
4-2.1 染料P-Mero4S與NAPH-Mero4S之合成 51
4-2.2 染料P-Mero4S與NAPH-Mero4S之光譜性質 52
§ 4-3 偵測SNAP-tag蛋白質 55
4-3.1 SNAP-tag蛋白質 55
4-3.2 用於偵測SNAP-tag之探針NAPH-Mero4BG 56
§ 4-4 探針NAPH-Mero4BG之生物成像應用 58
4-4.1 細胞實驗 58
4-4.2 活體動物試驗 59
第五章、螢光探針之設計構想 63
§ 5-1 非專一性訊號 63
§ 5-2 螢光探針之設計概念與偵測策略 65
§ 5-3 人類碳酸酐酶 66
第六章、實驗結果及討論 68
§ 6-1 探針CCVJ-OTf-SA之測試與討論 68
6-1.1 探針CCVJ-OTf-SA之合成 69
6-1.2 探針CCVJ-OTf-SA之螢光測試 70
§ 6-2 探針Coumarin-Linker-SA之測試與討論 71
6-2.1 探針Coumarin-Ether-SA之合成 72
6-2.2 探針Coumarin-Ether-SA之測試與討論 74
6-2.3 探針Coumarin-Carbonate-SA之合成 77
6-2.4 探針Coumarin-Carbonate-SA之測試與討論 79
6-2.5 探針Coumarin-Carbamate-SA之合成 81
6-2.6 探針Coumarin-Carbamate-SA之測試與討論 83
第七章、實驗結論 91
第八章、實驗部分 93
§ 8-1 實驗藥品與器材 93
§ 8-2 螢光測試條件 95
§ 8-3 蛋白質表現及純化 96
8-3.1 蛋白質表現 96
8-3.2 蛋白質純化 (Protein Purification) 97
8-3.3 SDS-PAGE膠體電泳 98
§ 8-4 細胞培養及細胞影像實驗 100
8-4.1 培養基及試劑 100
8-4.2 細胞繼代培養 100
8-4.3 細胞影像 101
8-4.4 細胞轉染 (Cell transfection) 101
§ 8-5 有機合成及光譜資料 103
第九章、參考文獻 138
附錄 146

[1] Fernández-Suárez, M.; Ting, A. Y., Nat. Rev. Mol. Cell Biol. 2008, 9, 929.
[2] Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., Chem. Rev. 2010, 110, 2620-2640.
[3] van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J.; Bart, J.; Low, P. S.; Ntziachristos, V., Nat. Med. 2011, 17, 1315.
[4] Chen, H.; Dong, B.; Tang, Y.; Lin, W., Acc. Chem. Res. 2017, 50, 1410-1422.
[5] Zipfel, W. R.; Williams, R. M.; Christie, R.; Nikitin, A. Y.; Hyman, B. T.; Webb, W. W., Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7075-7080.
[6] Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; Smith, H. O.; Yandell, M.; Evans, C. A.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R., et al., Science 2001, 291, 1304-1351.
[7] Lacerda, S.; Morfin, J. F.; Geraldes, C. F. G. C.; Toth, E., Dalton Trans. 2017, 46, 14461-14474.
[8] He, X.-P.; Zang, Y.; James, T. D.; Li, J.; Chen, G.-R., Chem. Soc. Rev. 2015, 44, 4239-4248.
[9] Miller, Y.; Ma, B.; Nussinov, R., Chem. Rev. 2010, 110, 4820-4838.
[10] Mitchell, J. D.; Borasio, G. D., Lancet 2007, 369, 2031-2041.
[11] Schulz-Schaeffer, W. J., Acta Neuropathol. 2010, 120, 131-143.
[12] Jankovic, J., J. Neurol. Neurosurg. Psychiatry 2008, 79, 368-376.
[13] Alwine, J. C.; Kemp, D. J.; Stark, G. R., Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 5350-5354.
[14] Schmidt, S. D.; Mazzella, M. J.; Nixon, R. A.; Mathews, P. M., Methods Mol. Biol. 2012, 849, 507-527.
[15] Cleveland, D. W.; Fischer, S. G.; Kirschner, M. W.; Laemmli, U. K., J. Biol. Chem. 1977, 252, 1102-6.
[16] Gibson, B. W.; Biemann, K., Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 1956-1960.
[17] Aebersold, R.; Goodlett, D. R., Chem. Rev. 2001, 101, 269-296.
[18] Waggoner, A., Curr. Opin. Chem. Biol. 2006, 10, 62-66.
[19] Goddard, J.-P.; Reymond, J.-L., Curr. Opin. Biotechnol. 2004, 15, 314-322.
[20] Petitjean, A.; Khoury, R. G.; Kyritsakas, N.; Lehn, J.-M., J. Am. Chem. Soc. 2004, 126, 6637-6647.
[21] Pedersen, C. J., J. Am. Chem. Soc. 1967, 89, 2495-2496.
[22] Cram, D. J.; Cram, J. M., Science 1974, 183, 803-809.
[23] Lehn, J.-M., Science 1985, 227, 849-856.
[24] Lehn, J. M.; Sonveaux, E.; Willard, A. K., J. Am. Chem. Soc. 1978, 100, 4914-4916.
[25] Hou, T.-C.; Wu, Y.-Y.; Chiang, P.-Y.; Tan, K.-T., Chem. Sci. 2015, 6, 4643-4649.
[26] Sahoo, H., J. Photochem. Photobiol., C 2011, 12, 20-30.
[27] Matsuo, K.; Nishikawa, Y.; Masuda, M.; Hamachi, I., Angew. Chem. 2017, 130, 667-670.
[28] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.; Brédas, J. L.; Lögdlund, M.; Salaneck, W. R., Nature 1999, 397, 121.
[29] Jenekhe, S. A.; Osaheni, J. A., Science 1994, 265, 765-768.
[30] Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Soc. Rev. 2011, 40, 5361-5388.
[31] Hong, Y.; Feng, C.; Yu, Y.; Liu, J.; Lam, J. W. Y.; Luo, K. Q.; Tang, B. Z., Anal. Chem. 2010, 82, 7035-7043.
[32] Simon, A.; Gariepy, J.; Chironi, G.; Megnien, J.-L.; Levenson, J., J. Hypertens. 2002, 20, 159-169.
[33] Simons, K.; Toomre, D., Nat. Rev. Mol. Cell Biol. 2000, 1, 31.
[34] Lowell, B. B.; Spiegelman, B. M., Nature 2000, 404, 652.
[35] Wilson, W. R.; Hay, M. P., Nat. Rev. Cancer 2011, 11, 393.
[36] Varadi, A.; Rutter, G. A., Endocrinology 2004, 145, 4540-4549.
[37] Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S., Chem. Soc. Rev. 2014, 43, 4563-4601.
[38] Cohen, B. E.; McAnaney, T. B.; Park, E. S.; Jan, Y. N.; Boxer, S. G.; Jan, L. Y., Science 2002, 296, 1700-1703.
[39] Yu‐De, Z.; Po‐Yi, C.; Chia‐Wen, W.; Kui‐Thong, T., Angew. Chem. Int. Ed. 2013, 52, 8124-8128.
[40] Hong, Y.-R.; Lam, C. H.; Tan, K.-T., Bioconjugate Chem. 2017, 28, 2895-2902.
[41] Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S., Org. Lett. 2008, 10, 213-216.
[42] Loving, G. S.; Sainlos, M.; Imperiali, B., Trends Biotechnol. 2010, 28, 73-83.
[43] Liu, T.-K.; Hsieh, P.-Y.; Zhuang, Y.-D.; Hsia, C.-Y.; Huang, C.-L.; Lai, H.-P.; Lin, H.-S.; Chen, I. C.; Hsu, H.-Y.; Tan, K.-T., ACS Chem. Biol. 2014, 9, 2359-2365.
[44] Rumble, C.; Rich, K.; He, G.; Maroncelli, M., J. Phys. Chem. A 2012, 116, 10786-10792.
[45] Allen, B. D.; Benniston, A. C.; Harriman, A.; Rostron, S. A.; Yu, C., Phys. Chem. Chem. Phys. 2005, 7, 3035-3040.
[46] Benniston, A. C.; Copley, G., Phys. Chem. Chem. Phys. 2009, 11, 4124-4131.
[47] Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R., Chem. Phys. Lett. 1973, 19, 315-318.
[48] Haidekker, M. A.; Theodorakis, E. A., J. Biol. Eng. 2010, 4, 11.
[49] Drummen, G., Molecules 2012, 17, 14067.
[50] Sasaki, S.; Drummen, G. P. C.; Konishi, G.-i., J. Mater. Chem. C 2016, 4, 2731-2743.
[51] Gatzogiannis, E.; Chen, Z.; Wei, L.; Wombacher, R.; Kao, Y.-T.; Yefremov, G.; Cornish, V. W.; Min, W., Chem. Commun. 2012, 48, 8694-8696.
[52] Levitt, J. A.; Kuimova, M. K.; Yahioglu, G.; Chung, P.-H.; Suhling, K.; Phillips, D., J. Phys. Chem. C 2009, 113, 11634-11642.
[53] Lopez-Duarte, I.; Vu, T. T.; Izquierdo, M. A.; Bull, J. A.; Kuimova, M. K., Chem. Commun. 2014, 50, 5282-5284.
[54] Wu, Y.-Y.; Yu, W.-T.; Hou, T.-C.; Liu, T.-K.; Huang, C.-L.; Chen, I. C.; Tan, K.-T., Chem. Commun. 2014, 50, 11507-11510.
[55] Han, J.; Burgess, K., Chem. Rev. 2010, 110, 2709-2728.
[56] Gottlieb, R. A.; Nordberg, J.; Skowronski, E.; Babior, B. M., Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 654-658.
[57] A., W. O., Traffic 2003, 4, 57-64.
[58] Walker, N. M.; Simpson, J. E.; Levitt, R. C.; Boyle, K. T.; Clarke, L. L., J. Pharmacol. Exp. Ther. 2006, 317, 275-283.
[59] Chin, E. R.; Allen, D. G., J. Physiol. 2004, 512, 831-840.
[60] Simon, S.; Roy, D.; Schindler, M., Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1128-1132.
[61] Casey, J. R.; Grinstein, S.; Orlowski, J., Nat. Rev. Mol. Cell Biol. 2009, 11, 50.
[62] Iwashita, H.; Torii, S.; Nagahora, N.; Ishiyama, M.; Shioji, K.; Sasamoto, K.; Shimizu, S.; Okuma, K., ACS Chem. Biol. 2017, 12, 2546-2551.
[63] Liu, Y.; Zhou, J.; Wang, L.; Hu, X.; Liu, X.; Liu, M.; Cao, Z.; Shangguan, D.; Tan, W., J. Am. Chem. Soc. 2016, 138, 12368-12374.
[64] Monti, M.; Brandt, L.; Ikomi‐Kumm, J.; Olsson, H., Scand. J. Haematol. 1986, 36, 353-357.
[65] Karnebogen, M.; Singer, D.; Kallerhoff, M.; Ringert, R. H., Thermochim. Acta 1993, 229, 147-155.
[66] Arai, S.; Suzuki, M.; Park, S.-J.; Yoo, J. S.; Wang, L.; Kang, N.-Y.; Ha, H.-H.; Chang, Y.-T., Chem. Commun. 2015, 51, 8044-8047.
[67] Brown, J. M.; Wilson, W. R., Nat. Rev. Cancer 2004, 4, 437.
[68] Garvey, J. F.; Taylor, C. T.; McNicholas, W. T., Eur. Respir. J. 2009, 33, 1195-1205.
[69] Wen, P.; Satoru, T.; Yuji, T.; Satoshi, M.; Fengyi, L.; Shodai, T.; Yu, K.; Toru, K.; Tasuku, U.; Takuya, T.; Toru, N.; Masanobu, U.; Keiji, M.; Tetsuo, N.; Kenjiro, H., Angew. Chem. Int. Ed. 2013, 52, 13028-13032.
[70] Takahashi, S.; Piao, W.; Matsumura, Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kamachi, T.; Kohno, M.; Nagano, T.; Hanaoka, K., J. Am. Chem. Soc. 2012, 134, 19588-19591.
[71] Kobayashi, T.; Urano, Y.; Kamiya, M.; Ueno, T.; Kojima, H.; Nagano, T., J. Am. Chem. Soc. 2007, 129, 6696-6697.
[72] Belov Vladimir , N.; Wurm Christian , A.; Boyarskiy Vadim , P.; Jakobs, S.; Hell Stefan , W., Angew. Chem. Int. Ed. 2010, 49, 3520-3523.
[73] Jun, M. E.; Roy, B.; Ahn, K. H., Chem. Commun. 2011, 47, 7583-7601.
[74] Kamiya, M.; Asanuma, D.; Kuranaga, E.; Takeishi, A.; Sakabe, M.; Miura, M.; Nagano, T.; Urano, Y., J. Am. Chem. Soc. 2011, 133, 12960-12963.
[75] Lavis, L. D.; Raines, R. T., ACS Chem. Biol. 2008, 3, 142-155.
[76] Jiang, N.; Fan, J.; Xu, F.; Peng, X.; Mu, H.; Wang, J.; Xiong, X., Angew. Chem. Int. Ed. 2015, 54, 2510-2514.
[77] MacNevin, C. J.; Gremyachinskiy, D.; Hsu, C.-W.; Li, L.; Rougie, M.; Davis, T. T.; Hahn, K. M., Bioconjugate Chem. 2013, 24, 215-223.
[78] Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A., J. Comput. Chem. 2001, 22, 976-984.
[79] Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V., J. Chem. Phys. 2006, 124, 094107.
[80] Mallory, F. B.; Baker, M. B., J. Org. Chem. 1984, 49, 1323-1326.
[81] Asao, N.; Sato, K.; Menggenbateer; Yamamoto, Y., J. Org. Chem. 2005, 70, 3682-3685.
[82] Ernst, L.; Stolle, R., Magn. Reson. Chem. 1989, 27, 796-797.
[83] Woodward, R. B., J. Am. Chem. Soc. 1941, 63, 1123-1126.
[84] Fieser, L. F.; Fieser, M.; Rajagopalan, S., J. Org. Chem. 1948, 13, 800-806.
[85] Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A., Introduction to spectroscopy. Cengage Learning: 2008.
[86] Liu, R. S.; Asato, A. E., Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 259-263.
[87] Liu, R. S.; Hammond, G. S., Photochem. Photobiol. Sci. 2003, 2, 835-844.
[88] Dugave, C.; Demange, L., Chem. Rev. 2003, 103, 2475-2532.
[89] Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K., Nat. Biotechnol. 2002, 21, 86.
[90] Maurel, D.; Comps-Agrar, L.; Brock, C.; Rives, M.-L.; Bourrier, E.; Ayoub, M. A.; Bazin, H.; Tinel, N.; Durroux, T.; Prézeau, L.; Trinquet, E.; Pin, J.-P., Nat. Methods 2008, 5, 561.
[91] Abo, M.; Minakami, R.; Miyano, K.; Kamiya, M.; Nagano, T.; Urano, Y.; Sumimoto, H., Anal. Chem. 2014, 86, 5983-5990.
[92] Bojkowska, K.; de Sio, F. S.; Barde, I.; Offner, S.; Verp, S.; Heinis, C.; Johnsson, K.; Trono, D., Chem. Biol. 2011, 18, 805-815.
[93] Gong, H.; Kovar, J. L.; Baker, B.; Zhang, A.; Cheung, L.; Draney, D. R.; Corrêa Jr, I. R.; Xu, M.-Q.; Olive, D. M., PloS one 2012, 7, e34003.
[94] Kim, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T., J. Am. Chem. Soc. 2014, 136, 11707-11715.
[95] Chan, J.; Dodani, S. C.; Chang, C. J., Nat. Chem. 2012, 4, 973.
[96] Kubota, R.; Hamachi, I., Chem. Soc. Rev. 2015, 44, 4454-4471.
[97] Qian, X.; Xu, Z., Chem. Soc. Rev. 2015, 44, 4487-4493.
[98] Kim Yun, K.; Lee, J. S.; Bi, X.; Ha, H. H.; Ng Shin, H.; Ahn, Y. h.; Lee, J. J.; Wagner Bridget, K.; Clemons Paul, A.; Chang, Y. T., Angew. Chem. Int. Ed. 2011, 50, 2761-2763.
[99] Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B., Chem. Rev. 2000, 100, 1973-2012.
[100] Ahn, Y.-H.; Lee, J.-S.; Chang, Y.-T., J. Comb. Chem. 2008, 10, 376-380.
[101] Reisch, A.; Klymchenko Andrey, S., Small 2016, 12, 1968-1992.
[102] Søndergaard, R. V.; Christensen, N. M.; Henriksen, J. R.; Kumar, E. K. P.; Almdal, K.; Andresen, T. L., Chem. Rev. 2015, 115, 8344-8378.
[103] Christianson, D. W.; Fierke, C. A., Acc. Chem. Res. 1996, 29, 331-339.
[104] Avvaru, B. S.; Kim, C. U.; Sippel, K. H.; Gruner, S. M.; Agbandje-McKenna, M.; Silverman, D. N.; McKenna, R., Biochemistry 2010, 49, 249-251.
[105] Supuran, C. T., Nat. Rev. Drug Discov. 2008, 7, 168.
[106] Fisher, Z.; Boone, C. D.; Biswas, S. M.; Venkatakrishnan, B.; Aggarwal, M.; Tu, C.; Agbandje-McKenna, M.; Silverman, D.; McKenna, R., Protein Eng. Des. Sel. 2012, 25, 347-355.
[107] Di Fiore, A.; Maresca, A.; Supuran, C. T.; De Simone, G., Chem. Commun. 2012, 48, 8838-8840.
[108] Wu, T.-W.; Lee, F.-H.; Gao, R.-C.; Chew, C. Y.; Tan, K.-T., Anal. Chem. 2016, 88, 7873-7877.
[109] Takaoka, Y.; Nishikawa, Y.; Hashimoto, Y.; Sasaki, K.; Hamachi, I., Chem. Sci. 2015, 6, 3217-3224.
[110] 陳相榮, 可轉換式近紅外光之部分花青染料—蛋白質標記特定胞器與細胞顯影, 國立清華大學碩士論文, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *