帳號:guest(3.145.55.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李俊賢
作者(外文):Lee, Chun-Hsien.
論文名稱(中文):鈀修飾二氧化錫奈米材料的合成與氣體感測研究
論文名稱(外文):Synthesis and Gas Sensing Application of Palladium Decorated Tin Oxide Nanostructures
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Min
口試委員(中文):鄭桂忠
饒達仁
口試委員(外文):Tang, Kea-Tiong
Yao, Da-Jeng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023526
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:119
中文關鍵詞:一氧化碳氣體感測鈀修飾二氧化錫奈米材料
外文關鍵詞:carbon monoxidegas sensingpalladiumtin oxidenanostructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:193
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文以微波輔助非水溶液合成法合成二氧化錫及貴金屬鈀修飾二氧化錫奈米材料,並應用於一氧化碳氣體感測。在合成過程中,我們探討合成溶劑與添加物對合成反應速率與晶面配位的影響,嘗試調控二氧化錫晶粒大小與形貌;此外,添加貴金屬鈀前驅物,微波合成貴金屬鈀修飾二氧化錫奈米材料。進一步以PXRD、SEM/TEM以及ICP-OES分析合成的奈米材料結構、晶粒大小與成分組成比例,以XPS、NMR分析奈米材料元素狀態與副產物組成,探討其合成機制。以苯甲醇作為溶劑與氧源能合成高產率與均勻晶粒大小的二氧化錫奈米材料。而以二次微波合成貴金屬鈀修飾二氧化錫奈米材料對於二氧化錫結構與晶粒大小無影響,隨著鈀含量的提高至2 wt%時會產生較大粒徑鈀。在一氧化碳氣體感測應用研究中我們發現在相同工作溫度下,鈀修飾二氧化錫之反應性明顯優於純二氧化錫奈米材料,且具有較低的工作溫度,以1 wt%鈀修飾二氧化錫具有最佳感測效果。在長時間壽命實驗中,發現鈀修飾二氧化錫奈米材料氣體感測反應性會受環境水氣影響,但在熱處理後能回復氣體感測反應性。
In the thesis, tin oxide and palladium decorated tin oxide nanocrystals were synthesized by microwave-assisted non-aqueous synthetic method and applied in carbon monoxide gas sensing. Different solvents and capping agents were used to control the morphology of the tin oxide nanostructures, and palladium decorated tin oxide nanostructures were prepared with addition of the palladium precursor in the microwave synthetic process. The obtained materials were characterized by PXRD, electron microscopy, ICP-OES, XPS and 13C-NMR for analysis of material structure and reaction mechanism. The analytical results indicated that tin oxide nanostructures were successfully synthesized in benzyl alcohol with high yield and uniform crystal sizes;however, capping agents might affect the synthesis of tin oxide and limit the growth of tin oxide nanostructures. For palladium decorated tin oxide nanostructures, the addition of palladium did not affect the size and morphology of tin oxide nanostructures. As the palladium ratio increased to 2 wt%, palladium with large particle size formed. Results of carbon monoxide gas sensing indicated that palladium decorated tin oxide nanostructures showed better response than tin oxide nanostructures at the same working temperature. In addition, palladium decorated tin oxide nanostructures also showed long-term stability at lower working temperature. For long-term stability test, sensing response of palladium decorated tin oxide decreaseed because of the influence of humidity. After heat treatment, the sensing response could be recovered.
第一章 緒論 1
1-1 危害氣體感測與環境安全 1
1-2 金屬氧化物半導體型氣體感測器 5
1-2-1 半導體型氣體感測器感測原理 6
1-2-2 二氧化錫材料特性 9
1-3 優化氣體感測因素與機制 11
1-3-1 感測材料形貌與顆粒大小 11
1-3-2 附載催化金屬 18
1-4 感測材料合成與製備 20
1-4-1 濺鍍法 20
1-4-2 化學氣相層積法 21
1-4-3 水熱法 22
1-4-4 非水溶液合成法 23
1-4-5 微波合成化學 29
1-5 研究動機 32
第二章 實驗部分 34
2-1 實驗藥品 34
2-2 感測材料合成 34
2-2-1合成二氧化錫奈米材料 35
2-2-1-1 合成二氧化錫奈米材料 35
2-2-1-2 溶劑對二氧化錫奈米材料合成影響 36
2-2-1-3 添加物對二氧化錫奈米材料合成影響 37
2-2-2 貴金屬修飾二氧化錫奈米材料合成 38
2-2-2-1 一次微波合成鈀修飾二氧化錫奈米材料 38
2-2-2-2 二次微波合成鈀修飾二氧化錫奈米材料 39
2-3 一氧化碳氣體感測實驗 41
2-3-1感測晶片製備 41
2-3-1-1 感測晶片規格與感測電路設計 41
2-3-1-2 晶片製備與前處理 43
2-3-2 一氧化碳氣體感測 43
2-3-2-1 感測系統設計 43
2-3-2-2 氣體感測流程 45
2-4 實驗鑑定與儀器 46
2-4-1 X光粉末繞射儀 46
2-4-2 掃描式電子顯微鏡 47
2-4-3 穿透式電子顯微鏡 49
2-4-4 X光光電子能譜 51
2-4-5 氮氣物理吸脫附 52
2-4-6 核磁共振光譜 59
2-4-7 感應耦合電漿放射光譜儀 60
第三章 結果與討論 62
3-1 感測材料合成與鑑定 62
3-1-1 合成二氧化錫奈米材料 62
3-1-1-1 溶劑影響 70
3-1-1-2 添加物影響 72
3-1-2 合成貴金屬修飾二氧化錫奈米材料 77
3-2 一氧化碳氣體感測結果 87
3-2-1 不同工作溫度對一氧化碳感測反應性比較 87
3-2-2 不同感測材料濃度對一氧化碳感測反應性比較 93
3-2-3 不同含量鈀修飾二氧化錫對一氧化碳感測反應性比較 97
3-2-5 感測晶片壽命測試 98
3-2-6 附件 102
第四章 結論 110
第五章 參考文獻 112
[1] 行政院環境保護署室內空氣品質資訊網,室內空氣污染物的主要來源。https://iaq.epa.gov.tw/indoorair/page/News_6_3.aspx (accessed 5/29/2018)
[2] 中華民國勞動部, “勞工作業場所容許暴露標準”, 2018
[3] Occupational Safety and Health Administration, “Chemical Management and Permissible Exposure Limits (PELs)”
[4] 中華民國內政部建築研究所, “各國室內環境品質(含空氣品質)管理機制之比較研究”, 2006
[5] 陳榮泰、葉建南、張金生、許仲毅, 氣體感測元件之新興應用, 工業科技雜誌, 2015, p 347.
[6] Korotcenkov, G., Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications, volume 1: Conventional Approaches, 2014, p 84.
[7] 李孟軒, 摻雜金銀之二氧化錫薄膜對一氧化碳偵測性質之研究, 國立清華大學化學工程所碩士論文, 新竹市 , 2007
[8] Das, S.; Jayaraman, V., “SnO2: A comprehensive review on structures and gas sensors.” Prog. Mater. Sci. 2014, 66, 112-255.
[9] Korotcenkov G., Mater. Sci. Eng. B 2007,139 , 1–23.
[10] Dey, A., “Metal oxides for solid-state gas sensors: What determines our choice?” Mater. Sci. Eng. B-Adv. 2008, 229, 206-217.
[11] Marton, J.P., “Physical Properties of SnO2 Materials.” J. Electrochem. Soc. 1976, 123, 199-205.
[12] Franke, M. E.; Koplin, T. J.; Simon, U., “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matters?” Small 2006, 2, 36-50.
[13] Shieh S. R., Kubo A., Duffy T. S., Prakapenka V. B., “High-pressure phases in SnO2 to 117 GPa” Shen G. Phys. Rev. B 2006, 73, 014105.
[14] Schleife, A.; Varley, J. B.; Fuchs, F.; Rödl, C.; Bechstedt, F.; Rinke, P.; Janotti, A.; Van de Walle, C. G., “Tin dioxide from first principles: Quasiparticle electronic states and optical properties.” Phys. Rev. B 2011, 83, 035116.
[15] Lee J. H., “Gas sensors using hierarchical and hollow oxide nanostructures: Overview.” Sensor. Actuat. B-Chem 2009, 140, 319–336.
[16] Yamazoe N., “New approaches for improving semiconductor gas sensors.” Sensor. Actuat. B 1991, 5, 7-19
[17] Xu C., Tamaki J., Miura N., Yamazoe N., “Grain size effects on gas sensitivity of porous SnO2-based elements.” Sensor. Actuat. B-Chem. 1991, 3, 147–155.
[18] Rothschild A.; Komem Y.,“ The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors.” J. Appl. Phys. 2004, 95, 6374-6380.
[19] Rout, C. S., “H2S sensors based on tungsten oxide nanostructures.” Sensor. Actuat. B. 2008, 128, 488-493.
[20] Kim, H. R.; Choi, K. I.; Lee, J. H.; Akbar, S. A., “Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres.” Sensor. Actuat. B-Chem. 2009, 136, 138-143.
