|
[1] 行政院環境保護署室內空氣品質資訊網,室內空氣污染物的主要來源。https://iaq.epa.gov.tw/indoorair/page/News_6_3.aspx (accessed 5/29/2018) [2] 中華民國勞動部, “勞工作業場所容許暴露標準”, 2018 [3] Occupational Safety and Health Administration, “Chemical Management and Permissible Exposure Limits (PELs)” [4] 中華民國內政部建築研究所, “各國室內環境品質(含空氣品質)管理機制之比較研究”, 2006 [5] 陳榮泰、葉建南、張金生、許仲毅, 氣體感測元件之新興應用, 工業科技雜誌, 2015, p 347. [6] Korotcenkov, G., Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications, volume 1: Conventional Approaches, 2014, p 84. [7] 李孟軒, 摻雜金銀之二氧化錫薄膜對一氧化碳偵測性質之研究, 國立清華大學化學工程所碩士論文, 新竹市 , 2007 [8] Das, S.; Jayaraman, V., “SnO2: A comprehensive review on structures and gas sensors.” Prog. Mater. Sci. 2014, 66, 112-255. [9] Korotcenkov G., Mater. Sci. Eng. B 2007,139 , 1–23. [10] Dey, A., “Metal oxides for solid-state gas sensors: What determines our choice?” Mater. Sci. Eng. B-Adv. 2008, 229, 206-217. [11] Marton, J.P., “Physical Properties of SnO2 Materials.” J. Electrochem. Soc. 1976, 123, 199-205. [12] Franke, M. E.; Koplin, T. J.; Simon, U., “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matters?” Small 2006, 2, 36-50. [13] Shieh S. R., Kubo A., Duffy T. S., Prakapenka V. B., “High-pressure phases in SnO2 to 117 GPa” Shen G. Phys. Rev. B 2006, 73, 014105. [14] Schleife, A.; Varley, J. B.; Fuchs, F.; Rödl, C.; Bechstedt, F.; Rinke, P.; Janotti, A.; Van de Walle, C. G., “Tin dioxide from first principles: Quasiparticle electronic states and optical properties.” Phys. Rev. B 2011, 83, 035116. [15] Lee J. H., “Gas sensors using hierarchical and hollow oxide nanostructures: Overview.” Sensor. Actuat. B-Chem 2009, 140, 319–336. [16] Yamazoe N., “New approaches for improving semiconductor gas sensors.” Sensor. Actuat. B 1991, 5, 7-19 [17] Xu C., Tamaki J., Miura N., Yamazoe N., “Grain size effects on gas sensitivity of porous SnO2-based elements.” Sensor. Actuat. B-Chem. 1991, 3, 147–155. [18] Rothschild A.; Komem Y.,“ The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors.” J. Appl. Phys. 2004, 95, 6374-6380. [19] Rout, C. S., “H2S sensors based on tungsten oxide nanostructures.” Sensor. Actuat. B. 2008, 128, 488-493. [20] Kim, H. R.; Choi, K. I.; Lee, J. H.; Akbar, S. A., “Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres.” Sensor. Actuat. B-Chem. 2009, 136, 138-143. [21] Mourdikoudis, S.; Liz-Marzan, L. M. “Oleylamine in nanoparticle synthesis.” Chem. Mater. 2013, 25, 1465 – 1476. [22] Xu X.; Zhuang J.; Wang X., “SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties” J. Am. Chem. Soc. 2008, 130, 12527–12535. [23] Zhang, J.; Liu, X.; Wu, S.; Xu, M.; Guo, X.; Wang, S., “Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor.” J. Mater. Chem. 2010, 20, 6453–6459. [24] Madler, L.; Sahm, T.; Gurlo, A.; Grunwaldt, J. D.; Bârsan, N.; Weimar, U.; Pratsinis, S. E., “Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles.” J. Nanopart. Res. 2006, 8, 783–796. [25] Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits M., “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles.” Nano Lett. 2005, 5, 667-673. [26] http://clearmetalsinc.com/technology/ [27] Smith, D., Thin-Film Deposition: Principles and Practice. Mcgraw-Hill: 1995; p 616. [28] Bradley, D. C., “Metal alkoxides as precursor for electronic and ceramic materials.” Chem. Rev. 1989, 89, 1317 - 1322. [29] Niederberger, M., “Nonaqueous sol-gel routes to metal oxide nanoparticles.” Accounts Chem. Res. 2007, 40, 793 - 800. [30] Niederberger, M.; Garnweitner, G., “Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles.” Chem. Eur. J. 2006, 12, 7282 - 7302. [31] Bilecka, I.; Djerdj, I.; Niederberger, M., “One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles.” Chem. Commun. 2008, 886 - 888. [32] Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M., “Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures.” Adv. Mater. 2005, 17, 2509 - 2512. [33] Ba, J.; Rohlfing, D. F.; Feldhoff, A.; Brezesinski, T.; Djerdj, I.; Wark, M.; Niederberge, M., “Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration.” Chem. Mater. 2006, 18, 2848 - 2854. [34] Niederberger, M., “Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals.” Int. J. Nanotechnol. 2007, 4, 263 - 281. [35] Pinna, N.; Neri, G.; Antonietti, M.; Niederberger, M., “Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing.” Angew. Chem. Int. Ed. 2004, 43, 4345 - 4349. [36] Polleux, J.; Antonietti, M.; Niederberger, M., “Ligand and solvent effects in the nonaqueous synthesis of highly ordered anisotropic tungsten oxide nanostructures.” J. Mater. Chem. 2006, 16, 3969 - 3975. [37] Pinna, N., Niederberger, M., “Surfactant-free nonaqueous synthesis of metal oxide nanostructures.” Angew. Chem. Int. Ed. 2008, 47, 5292 - 5304. [38] Hu, M. J., Xu, J. J., Gao, J. F., Yang, S. L., Wong J. S. P.; Li, R. K. Y., “Benzyl alcohol-based synthesis of oxide nanoparticles: the perspective of SN1 reaction mechanism.” Dalton Trans. 2013, 42, 9777 - 9784. [39] Deshmukh, R.; Niederberger M., “Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents.” Chem. Eur. J. 2017, 23, 8542 - 8570. [40] Stability of Allylic and Benzylic Cations. http://www.kshitij-iitjee.com/Stability-of-Allylic-and-Benzylic-Cations [41] Wang, J. G.; Cao, F. L.; Bian, Z. F.; Leung, M. K. H.; Li, H. X., “Ultrafine single-crystal TiOF2 nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis.” Nanoscale 2014, 6, 897 - 902. [42] Pinna, N.; Grancharov, S.; Beato, P., Bonville, P., Antonietti, M., Niederberger, M., “Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility.” Chem. Mater. 2005, 17, 3044 - 3049. [43] Ludi, B.; Süess, M. J.; Werner, I. A.; Niederberger, M., “Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles in benzyl alcohol” Nanoscale 2012, 4, 1982 - 1995. [44] Zhang, L. Z.; Garnweitner, G.; Djerdj, I.; Antonietti, M.; Niederberger, M., “Generalized nonaqueous sol-gel synthesis of different transition-metal niobate nanocrystals and analysis of the growth mechanism.” Chem. Asian J. 2008, 3, 746 - 752. [45] Karmaoui, M.; David M.; Tobaldi, D. M.; Skapin, A. S.; Robert C. Pullar, R. C.; Seabra, M. P.; Labrincha, J. A.; Amaral, V. S., “Non-aqueous sol-gel synthesis through a low-temperature solvothermal process of anatase showing visible-light photocatalytic activity.” RSC Adv. 2014, 4, 46762 - 46770. [46] Stolzenburg, P.; Freytag, A.; Bigall, N. C.; Garnweitner, G., “Fractal growth of ZrO2 nanoparticles induced by synthesis conditions.” CrystEngComm 2016, 18, 8396.-8405. [47] Zimmermann, M.; Garnweitner, G., “Spontaneous water release inducing nucleation during the nonaqueous synthesis of TiO2 nanoparticles.” CrystEngComm 2012, 14, 8562 - 8568. [48] Zhang, R.; Santangelo, S.; Fazio, E.; Neri, F.; D’Arienzo, M.; Morazzoni, F.; Zhang, Y. H.; Pinna, N.; Russo, P. A., “Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating.” Chem. Eur. J. 2015, 21, 14901 - 14910. [49] Pinna, N.; Garnweitner, G.; Antonietti, M.; Niederberger, M., “Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process.” Adv. Mater. 2004, 16, 2196 - 2000. [50] Bilecka, I.; Niederberger, M., “Microwave chemistry for inorganic nanomaterials synthesis.” Nanoscale 2010, 2, 1358 - 1374. [51] Kappe, C. O., “Controlled microwave heating in modern organic synthesis.” Angew. Chem. Int. Ed. 2004, 43, 6250 - 6284. [52] Mirzaei, A.; Neri, G., “Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review.” Sensor. Actuat. B-Chem. 2016, 237, 749 - 755. [53] Schütz, M. B.; Xiao, L.S.; Lehnen, T.; Thomas Fischer, T.; Mathur, S., “Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides.” Int. Mater. Rev. 2018, 68, 341 - 374. [54] Hu, X. L.; Gong, J. M.; Zhang, L. Z.; Yu, J. C., “Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing.” Adv. Mater. 2008, 20, 4845 - 4850. [55] Hu, X. L.; Yu, J. C., “Continuous aspect-ratio tuning and fine shape control of monodisperse alpha-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method.” Adv. Funct. Mater. 2008, 18, 880 - 887. [56] Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y., “Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process.” J. Am. Chem. Soc. 2007, 129, 6362 - 6363 [57] Hilaire, S.; Luo, L.; Rechberger, F.; Krumeich, F.; Niederberger, M., Z., “Microwave-assisted nonaqueous synthesis of doped ceria nanoparticles assembled into flakes.” Anorg. Allg. Chem. 2014, 640, 733–737. [58] EasyPrep Plus Vessels-Pressure & Temperature Control Vessel Parts. http://cem.com/en/analytical-products/mars-6/replacement-parts/easyprep-plus-vessels/pressure-temperature-control-vessel-parts (accessed 5/29/2018) [59] Catalyst characterization-XRD analysis. http://nptel.ac.in/courses/103103026/module2/lec12/1.html (accessed 5/29/2018) [60] Transmission electron microscopy. https://en.wikipedia.org/wiki/Transmission_electron_microscopy (accessed 5/29/2018) [61] History of Photoelectron Spectroscopy. https://kartyush.wordpress.com/2012/05/18/history-of-photoelectron-spectroscopy/ (accessed 5/29/2018) [62] Donohue, M. D.; Aranovich, G. L., “Classification of Gibbs adsorption isotherms.” Adv. Colloid Interfac. 1998, 76-77, 137-152. [63] Sing, K. S. W.; Everett D. H.; Haul, R. A. W.; Moscou, L.; Pierotti R. A.; Rouquerol, J.; Siemiemiewska, T., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity” Pure App. Chem. 1985, 57, 603 - 619. [64] Inductived Coupled Plasma Optical Emission Spectrometer. http://analyticalprofessional.blogspot.tw/2013/06/inductive-coupled-plasma-optical.html (accessed 5/29/2018) [65] Mutin, P. H.; Vioux, A., “Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure” Chem. Mater. 2009, 21, 582-596. [66] Jia, F. L.; Zhang, L. Z.; Shang, X. Y.; Yang, Y., “Non-aqueous sol - gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers.” Adv. Mater. 2008, 20, 1050 - 1054. [67] Staniuk, M.; Hirsch, O.; Kränzlin, N.; Böhlen, R.; van Beek, W.; Abdala, P. M.; Koziej, D., “Puzzling mechanism behind a simple synthesis of cobalt and cobalt oxide nanoparticles: In situ synchrotron X-ray absorption and diffraction studies.” Chem. Mater. 2014, 26, 2086 - 2094. [68] Kränzlin, N.; Ellenbroek, S.; Dura ́n-Martín, D.; Niederberger, M., “Liquid-phase deposition of freestanding copper foils and supported copper thin films and their structuring into conducting line patterns.” Angew. Chem. Int. Ed. 2012, 51, 4743 - 4746. [69] Staniuk, M.; Zindel, D.; vanBeek, W.; Hirsch, O.; Kraenzlin, N.; Niederberger, M.; Koziej, D., “Matching the organic and inorganic counterparts during nucleation and growth of copper-based nanoparticles - in situ spectroscopic studies.” Crystengcomm 2015, 17, 6962 - 6971. [70] Wu, Z. Y.; Zhu, Q. Q.; Shen, C.; Tan, T. W., “Monodispersed Pd nanoparticles supported on Mg − Al mixed metal oxides: a green and controllable synthesis.” ACS Omega 2016, 1, 498 - 506. [71] Wang, Y., Wu, X. Y.; Li, Y. F.; Zhou, Z. L., “Mesostructured SnO2 as sensing material for gas sensors.” Solid State Electron. 2004, 48, 627-632. [72] Liu, Y.; Koep, E.; Liu, M. L., “Highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition.” Chem. Mater. 2005, 17, 3997 – 4000. [73] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, 1992 [74] Kwoka, M.; Ottaviano, L.; Passacantando M.; Santucci, S.; Czempik, G.; Szuber, J., “XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation.” Thin Solid Films 2005, 490, 36 – 42. [75] Karthik, T. V. K.; Olvera, M. d. l. L.; Maldonado, A.; Pozos, H. G., “CO gas sensing properties of pure and Cu-incorporated SnO2 nanoparticles: a study of Cu-induced modifications.” Sensors 2016, 16, 1283-1297. [76] Sakai, G.; Baik, N. S.; Miura, N.; Yamazoe, N., “Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness” Sens. Actuators, B 2001, 77, 116-121. [77] Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K., “Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor.” ACS Appl. Mater. Interfaces 2015, 7, 5863 - 5869. [78] Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K., “Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere.” ACS Appl. Mater. Interfaces 2015, 7, 15618 - 15625. [79] Yamazoe, N.; Fuchigami, Jun.; Kishikawa M.; Seiyama T., “Interaction of tin oxide surface with O2, H2O, and H2.” Surf. Sci. 1979, 86, 335-344. [80] Thornton, E. W.; Harrison, P. G., “Tin oxide surfaces. Part 1. Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide” J. Chem. Sot. Faraday Trans. 1975, 71, 461. [81] Wicker, S.; Guiltat, M.; Weimar, U.; He ́meryck, A. Nicolae Barsan N., “Ambient humidity influence on CO detection with SnO2 gas sensing materials. a combined DRIFTS/DFT investigation.” J. Phys. Chem. C 2017, 121, 25064−25073. [82] Hu M.J.; Gao, J.F.; Yang, S. L.; Dong, Y. C.; Wong, J. S. P.; Xu, J. J.; Shan, G. C.; Li, R. K. Y., “E1 reaction-induced synthesis of hydrophilic oxide nanoparticles in a non - hydrophilic solvent.” Nanoscale 2012, 4, 6284 - 6288. [83] Peters, K.; Zeller, P.; Stefanic, G.; Skoromets, V.; Němec, H.; Kužel, P.; Fattakhova-Rohlfing D., “Water-dispersible small monodisperse electrically conducting antimony doped tin oxide nanoparticles.” Chem. Mater. 2015, 27, 1090 - 1099. [84] Kim, H. J.; Lee J. H., “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview.” Sensor Actuat. B-Chem. 2014, 192, 607 - 627. [85] Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang Z., “Direct CO oxidation by lattice oxygen on the SnO2(110) surface: a DFT study.” Phys. Chem. Chem. Phys. 2014, 16, 12488 - 12494. [86] 蕭育仁、林育德、李彥希、薛丁仁, 環境室內空氣品質監測用電子鼻:微型氣體感測器. [87] Hübert, T.; Boon-Brett, L.; Black, G.; Banach, G., “Hydrogen sensors – A review” Sensor Actuat. B-Chem. 2011, 157, 329 - 352. [88] Arafat M. M.; Dinan B.; Akbar S. A.; Haseeb A. S. M. A., “Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review” Sensors 2012, 12, 7207-7258. [89] Wetchakuna, K.; Samerjaia, T.; Tamaekonga, N.; Liewhirana, C.; Siriwonga, C.; Kruefua, V.; Wisitsoraatb, A.; Tuantranontb, A.; Phanichphant, S., “Semiconducting metal oxides as sensors for environmentally hazardous gases” Sensor Actuat. B-Chem. 2011, 160, 580 - 591.
|