|
1. Hoffman, W.; Lakkis, F. G.; Chalasani, G. B Cells, Antibodies, and More. Clin. J. Am. Soc. Nephrol. 2016, 11, 137-154. 2. Reth, M. Matching cellular dimensions with molecular sizes. Nat. Immunol. 2013, 14, 765-767. 3. Kurien, B. T.; Scofield, R. H. Western blotting. Methods 2006, 38, 283-293. 4. Weiner, L. M.; Surana, R.; Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317-327. 5. Sung, H.-J.; Ahn, J.-M.; Yoon, Y.-H.; Rhim, T.-Y.; Park, C.-S.; Park, J.-Y.; Lee, S.-Y.; Kim, J.-W.; Cho, J.-Y. Identification and Validation of SAA as a Potential Lung Cancer Biomarker and its Involvement in Metastatic Pathogenesis of Lung Cancer. J. Proteome Res. 2011, 10, 1383-1395. 6. Arora, S.; Saxena, V.; Ayyar, B. V. Affinity chromatography: A versatile technique for antibody purification. Methods 2017, 116, 84-94. 7. Janeway, C. A. T., P.; Walport, M.; Shlomchik, M.J. Immunobiology: Tge Immune System in Health and Disease. 5th edition. (Grarland Science, New York, 2001). 8. Al-Lazikani, B.; Lesk, A. M.; Chothia, C. Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 1997, 273, 927-948. 9. Nimmerjahn, F.; Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8, 34-47. 10. Dunkelberger, J. R.; Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34-50. 11. Lin, P.-C.; Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Wang, K.-Y.; Chen, Y.-J.; Lin, C.-C. Ethylene Glycol-Protected Magnetic Nanoparticles for a Multiplexed Immunoassay in Human Plasma. Small 2006, 2, 485-489. 12. Lee, H.; Sun, E.; Ham, D.; Weissleder, R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 2008, 14, 869-874. 13. Kagawa, T.; Matsumi, Y.; Aono, H.; Ohara, T.; Tazawa, H.; Shigeyasu, K.; Yano, S.; Takeda, S.; Komatsu, Y.; Hoffman, R. M.; Fujiwara, T.; Kishimoto, H. Immuno-hyperthermia effected by antibody-conjugated nanoparticles selectively targets and eradicates individual cancer cells. Cell Cycle 2021, 20, 1221-1230. 14. Cho, M. H.; Lee, E. J.; Son, M.; Lee, J.-H.; Yoo, D.; Kim, J.-w.; Park, S. W.; Shin, J.-S.; Cheon, J. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 2012, 11, 1038-1043. 15. Liu, S.; Chen, X.; Bao, L.; Liu, T.; Yuan, P.; Yang, X.; Qiu, X.; Gooding, J. J.; Bai, Y.; Xiao, J.; Pu, F.; Jin, Y. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat. Biomed. Eng. 2020, 4, 1063-1075. 16. Yang, L.; Guo, S.; Li, Y.; Zhou, S.; Tao, S. Protein microarrays for systems biology. Acta Biochim. Biophys. 2011, 43, 161-171. 17. He, H.-J.; Zong, Y.; Bernier, M.; Wang, L. Sensing the insulin signaling pathway with an antibody array. Proteomics Clin. Appl. 2009, 3, 1440-1450. 18. Rucker, V. C.; Havenstrite, K. L.; Herr, A. E. Antibody microarrays for native toxin detection. Anal. Biochem. 2005, 339, 262-270. 19. Chen, Z.; Dodig-Crnković, T.; Schwenk, J. M.; Tao, S.-C. Current applications of antibody microarrays. Clin. Proteomics 2018, 15, 7. 20. Trilling, A. K.; Beekwilder, J.; Zuilhof, H. Antibody orientation on biosensor surfaces: a minireview. Analyst 2013, 138, 1619-1627. 21. Vashist, S. K.; Marion Schneider, E.; Lam, E.; Hrapovic, S.; Luong, J. H. T. One-step antibody immobilization-based rapid and highly-sensitive sandwich ELISA procedure for potential in vitro diagnostics. Sci. Rep. 2014, 4, 4407. 22. Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; Zhang, Y.; Wang, J.; Huang, B.; Lin, Y.; Yang, J.; Cai, W.; Wang, X.; Cheng, J.; Chen, Z.; Sun, K.; Pan, W.; Zhan, Z.; Chen, L.; Ye, F. Development and application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020, 92, 1518-1524. 23. Choi, J.-S.; Jang, W. S.; Park, J.-S. Comparison of adsorption and conjugation of Herceptin on poly(lactic-co-glycolic acid) nanoparticles-Effect on cell internalization in breast cancer cells. Mater. Sci. Eng. C 2018, 92, 496-507. 24. Yoon, T.-J.; Yu, K. N.; Kim, E.; Kim, J. S.; Kim, B. G.; Yun, S.-H.; Sohn, B.-H.; Cho, M.-H.; Lee, J.-K.; Park, S. B. Specific Targeting, Cell Sorting, and Bioimaging with Smart Magnetic Silica Core–Shell Nanomaterials. Small 2006, 2, 209-215. 25. Szijj, P. A.; Bahou, C.; Chudasama, V. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. Drug Discov. Today. Technol. 2018, 30, 27-34. 26. Alonso, R.; Jiménez-Meneses, P.; García-Rupérez, J.; Bañuls, M.-J.; Maquieira, Á. Thiol–ene click chemistry towards easy microarraying of half-antibodies. ChemComm. 2018, 54, 6144-6147. 27. Barrientos, G.; Habazin, S.; Novokmet, M.; Almousa, Y.; Lauc, G.; Conrad, M. L. Changes in subclass-specific IgG Fc glycosylation associated with the postnatal maturation of the murine immune system. Sci. Rep. 2020, 10, 15243. 28. Hoffman, W. L.; O'Shannessy, D. J. Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports. J. Immunol. Methods 1988, 112, 113-120. 29. Prieto-Simón, B.; Saint, C.; Voelcker, N. H. Electrochemical Biosensors Featuring Oriented Antibody Immobilization via Electrografted and Self-Assembled Hydrazide Chemistry. Anal. Chem. 2014, 86, 1422-1429. 30. Yuan, Y.; Yin, M.; Qian, J.; Liu, C. Site-directed immobilization of antibodies onto blood contacting grafts for enhanced endothelial cell adhesion and proliferation. Soft Matter 2011, 7, 7207-7216. 31. Peluso, P.; Wilson, D. S.; Do, D.; Tran, H.; Venkatasubbaiah, M.; Quincy, D.; Heidecker, B.; Poindexter, K.; Tolani, N.; Phelan, M.; Witte, K.; Jung, L. S.; Wagner, P.; Nock, S. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 2003, 312, 113-124. 32. Kim, G.; Weiss, S. J.; Levine, R. L. Methionine oxidation and reduction in proteins. Biochim. Biophys. Acta 2014, 1840, 901-905. 33. Duval, F.; van Beek, T. A.; Zuilhof, H. Key steps towards the oriented immobilization of antibodies using boronic acids. Analyst 2015, 140, 6467-6472. 34. Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R.; Chen, Y.-J.; Lin, C.-C. Fabrication of Oriented Antibody-Conjugated Magnetic Nanoprobes and Their Immunoaffinity Application. Anal. Chem. 2009, 81, 8774-8782. 35. Adak, A. K.; Li, B.-Y.; Huang, L.-D.; Lin, T.-W.; Chang, T.-C.; Hwang, K. C.; Lin, C.-C. Fabrication of Antibody Microarrays by Light-Induced Covalent and Oriented Immobilization. ACS Appl. Mater. Interfaces 2014, 6, 10452-10460. 36. Fan, C.-Y.; Huo, Y.-R.; Adak, A. K.; Waniwan, J. T.; dela Rosa, M. A. C.; Low, P. Y.; Angata, T.; Hwang, K.-C.; Chen, Y.-J.; Lin, C.-C. Boronate affinity-based photoactivatable magnetic nanoparticles for the oriented and irreversible conjugation of Fc-fused lectins and antibodies. Chem. Sci. 2019, 10, 8600-8609. 37. Adak, A. K.; Huang, K.-T.; Li, P.-J.; Fan, C.-Y.; Lin, P.-C.; Hwang, K.-C.; Lin, C.-C. Regioselective SN2-Type Reaction for the Oriented and Irreversible Immobilization of Antibodies to a Glass Surface Assisted by Boronate Formation. ACS Appl. Bio Mater. 2020, 3, 6756-6767. 38. Fishman, J. B.; Berg, E. A. Protein A and Protein G Purification of Antibodies. Cold Spring Harb. Protoc. 2019, 2019, pdb.prot099143. 39. Moser, J. J.; Chan, E. K. L.; Fritzler, M. J. Optimization of immunoprecipitation-western blot analysis in detecting GW182-associated components of GW/P bodies. Nat. Protoc. 2009, 4, 674-685. 40. Gao, S.; Guisán, J. M.; Rocha-Martin, J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal. Chim. Acta 2022, 1189, 338907. 41. Jung, Y.; Lee, J. M.; Kim, J.-w.; Yoon, J.; Cho, H.; Chung, B. H. Photoactivable Antibody Binding Protein: Site-Selective and Covalent Coupling of Antibody. Anal. Chem. 2009, 81, 936-942. 42. Jung, Y.; Kang, H. J.; Lee, J. M.; Jung, S. O.; Yun, W. S.; Chung, S. J.; Chung, B. H. Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal. Biochem. 2008, 374, 99-105. 43. Choe, W.; Durgannavar, T. A.; Chung, S. J. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides. Materials (Basel) 2016, 9, 994. 44. Ericsson, E. M.; Enander, K.; Bui, L.; Lundström, I.; Konradsson, P.; Liedberg, B. Site-Specific and Covalent Attachment of His-Tagged Proteins by Chelation Assisted Photoimmobilization: A Strategy for Microarraying of Protein Ligands. Langmuir 2013, 29, 11687-11694. 45. Chari, R. V. J.; Miller, M. L.; Widdison, W. C. Antibody-Drug Conjugates: An Emerging Concept in Cancer Therapy. Angew. Chem. Int. Ed. 2014, 53, 3796-3827. 46. Walsh, S. J.; Bargh, J. D.; Dannheim, F. M.; Hanby, A. R.; Seki, H.; Counsell, A. J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; Isidro-Llobet, A.; Parker, J. S.; Carroll, J. S.; Spring, D. R. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 2021, 50, 1305-1353. 47. Lucas, A. T.; Price, L. S. L.; Schorzman, A. N.; Storrie, M.; Piscitelli, J. A.; Razo, J.; Zamboni, W. C. Factors Affecting the Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2018, 7, 10. 48. Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 2017, 16, 315-337. 49. Qiu, D.; Huang, Y.; Chennamsetty, N.; Miller, S. A.; Hay, M. Characterizing and understanding the formation of cysteine conjugates and other by-products in a random, lysine-linked antibody drug conjugate. mAbs 2021, 13, 1974150. 50. Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; Lu, Y.; Meng, Y. G.; Ng, C.; Yang, J.; Lee, C. C. Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S. D.; Lee Wong, W.; Lowman, H. B.; Vandlen, R.; Sliwkowski, M. X.; Scheller, R. H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26, 925-932. 51. Matos, M. J.; Oliveira, B. L.; Martínez-Sáez, N.; Guerreiro, A.; Cal, P. M. S. D.; Bertoldo, J.; Maneiro, M.; Perkins, E.; Howard, J.; Deery, M. J.;Chalker, J. M.; Corzana, F.; Jiménez-Osés, G.; Bernardes, G. J. L., Chemo- and Regioselective Lysine Modification on Native Proteins. J. Am. Chem. Soc. 2018, 140, 4004-4017. 52. Adusumalli, S. R.;Rawale, D. G.; Thakur, K.; Purushottam, L.; Reddy, N. C.; Kalra, N.; Shukla, S.; Rai, V. Chemoselective and Site-Selective Lysine-Directed Lysine Modification Enables Single-Site Labeling of Native Proteins. Angew. Chem. Int. Ed. 2020, 59, 10332-10336. 53. Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 2015, 526, 687-691. 54. Kasper, M.-A.; Glanz, M.; Stengl, A.; Penkert, M.; Klenk, S.; Sauer, T.; Schumacher, D.; Helma, J.; Krause, E.; Cardoso, M. C.; Leonhardt, H.; Hackenberger, C. P. R. Cysteine-Selective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angew. Chem. Int. Ed. 2019, 58, 11625-11630. 55. Kasper, M.-A.; Glanz, M.; Oder, A.; Schmieder, P.; von Kries, J. P.; Hackenberger, C. P. R. Vinylphosphonites for Staudinger-induced chemoselective peptide cyclization and functionalization. Chem. Sci. 2019, 10, 6322-6329. 56. Tessier, R.; Nandi, R. K.; Dwyer, B. G.; Abegg, D.; Sornay, C.; Ceballos, J.; Erb, S.; Cianférani, S.; Wagner, A.; Chaubet, G.; Adibekian, A.; Waser, J. Ethynylation of Cysteine Residues: From Peptides to Proteins in Vitro and in Living Cells. Angew. Chem. Int. Ed. 2020, 59, 10961-10970. 57. Badescu, G.; Bryant, P.; Bird, M.; Henseleit, K.; Swierkosz, J.; Parekh, V.; Tommasi, R.; Pawlisz, E.; Jurlewicz, K.; Farys, M.; Camper, N.; Sheng, X.; Fisher, M.; Grygorash, R.; Kyle, A.; Abhilash, A.; Frigerio, M.; Edwards, J.; Godwin, A. Bridging Disulfides for Stable and Defined Antibody Drug Conjugates. Bioconjug. Chem. 2014, 25, 1124-1136. 58. Behrens, C. R.; Ha, E. H.; Chinn, L. L.; Bowers, S.; Probst, G.; Fitch-Bruhns, M.; Monteon, J.; Valdiosera, A.; Bermudez, A.; Liao-Chan, S.; Wong, T.; Melnick, J.; Theunissen, J.-W.; Flory, M. R.; Houser, D.; Venstrom, K.; Levashova, Z.;Sauer, P.; Migone, T.-S.; van der Horst, E. H.; Halcomb, R. L.; Jackson, D. Y. Antibody–Drug Conjugates (ADCs) Derived from Interchain Cysteine Cross-Linking Demonstrate Improved Homogeneity and Other Pharmacological Properties over Conventional Heterogeneous ADCs. Mol. Pharm. 2015, 12, 3986-3998. 59. Walsh, S. J.; Omarjee, S.; Galloway, W. R. J. D.; Kwan, T. T. L.; Sore, H. F.; Parker, J. S.; Hyvönen, M.; Carroll, J. S.; Spring, D. R. A general approach for the site-selective modification of native proteins, enabling the generation of stable and functional antibody–drug conjugates. Chem. Sci. 2019, 10, 694-700. 60. Ban, H.; Nagano, M.; Gavrilyuk, J.; Hakamata, W.; Inokuma, T.; Barbas, C. F. Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction. Bioconjug. Chem. 2013, 24, 520-532. 61. Dovgan, I.; Erb, S.; Hessmann, S.; Ursuegui, S.; Michel, C.; Muller, C.; Chaubet, G.; Cianférani, S.; Wagner, A. Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Org. Biomol. Chem. 2018, 16, 1305-1311. 62. Laguzza, B. C.; Nichols, C. L.; Briggs, S. L.; Cullinan, G. J.; Johnson, D. A.; Starling, J. J.; Baker, A. L.; Bumol, T. F.; Corvalan, J. R. F. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J. Med. Chem. 1989, 32, 548-555. 63. Zuberbühler, K.; Casi, G.; Bernardes, G. J. L.; Neri, D. Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format. ChemComm. 2012, 48, 7100-7102. 64. Solomon, B.; Koppel, R.; Schwartz, F.; Fleminger, G. Enzymic oxidation of monoclonal antibodies by soluble and immobilized bifunctional enzyme complexes. J. Chromatogr. A. 1990, 510, 321-329. 65. Li, X.; Fang, T.; Boons, G.-J. Preparation of Well-Defined Antibody–Drug Conjugates through Glycan Remodeling and Strain-Promoted Azide–Alkyne Cycloadditions. Angew. Chem. Int. Ed. 2014, 53, 7179-7182. 66. Lin, C.-W.; Tsai, M.-H.; Li, S.-T.; Tsai, T.-I.; Chu, K.-C.; Liu, Y.-C.; Lai, M.-Y.; Wu, C.-Y.; Tseng, Y.-C.; Shivatare, S. S.; Wang, C.-H.; Chao, P.; Wang, S.-Y.; Shih, H.-W.; Zeng, Y.-F.; You, T.-H.; Liao, J.-Y.; Tu, Y.-C.; Lin, Y.-S.; Chuang, H.-Y.; Chen, C.-L.; Tsai, C.-S.; Huang, C.-C.; Lin, N.-H.; Ma, C.; Wu, C.-Y.; Wong, C.-H. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 10611-10616. 67. Adak, A. K.; Huang, K.-T.; Liao, C.-Y.; Lee, Y.-J.; Kuo, W.-H.; Huo, Y.-R.; Li, P.-J.; Chen, Y.-J.; Chen, B.-S.; Chen, Y.-J.; Chu Hwang, K.; Wayne Chang, W.-S.; Lin, C.-C. Investigating a Boronate-Affinity-Guided Acylation Reaction for Labelling Native Antibodies. Chem. Eur. J. 2022, 28, e202104178. 68. Park, J.; Lee, Y.; Ko, B. J.; Yoo, T. H. Peptide-Directed Photo-Cross-Linking for Site-Specific Conjugation of IgG. Bioconjug. Chem. 2018, 29, 3240-3244. 69. Muguruma, K.; Osawa, R.; Fukuda, A.; Ishikawa, N.; Fujita, K.; Taguchi, A.; Takayama, K.; Taniguchi, A.; Ito, Y.; Hayashi, Y., Development of a High-Affinity Antibody-Binding Peptide for Site-Specific Modification. ChemMedChem 2021, 16, 1814-1821. 70. Hale, J. E.; Beidler, D. E. Purification of Humanized Murine and Murine Monoclonal Antibodies Using Immobilized Metal-Affinity Chromatography. Anal. Biochem. 1994, 222, 29-33. 71. Muir, B. W.; Barden, M. C.; Collett, S. P.; Gorse, A.-D.; Monteiro, R.; Yang, L.; McDougall, N. A.; Gould, S.; Maeji, N. J. High-throughput optimization of surfaces for antibody immobilization using metal complexes. Anal. biochem. 2007, 363, 97-107. 72. Ojeda, I.; Barrejón, M.; Arellano, L. M.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J. M. Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosens. Bioelectron. 2015, 74, 24-29. 73. Rosen, C. B.; Kodal, A. L. B.; Nielsen, J. S.; Schaffert, D. H.; Scavenius, C.; Okholm, A. H.;Voigt, N. V.; Enghild, J. J.; Kjems, J.; Tørring, T.; Gothelf, K. V. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nat. Chem. 2014, 6, 804. 74. Mortensen, M. R.; Skovsgaard, M. B.; Okholm, A. H.; Scavenius, C.; Dupont, D. M.; Rosen, C. B.; Enghild, J. J.; Kjems, J.; Gothelf, K. V. Small-Molecule Probes for Affinity-Guided Introduction of Biocompatible Handles on Metal-Binding Proteins. Bioconjug. Chem. 2018, 29, 3016-3025. 75. Skovsgaard, M. B.; Jeppesen, T. E.; Mortensen, M. R.; Nielsen, C. H.; Madsen, J.; Kjaer, A.; Gothelf, K. V. Affinity-Guided Conjugation to Antibodies for Use in Positron Emission Tomography. Bioconjug. Chem. 2019, 30, 881-887. 76. Hemdan, E. S.; Zhao, Y. J.; Sulkowski, E.; Porath, J. Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 1811-1815. 77. Singh, A.; Thornton, E. R.; Westheimer, F. H. The Photolysis of Diazoacetylchymotrypsin. J. Bio. Chem. 1962, 237, 3006-3008. 78. Vodovozova, E. L. Photoaffinity labeling and its application in structural biology. Biochem. (Mosc.) 2007, 72, 1-20. 79. Fleet, G. W. J.; Porter, R. R.; Knowles, J. R. Affinity Labelling of Antibodies with Aryl Nitrene as Reactive Group. Nature 1969, 224, 511-512. 80. Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S. The Interplay of Theory and Experiment in the Study of Phenylnitrene. Acc. Chem. Res. 2000, 33, 765-771. 81. Dorman, G.; Prestwich, G. D. Benzophenone Photophores in Biochemistry. Biochem. 1994, 33, 5661-5673. 82. Smith, R. A. G.; Knowles, J. R. The preparation and photolysis of 3-aryl-3H-diazirines. J. Chem. Soc. Perkin Trans 2 1975, 7, 686-694. 83. Brunner, J.; Senn, H.; Richards, F. M. 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J. Bio. Chem. 1980, 255, 3313-3318. 84. Church, R. F. R.; Weiss, M. J. Diazirines. II. Synthesis and properties of small functionalized diazirine molecules. Observations on the reaction of a diaziridine with the iodine-iodide ion system. J. Org. Chem. 1970, 35, 2465-2471. 85. Hirabayashi, K.; Hanaoka, K.; Shimonishi, M.; Terai, T.; Komatsu, T.; Ueno, T.; Nagano, T. Selective Two-Step Labeling of Proteins with an Off/On Fluorescent Probe. Chem. Eur. J. 2011, 17, 14763-14771. 86. Bond, M. R.; Zhang, H.; Vu, P. D.; Kohler, J. J. Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars. Nat. Protoc. 2009, 4, 1044-1063. 87. Gunturu, K. S.; Woo, Y.; Beaubier, N.; Remotti, H. E.; Saif, M. W. Gastric cancer and trastuzumab: first biologic therapy in gastric cancer. Ther. Adv. Med. Oncol. 2013, 5, 143-151. 88. Procacci, B.; Roy, S. S.; Norcott, P.; Turner, N.; Duckett, S. B. Unlocking a Diazirine Long-Lived Nuclear Singlet State via Photochemistry: NMR Detection and Lifetime of an Unstabilized Diazo-Compound. J. Am. Chem. Soc. 2018, 140, 16855-16864. 89. Albini, A.; Kisch, H. Transition metal complexes of azo compounds V. Complexation and cleavage of the N=N bond of diazirines by iron carbonyls. J. Organomet. Chem. 1975, 94, 75-85. 90. Malle, E.; Sodin-Semrl, S.; Kovacevic, A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol. Life Sci. 2009, 66, 9-26. 91. Wang, J.-Y.; Zheng, Y.-Z.; Yang, J.; Lin, Y.-H.; Dai, S.-Q.; Zhang, G.; Liu, W.-L. Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma. BMC Cancer 2012, 12, 365. 92. Li, Z.; Hou, Y.; Zhao, M.; Li, T.; Liu, Y.; Chang, J.; Ren, L. Serum amyloid a, a potential biomarker both in serum and tissue, correlates with ovarian cancer progression. J. Ovarian Res. 2020, 13, 67. 93. Wu, D.-C.; Wang, K.-Y.; Wang, S. S. W.; Huang, C.-M.; Lee, Y.-W.; Chen, M. I.; Chuang, S.-A.; Chen, S.-H.; Lu, Y.-W.; Lin, C.-C.; Lee, K.-W.; Hsu, W.-H.; Wu, K.-P.; Chen, Y.-J. Exploring the expression bar code of SAA variants for gastric cancer detection. PROTEOMICS 2017, 17, 1600356. 94. Chan, D. C.; Chen, C. J.; Chu, H. C.; Chang, W. K.; Yu, J. C.; Chen, Y. J.; Wen, L. L.; Huang, S. C.; Ku, C. H.; Liu, Y. C.; Chen, J. H. Evaluation of serum amyloid A as a biomarker for gastric cancer. Ann. Surg. Oncol. 2007, 14, 84-93. 95. van de Bovenkamp, F. S.; Hafkenscheid, L.; Rispens, T.; Rombouts, Y. The Emerging Importance of IgG Fab Glycosylation in Immunity. J. Immunol. 2016, 196, 1435-1441. 96. Giddens, J. P.; Lomino, J. V.; DiLillo, D. J.; Ravetch, J. V.; Wang, L.-X. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 12023-12027. 97. You, B.; Chen, E. X. Anti-EGFR Monoclonal Antibodies for Treatment of Colorectal Cancers: Development of Cetuximab and Panitumumab. J. Clin. Pharmacol. 2012, 52, 128-155. 98. Fasano, M.; Della Corte, C. M.; Viscardi, G.; Di Liello, R.; Paragliola, F.; Sparano, F.; Iacovino, M. L.; Castrichino, A.; Doria, F.; Sica, A.; Morgillo, F.; Colella, G.; Tartaro, G.; Cappabianca, S.; Testa, D.; Motta, G.; Ciardiello, F. Head and neck cancer: the role of anti-EGFR agents in the era of immunotherapy. Ther. Adv. Med. Oncol. 2021, 13, 1758835920949418. 99. Jo, S.-M.; Noh, S.-h.; Jin, Z.; Lim, Y.; Cheon, J.; Kim, H.-S. Simple and efficient capture of EGFR-expressing tumor cells using magnetic nanoparticles. Sens. Actuators B Chem. 2014, 201, 144-152. 100. Chen, H.-L.; Hsu, F.-T.; Kao, Y.-C. J.; Liu, H.-S.; Huang, W.-Z.; Lu, C.-F.; Tsai, P.-H.; Ali, A. A. A.; Lee, G. A.; Chen, R.-J.; Chen, C.-Y. Identification of epidermal growth factor receptor-positive glioblastoma using lipid-encapsulated targeted superparamagnetic iron oxide nanoparticles in vitro. J. Nanobiotechnology 2017, 15, 86. 101. Han, C.-L.; Chien, C.-W.; Chen, W.-C.; Chen, Y.-R.; Wu, C.-P.; Li, H.; Chen, Y.-J. A Multiplexed Quantitative Strategy for Membrane Proteomics: Opportunities for Mining Therapeutic Targets for Autosomal Dominant Polycystic Kidney Disease. Mol. Cell. Proteomics 2008, 7, 1983-1997. 102. Tomohiro, T.; Inoguchi, H.; Masuda, S.; Hatanaka, Y. Affinity-based fluorogenic labeling of ATP-binding proteins with sequential photoactivatable cross-linkers. Bioorg. Med. Chem. Lett. 2013, 23, 5605-5608. 103. Li, P.-J.; Anwar, M. T.; Fan, C.-Y.; Juang, D. S.; Lin, H.-Y.; Chang, T.-C.; Kawade, S. K.; Chen, H.-J.; Chen, Y.-J.; Tan, K.-T.; Lin, C.-C. Fluorescence “Turn-on” Lectin Sensors Fabricated by Ligand-Assisted Labeling Probes for Detecting Protein–Glycoprotein Interactions. Biomacromolecules 2020, 21, 815-824. 104. Song, H.-N.; Kim, D.-H.; Park, S.-G.; Lee, M. K.; Paek, S.-H.; Woo, E.-J. Purification and characterization of Fab fragments with rapid reaction kinetics against myoglobin. Biosci., Biotechnol. Biochem. 2015, 79, 718-724. 105. Head, S. A.; Shi, W.; Zhao, L.; Gorshkov, K.; Pasunooti, K.; Chen, Y.; Deng, Z.; Li, R.-j.; Shim, J. S.; Tan, W.; Hartung, T.; Zhang, J.; Zhao, Y.; Colombini, M.; Liu, J. O. Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7276-7285.
|