[21] Mourdikoudis, S.; Liz-Marzan, L. M. “Oleylamine in nanoparticle synthesis.” Chem. Mater. 2013, 25, 1465 – 1476.
[22] Xu X.; Zhuang J.; Wang X., “SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties” J. Am. Chem. Soc. 2008, 130, 12527–12535.
[23] Zhang, J.; Liu, X.; Wu, S.; Xu, M.; Guo, X.; Wang, S., “Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor.” J. Mater. Chem. 2010, 20, 6453–6459.
[24] Madler, L.; Sahm, T.; Gurlo, A.; Grunwaldt, J. D.; Bârsan, N.; Weimar, U.; Pratsinis, S. E., “Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles.” J. Nanopart. Res. 2006, 8, 783–796.
[25] Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits M., “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles.” Nano Lett. 2005, 5, 667-673.
[26] http://clearmetalsinc.com/technology/
[27] Smith, D., Thin-Film Deposition: Principles and Practice. Mcgraw-Hill: 1995; p 616.
[28] Bradley, D. C., “Metal alkoxides as precursor for electronic and ceramic materials.” Chem. Rev. 1989, 89, 1317 - 1322.
[29] Niederberger, M., “Nonaqueous sol-gel routes to metal oxide nanoparticles.” Accounts Chem. Res. 2007, 40, 793 - 800.
[30] Niederberger, M.; Garnweitner, G., “Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles.” Chem. Eur. J. 2006, 12, 7282 - 7302.
[31] Bilecka, I.; Djerdj, I.; Niederberger, M., “One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles.” Chem. Commun. 2008, 886 - 888.
[32] Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M., “Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures.” Adv. Mater. 2005, 17, 2509 - 2512.
[33] Ba, J.; Rohlfing, D. F.; Feldhoff, A.; Brezesinski, T.; Djerdj, I.; Wark, M.; Niederberge, M., “Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration.” Chem. Mater. 2006, 18, 2848 - 2854.
[34] Niederberger, M., “Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals.” Int. J. Nanotechnol. 2007, 4, 263 - 281.
[35] Pinna, N.; Neri, G.; Antonietti, M.; Niederberger, M., “Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing.” Angew. Chem. Int. Ed. 2004, 43, 4345 - 4349.
[36] Polleux, J.; Antonietti, M.; Niederberger, M., “Ligand and solvent effects in the nonaqueous synthesis of highly ordered anisotropic tungsten oxide nanostructures.” J. Mater. Chem. 2006, 16, 3969 - 3975.
[37] Pinna, N., Niederberger, M., “Surfactant-free nonaqueous synthesis of metal oxide nanostructures.” Angew. Chem. Int. Ed. 2008, 47, 5292 - 5304.
[38] Hu, M. J., Xu, J. J., Gao, J. F., Yang, S. L., Wong J. S. P.; Li, R. K. Y., “Benzyl alcohol-based synthesis of oxide nanoparticles: the perspective of SN1 reaction mechanism.” Dalton Trans. 2013, 42, 9777 - 9784.
[39] Deshmukh, R.; Niederberger M., “Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents.” Chem. Eur. J. 2017, 23, 8542 - 8570.
[40] Stability of Allylic and Benzylic Cations.
http://www.kshitij-iitjee.com/Stability-of-Allylic-and-Benzylic-Cations
[41] Wang, J. G.; Cao, F. L.; Bian, Z. F.; Leung, M. K. H.; Li, H. X., “Ultrafine single-crystal TiOF2 nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis.” Nanoscale 2014, 6, 897 - 902.
[42] Pinna, N.; Grancharov, S.; Beato, P., Bonville, P., Antonietti, M., Niederberger, M., “Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility.” Chem. Mater. 2005, 17, 3044 - 3049.
[43] Ludi, B.; Süess, M. J.; Werner, I. A.; Niederberger, M., “Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles in benzyl alcohol” Nanoscale 2012, 4, 1982 - 1995.
[44] Zhang, L. Z.; Garnweitner, G.; Djerdj, I.; Antonietti, M.; Niederberger, M., “Generalized nonaqueous sol-gel synthesis of different transition-metal niobate nanocrystals and analysis of the growth mechanism.” Chem. Asian J. 2008, 3, 746 - 752.
[45] Karmaoui, M.; David M.; Tobaldi, D. M.; Skapin, A. S.; Robert C. Pullar, R. C.; Seabra, M. P.; Labrincha, J. A.; Amaral, V. S., “Non-aqueous sol-gel synthesis through a low-temperature solvothermal process of anatase showing visible-light photocatalytic activity.” RSC Adv. 2014, 4, 46762 - 46770.
[46] Stolzenburg, P.; Freytag, A.; Bigall, N. C.; Garnweitner, G., “Fractal growth of ZrO2 nanoparticles induced by synthesis conditions.” CrystEngComm 2016, 18, 8396.-8405.
[47] Zimmermann, M.; Garnweitner, G., “Spontaneous water release inducing nucleation during the nonaqueous synthesis of TiO2 nanoparticles.” CrystEngComm 2012, 14, 8562 - 8568.
[48] Zhang, R.; Santangelo, S.; Fazio, E.; Neri, F.; D’Arienzo, M.; Morazzoni, F.; Zhang, Y. H.; Pinna, N.; Russo, P. A., “Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating.” Chem. Eur. J. 2015, 21, 14901 - 14910.
[49] Pinna, N.; Garnweitner, G.; Antonietti, M.; Niederberger, M., “Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process.” Adv. Mater. 2004, 16, 2196 - 2000.
[50] Bilecka, I.; Niederberger, M., “Microwave chemistry for inorganic nanomaterials synthesis.” Nanoscale 2010, 2, 1358 - 1374.
[51] Kappe, C. O., “Controlled microwave heating in modern organic synthesis.” Angew. Chem. Int. Ed. 2004, 43, 6250 - 6284.
[52] Mirzaei, A.; Neri, G., “Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review.” Sensor. Actuat. B-Chem. 2016, 237, 749 - 755.
[53] Schütz, M. B.; Xiao, L.S.; Lehnen, T.; Thomas Fischer, T.; Mathur, S., “Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides.” Int. Mater. Rev. 2018, 68, 341 - 374.
[54] Hu, X. L.; Gong, J. M.; Zhang, L. Z.; Yu, J. C., “Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing.” Adv. Mater. 2008, 20, 4845 - 4850.
[55] Hu, X. L.; Yu, J. C., “Continuous aspect-ratio tuning and fine shape control of monodisperse alpha-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method.” Adv. Funct. Mater. 2008, 18, 880 - 887.
[56] Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y., “Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process.” J. Am. Chem. Soc. 2007, 129, 6362 - 6363
[57] Hilaire, S.; Luo, L.; Rechberger, F.; Krumeich, F.; Niederberger, M., Z., “Microwave-assisted nonaqueous synthesis of doped ceria nanoparticles assembled into flakes.” Anorg. Allg. Chem. 2014, 640, 733–737.
[58] EasyPrep Plus Vessels-Pressure & Temperature Control Vessel Parts. http://cem.com/en/analytical-products/mars-6/replacement-parts/easyprep-plus-vessels/pressure-temperature-control-vessel-parts (accessed 5/29/2018)
[59] Catalyst characterization-XRD analysis. http://nptel.ac.in/courses/103103026/module2/lec12/1.html (accessed 5/29/2018)
[60] Transmission electron microscopy. https://en.wikipedia.org/wiki/Transmission_electron_microscopy (accessed 5/29/2018)
[61] History of Photoelectron Spectroscopy. https://kartyush.wordpress.com/2012/05/18/history-of-photoelectron-spectroscopy/ (accessed 5/29/2018)
[62] Donohue, M. D.; Aranovich, G. L., “Classification of Gibbs adsorption isotherms.” Adv. Colloid Interfac. 1998, 76-77, 137-152.
[63] Sing, K. S. W.; Everett D. H.; Haul, R. A. W.; Moscou, L.; Pierotti R. A.; Rouquerol, J.; Siemiemiewska, T., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity” Pure App. Chem. 1985, 57, 603 - 619.
[64] Inductived Coupled Plasma Optical Emission Spectrometer.
http://analyticalprofessional.blogspot.tw/2013/06/inductive-coupled-plasma-optical.html (accessed 5/29/2018)
[65] Mutin, P. H.; Vioux, A., “Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure” Chem. Mater. 2009, 21, 582-596.
[66] Jia, F. L.; Zhang, L. Z.; Shang, X. Y.; Yang, Y., “Non-aqueous sol - gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers.” Adv. Mater. 2008, 20, 1050 - 1054.
[67] Staniuk, M.; Hirsch, O.; Kränzlin, N.; Böhlen, R.; van Beek, W.; Abdala, P. M.; Koziej, D., “Puzzling mechanism behind a simple synthesis of cobalt and cobalt oxide nanoparticles: In situ synchrotron X-ray absorption and diffraction studies.” Chem. Mater. 2014, 26, 2086 - 2094.
[68] Kränzlin, N.; Ellenbroek, S.; Dura ́n-Martín, D.; Niederberger, M., “Liquid-phase deposition of freestanding copper foils and supported copper thin films and their structuring into conducting line patterns.” Angew. Chem. Int. Ed. 2012, 51, 4743 - 4746.
[69] Staniuk, M.; Zindel, D.; vanBeek, W.; Hirsch, O.; Kraenzlin, N.; Niederberger, M.; Koziej, D., “Matching the organic and inorganic counterparts during nucleation and growth of copper-based nanoparticles - in situ spectroscopic studies.” Crystengcomm 2015, 17, 6962 - 6971.
[70] Wu, Z. Y.; Zhu, Q. Q.; Shen, C.; Tan, T. W., “Monodispersed Pd nanoparticles supported on Mg − Al mixed metal oxides: a green and controllable synthesis.” ACS Omega 2016, 1, 498 - 506.
[71] Wang, Y., Wu, X. Y.; Li, Y. F.; Zhou, Z. L., “Mesostructured SnO2 as sensing material for gas sensors.” Solid State Electron. 2004, 48, 627-632.
[72] Liu, Y.; Koep, E.; Liu, M. L., “Highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition.” Chem. Mater. 2005, 17, 3997 – 4000.
[73] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, 1992
[74] Kwoka, M.; Ottaviano, L.; Passacantando M.; Santucci, S.; Czempik, G.; Szuber, J., “XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation.” Thin Solid Films 2005, 490, 36 – 42.
[75] Karthik, T. V. K.; Olvera, M. d. l. L.; Maldonado, A.; Pozos, H. G., “CO gas sensing properties of pure and Cu-incorporated SnO2 nanoparticles: a study of Cu-induced modifications.” Sensors 2016, 16, 1283-1297.
[76] Sakai, G.; Baik, N. S.; Miura, N.; Yamazoe, N., “Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness” Sens. Actuators, B 2001, 77, 116-121.
[77] Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K., “Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor.” ACS Appl. Mater. Interfaces 2015, 7, 5863 - 5869.
[78] Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K., “Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere.” ACS Appl. Mater. Interfaces 2015, 7, 15618 - 15625.
[79] Yamazoe, N.; Fuchigami, Jun.; Kishikawa M.; Seiyama T., “Interaction of tin oxide surface with O2, H2O, and H2.” Surf. Sci. 1979, 86, 335-344.
[80] Thornton, E. W.; Harrison, P. G., “Tin oxide surfaces. Part 1. Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide” J. Chem. Sot. Faraday Trans. 1975, 71, 461.
[81] Wicker, S.; Guiltat, M.; Weimar, U.; He ́meryck, A. Nicolae Barsan N., “Ambient humidity influence on CO detection with SnO2 gas sensing materials. a combined DRIFTS/DFT investigation.” J. Phys. Chem. C 2017, 121, 25064−25073.
[82] Hu M.J.; Gao, J.F.; Yang, S. L.; Dong, Y. C.; Wong, J. S. P.; Xu, J. J.; Shan, G. C.; Li, R. K. Y., “E1 reaction-induced synthesis of hydrophilic oxide nanoparticles in a non - hydrophilic solvent.” Nanoscale 2012, 4, 6284 - 6288.
[83] Peters, K.; Zeller, P.; Stefanic, G.; Skoromets, V.; Němec, H.; Kužel, P.; Fattakhova-Rohlfing D., “Water-dispersible small monodisperse electrically conducting antimony doped tin oxide nanoparticles.” Chem. Mater. 2015, 27, 1090 - 1099.
[84] Kim, H. J.; Lee J. H., “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview.” Sensor Actuat. B-Chem. 2014, 192, 607 - 627.
[85] Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang Z., “Direct CO oxidation by lattice oxygen on the SnO2(110) surface: a DFT study.” Phys. Chem. Chem. Phys. 2014, 16, 12488 - 12494.
[86] 蕭育仁、林育德、李彥希、薛丁仁, 環境室內空氣品質監測用電子鼻:微型氣體感測器.
[87] Hübert, T.; Boon-Brett, L.; Black, G.; Banach, G., “Hydrogen sensors – A review” Sensor Actuat. B-Chem. 2011, 157, 329 - 352.
[88] Arafat M. M.; Dinan B.; Akbar S. A.; Haseeb A. S. M. A., “Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review” Sensors 2012, 12, 7207-7258.
[89] Wetchakuna, K.; Samerjaia, T.; Tamaekonga, N.; Liewhirana, C.; Siriwonga, C.; Kruefua, V.; Wisitsoraatb, A.; Tuantranontb, A.; Phanichphant, S., “Semiconducting metal oxides as sensors for environmentally hazardous gases” Sensor Actuat. B-Chem. 2011, 160, 580 - 591.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *