帳號:guest(3.14.143.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱明淑
作者(外文):Chiu, Ming-Shu
論文名稱(中文):室溫水溶液下快速合成具可調控粒徑大小硒化鉛奈米粒子及其尺寸效應光學性質
論文名稱(外文):Fast and Room-Temperature Synthesis of Size-Tunable PbSe Nanocubes in Aqueous Solution and Their Size-Dependent Optical Properties
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):段興宇
徐雍鎣
口試委員(外文):Tuan, Hsing-Yu
Hsu, Yung-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023518
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:45
中文關鍵詞:硒化鉛奈米粒子
外文關鍵詞:PbSenanoparticle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在水溶液下,由於硒元素無法直接溶於水相中,所以需要更進一步的還原及處理,使得硒化合物目前無法在水相中被精確的控制其形貌及尺寸。因此,在本篇論文中,我們致力於在水相中發展出在室溫下快速合成硒化鉛奈米粒子並具有形貌及尺寸的控制。整個反應中,所加入反應物只有醋酸鉛、醋酸以及硒代硫酸钠,我們藉由調整醋酸所加入的量來有效的控制硒化鉛奈米粒子的大小,並深入探討其反應機制使我們能有效的調控硒化鉛奈米粒子形貌及尺寸。利用光催化反應了解到硒化鉛奈米粒子在紫外可見光區有高能階電子的躍遷,使得我們可以在紫外可見光區觀察到吸收峰。此外,藉由測量不同尺寸的硒化鉛的紫外可見光光譜,可以得知隨著硒化鉛奈米粒子的尺寸越大,其吸收峰會產生紅位移,因此我們可以了解到不同尺寸的硒化鉛具有明顯的尺寸光學效應。
Selenide sources generally cannot be dissolved in aqueous solution, so special preparation of selenium source is necessary for PbSe synthesis in an aqueous solution. Here we have developed a fast and room-temperature method to synthesize lead selenide (PbSe) nanocubes in aqueous solution. The PbSe nanocubes have sizes ranging from 13 nm to 121 nm by adjusting the amounts of acetic acid added. The formation mechanism has been considered to achieve particle size control systematically. Additionally, we conducted the photocatalytic experiment to realize there are absorption peaks in UV-vis region because of the transition into high-energy bands. With increasing PbSe particle size, their absorption bands red-shift progressively. It indicated that there are obviously size-dependent optical properties.
1 Introduction.............................................1
1.1 Lead selenide............................................6
1.1.1 Synthesis of PbSe nanocrystals in organic phase..........7
1.1.2 Synthesis of PbSe nanocrystals in aqueous phase.........10
1.2 Selenium source.........................................14
2 Experimental Section....................................18
2.1 Chemicals...............................................18
2.2 Synthesis of Na2SeSO3 solution..........................18
2.3 Synthesis of PbSe nanocrystals with tunable size........20
2.4 Scaling up the production...............................21
2.5 Photothermal measurement................................22
2.6 Photocatalytic Experiment...............................23
2.7 Instrumentation.........................................24
3 Results and Discussion..................................25
3.1 Formation mechanism of PbSe nanocubes...................25
3.2 Characterization of PbSe nanocubes......................30
3.3 The influence of the different acids....................39
3.4 Scaling up the production...............................41
4 Conclusion..............................................42
5 References..............................................43

1. Huang, M. H.; Rej, S.; Hsu, S.-C. Chem. Commun. 2014, 50, 1634–1644.
2. Huang, M. H.; Naresh, G.; Chen, H.-S. ACS Appl. Mater. Interfaces 2018, 10, 4−15.
3. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. J. Am. Chem. Soc. 2011, 134, 1261–1267.
4. Kuo, C. H.; Huang, M. H. Nano Today 2010, 5, 106–116.
5. Chen, Y. J.; Chiang, Y. W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672–19679.
6. Lyu, L. M.; Huang, M. H. J. Phys. Chem. C 2011, 115, 17768–17773.
7. Hsieh, M. S.; Su, H. J.; Hsieh, P. L.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
8. Yuan, G. Z.; Hsia, C. F.; Lin, Z. W.; Chiang, C.; Chiang, Y. W.; Huang, M. H. Small 2016, 12, 3530–3534
9. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Chem. Mater. 2016, 28, 1574–1580.
10. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155–2160.
11. Ke, W. H.; Hsia, C. F.; Chen, Y. J.; Huang, M. H. Small 2016, 12, 3530–3534.
12. Wang H. J.; Yang K. H.; Hsu S. C.; Huang, M. H. Nanoscale, 2016, 8, 965–972.
13. Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M.; Berger, S. Nano Lett. 2003, 3, 857–862.
14. Wang, C.; Zhang, G.; Fan, S.; Li, Y. ‎J. Phys. Chem. Solids 2001, 62, 1957–1960.
15. Gokarna, A.; Jun, K.; Khanna, P.; Baeg, J.; Seok, S.-I. Bull. Korean Chem. Soc. 2005, 26, 1803.
16. Yu, W. W.; Falkner, J. C.; Shih, B. S.; Colvin, V. L. Chem. Mater. 2004, 16, 3318–3322.
17. Lu, W.; Fang, J.; Ding, Y.; Wang, Z. L. J. Phys. Chem. B 2005, 109, 19219–19222.
18. Li, H.; Chen, D.; Li, L.; Tang, F.; Zhang, L.; Ren, J. CrystEngComm 2010, 12, 1127–1133.
19. Peng, Z.; Liu, M.; Yu, C.; Chai, Z.; Zhang, H.; Wang, C. Nanoscale 2010, 2, 697–699.
20. Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk, J.; Hickey, S. G. J. Am. Chem. Soc. 2006, 128, 6792–6793.
21. Bakshi, M. S.; Thakur, P.; Khullar, P.; Kaur, G.; Banipal, T. S. Cryst. Growth Des. 2010, 10, 1813–1822.
22. Cui, R.; Gu, Y.-P.; Zhang, Z.-L.; Xie, Z.-X.; Tian, Z.-Q.; Pang, D.-W. J. Mater. Chem. 2012, 22, 3713–3716.
23. Primera-Pedrozo, O. M.; Arslan, Z.; Rasulev, B.; Leszczynski, J. Nanoscale 2012, 4, 1312–1320.
24. Wang, X.; Li, K.; Dong, Y.; Jiang, K. Cryst. Res. Technol. 2010, 45, 94–98.
25. Gharibe, S.; Afshar, S.; Vafayi, L. Bull. Chem. Soc. Ethiop. 2014, 28, 37–44.
26. Peng, Q.; Dong, Y.; Deng, Z.; Li, Y. Inorg. Chem. 2002, 41, 5249–5254.
27. Shahi, A.; Pandey, B.; Singh, B.; Gopal, R. Adv. Nat. Sci.: Nanosci. Nanotech. 2016, 7, 035010.
28. Wang, Y.; Yang, K.; Pan, H.; Liu, S.; Zhou, L. Micro Nano Lett. 2012, 7, 889–891.
29. Hodlur, R.; Rabinal, M. Chem. Eng. J. 2014, 244, 82–88.
30. Khan, Z. M.; Khan, S. A.; Zulfequar, M. Mater. Sci. Semicond. Process. 2017, 57, 190–196.
31. Wang, Y.; Mo, Y.; Zhou, L. Spectrochim. Acta A 2011, 79, 1311–1315.
32. Liu, F.-C.; Chen, Y.-M.; Lin, J.-H.; Tseng, W.-L. J. Colloid Interface Sci. 2009, 337, 414–419.
33. Mazing, D.; Matyushkin, L.; Aleksandrova, O.; Mikhailov, I.; Moshnikov, V.; Tarasov, S. J. Phys. Conf. Ser. 2014, 572, 012028.
34. Deshpande, M.; Chaki, S.; Patel, N.; Bhatt, S.; Soni, B. J. Nano- Electron. Phys. 2011, 3, 193.
35. Huang, P.; Kong, Y.; Li, Z.; Gao, F.; Cui, D. ‎Nanoscale Res. Lett. 2010, 5, 949.
36. Wang, H.; Xu, S.; Zhao, X.-N.; Zhu, J.-J.; Xin, X.-Q. Mater. Sci. Eng. B 2002, 96, 60–64.
37. Xu, S.; Wang, H.; Zhu, J.-J.; Chen, H.-Y. J. Cryst. Growth 2002, 234, 263–266.
38. Li, Y.; Li, Q.; Wu, H.; Huang, C.; Lin, H.; Qin, L. Nanoparticle Res. 2015, 17, 362.
39. Zhao, N.; Qi, L. Adv. Mater. 2006, 18, 359–362.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *