帳號:guest(3.128.95.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魯 玟
作者(外文):Lu, Wen
論文名稱(中文):以酵素方法合成神經節苷脂醣體
論文名稱(外文):Enzymatic Synthesis of Ganglioside Glycans
指導教授(中文):林俊成
指導教授(外文):Lin, Chun-Cheng
口試委員(中文):林俊宏
游景晴
口試委員(外文):Lin, Chun-Hung
Yu, Ching-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023510
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:204
中文關鍵詞:酵素合成神經節苷脂唾液酸
外文關鍵詞:enzymatic synthesisgangliosidesialic acid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:254
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
神經節苷脂為一類富含唾液酸的醣神經鞘脂,主要存在於神經細胞表面,參與神經系統的發育及分化、軸突與髓鞘之間的作用以及細胞間訊息傳遞。部分神經節苷脂也被發現大量表現於癌細胞表面,幫助癌細胞生長以及躲避免疫系統的攻擊。由於神經節苷脂參與許多生理作用,因此具有發展治療神經退化疾病藥物與癌症疫苗之潛力。
為發展抗癌疫苗以及探討 Siglecs 與醣體間作用力,本論文利用酵素方法階段性一鍋化合成神經節苷脂醣體 GM3、GM2、GM1、GD1a、GT1a、GD3、GD2、GT1b、GT3、GT2、GA2、GA1與GM1b,並以核苷再生系統合成 GD1b 以及 GT1c。此外,利用不同來源的α2,6-唾液酸轉移酶 (Pd2,6ST 與 Psp2,6ST) 催化 GD1a 進行α2,6-唾液酸化反應,發現兩者具有不同反應位置選擇性,得到 GT1aα 與神經節苷脂系列之外的醣體。本論文亦成功合成末端唾液酸九號羥基修飾為O-乙醯基與N-乙醯基之 GD2,將來可用於開發抗癌疫苗之研究。
Gangliosides, a subclass of glycosphingolipids, comprise a structurally diverse set of sialylated glycans that are found in most cells but are particularly abundant in nervous system. Many gangliosides involve in brain development, axon-myelin interaction, and cell signal transduction. In addition, some of them are well-known tumor associated antigens. Since gangliosides are involved in many biological processes, they are considered as potential candidates for treating neurodegenerative diseases and cancer immunotherapies. Therefore, synthesis of these sialoglycans for further research is essential.
In this thesis, multiple enzymes from various sources were used to synthesize o-, a-, b- and c-series gangliosides successfully. Most of the enzymatic syntheses were conducted by a sequential one-pot manner while some of them were performed by using UDP-sugar nucleotide regeneration system in order to simplify the purification of intermediates. During the α2,6-sialylation of GD1a glycan, we found that α2,6-sialyltransferases from different species (Pd2,6ST and Psp2,6ST) showed different selectivity to acceptors with galactosyl configuration. Moreover, the synthesis of OAcGD3 was achieved by using 9-O-acetyl-sialic acid as a donor precursor, which was obtained by acetylation of sialic acid using serine esterase BPN’. A β-1,4-N-acetylgalactosaminylation was applied to assemble GalNAc on OAcGD3 to successfully yielded OAcGD2, a potential carbohydrate antigen for improvement of previous GD2-based anti-cancer vaccine.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
流程目錄 XII
縮寫表 XV
單醣中英文名稱與代表符號 XVII
酵素中英文名稱對照表 XVIII
第一章、緒論 1
1.1 酵素於醣體合成的重要性 1
1.2 唾液酸 (Sialic Acid) 3
1.3 神經節苷脂 (Ganglioside) 5
1.2.1 神經相關神經節苷脂 9
1.2.2 癌症相關神經節苷脂 11
1.4 唾液酸免疫球蛋白凝集素 19
1.3.1 Siglec-4 (MAG) 24
1.3.2 Siglec-7 25
1.5 醣激酶與醣基轉移酶 26
1.5.1 醣激酶 (GalK、NahK、FKP) 28
1.5.2 磷酸醣核苷轉移酶 (GlmU、AtUSP、CSS) 30
1.5.3 醣基轉移酶 35
1.5.4 唾液酸轉移酶 (PmST1、PdST、PspST、CstI、CstII、NgST) 44
1.6 研究目標與動機 60
第二章、實驗結果與討論 62
2.1 以大腸桿菌誘導表現目標蛋白 62
2.1.1 勝任細胞 62
2.1.2 目標酵素純化與表現分析 63
2.1.3酵素表達分析 68
2.2 酵素系統合成神經節苷脂醣體 89
2.2.1 a-series醣體合成 89
2.2.2 b-series 和 c-series 醣體合成 109
2.2.3 o-series 醣體合成 122
2.3 結論 127
第三章、未來展望 129
第四章、實驗材料與方法 130
4.1 Materials 130
4.1.1 General 130
4.1.2 Machines 131
4.1.3 Enzymes 132
4.1.4 Vectors 132
4.2 General procedure of overexpression and purification of target enzymes 133
4.2.1 General procedure of enzyme overexpression 133
4.2.2 Purification of target enzymes 134
4.3 Synthetic procedures and characterization 136
第五章、參考文獻 182
附錄 205
附錄目錄 207

1. Wen, L.; Zheng, Y.; Jiang, K.; Zhang, M.; Kondengaden, S. M.; Li, S.; Huang, K.; Li, J.; Song, J.; Wang, P. G., Two-Step Chemoenzymatic Detection of N-Acetylneuraminic Acid-α(2-3)-Galactose Glycans. J. Am. Chem. Soc. 2016, 138, 11473-11476.
2. Peng, W.; Paulson, J. C., CD22 Ligands on a Natural N‑Glycan Scaffold Efficiently Deliver Toxins to B‑Lymphoma Cells. J. Am. Chem. Soc. 2017, 139, 12450-12458.
3. Yang, J.; Fu, X.; Liao, J.; Liu, L.; Thorson, J. S., Structure-Based Engineering of E. coli Galactokinase as a First Step toward In Vivo Glycorandomization. Chem. Biol. 2005, 12, 657-664.
4. Yang, G.; Rich, J. R.; Gilbert, M.; Wakarchuk, W. W.; Feng, Y.; Withers, S. G., Fluorescence Activated Cell Sorting as a General Ultra-High-Throughput Screening Method for Directed Evolution of Glycosyltransferases. J. Am. Chem. Soc. 2010, 132, 10570-10577.
5. Koeller, K. M.; Wong, C.-H., Enzymes for Chemical Synthesis. Nature 2001, 409, 232-240.
6. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the Myths-Biocatalysis in Industrial Synthesis. Science 2003, 299, 1694-1697.
7. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial Biocatalysis Today and Tomorrow. Nature 2001, 409, 258-268.
8. Blix, F. G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acid. Nature 1957, 179, 1088-1088.
9. Varki, A., Loss of N-Glycolylneuraminic Acid in Humans: Mechanisms, Consequences, and Implications for Hominid Evolution. Am. J. Phys. Anthropol. 2001, 116, 54-69.
10. Bardo, M.; Nguyen, D. H.; Diaz, S.; Varki, A., Mechanism of Uptake and Incorporation of the Non-human Sialic Acid N-Glycolylneuraminic Acid into Human Cells. J. Biol. Chem. 2005, 280, 4228-4237.
11. Angata, T.; Varki, A., Chemical Diversity in the Sialic Acids and Related α-Keto Acids: An Evolutionary Perspective. Chem. Rev. 2002, 102, 439-469.
12. Crocker, P. R.; Varki, A., Siglecs in the Immune System. Immunology 2001, 103, 137-145.
13. Fuster, M. M.; Esko, J. D., The Sweet and Sour of Cancer Glycans as Novel Therapeutic Targets. Nature 2005, 5, 526-542.
14. Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H., Essentials of Glycobiology, Third Edition. Cold Spring Harbor, New York: 2017.
15. Yu, R. K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M., Structures, Biosynthesis and Functions of Gangliosides - an Overview. J. Oleo Sci. 2011, 60, 537-544.
16. Lemmon, M. A.; Schlessinger, J., Cell Signaling by Receptor Tyrosine Kinases. Cell 2010, 141, 1117-1134.
17. Julien, S.; Bobowski, M.; Steenackers, A.; Bourhis, X. L.; Delannoy, P., How Do Gangliosides Regulate RTKs Signaling? Cells 2013, 2, 751-767.
18. Miljan, E. A.; Meuillet, E. J.; Mania-Farnell, B.; George, D.; Yamamoto, H.; Simon, H.-G.; Bremer, E. G., Interaction of the Extracellular Domain of the Epidermal Growth Factor Receptor with Gangliosides. J. Biol. Chem. 2002, 277, 10108-10113.
19. Li, R.; Liu, Y.; Ladisch, S., Enhancement of Epidermal Growth Factor Signaling and Activation of Src Kinase by Gangliosides. J. Biol. Chem. 2001, 276, 42782-42792.
20. Schnaar, R. L.; Gerardy-Schahn, R.; Hildebrandt, H., Sialic Acid in the Brain: Gangliosides and Polysialic acid in Nervous System Development, Stability, Disease and Regeneration. Physiol. Rev. 2014, 94, 461-518.
21. Ngamukote, S.; Yanagisawa, M.; Ariga, T.; Ando, S.; Yu, R. K., Developmental Changes of Glycosphingolipids and Expression of Glycogenes in Mouse Brains. J. Neurochem. 2007, 103, 2327-2341.
22. Sugiura, Y.; Furukawa, K.; Tajima, O.; Mii, S.; Honda, T.; Furukawa, K., Sensory Nerve-Dominant Nerve Degeneration and Remodeling in the Mutant Mice Lacking Complex Gangliosides. Neurosci. 2005, 135, 1167-1178.
23. Okada, M.; Itoh, M.-i.; Haraguchi, M.; Okajima, T.; Inoue, M.; Oishi, H.; Matsuda, Y.; Iwamoto, T.; Kawano, T.; Fukumoto, S.; Miyazaki, H.; Furukawa, K.; Aizawa, S.; Furukawa, K., b-series Ganglioside Deficiency Exhibits No Definite Changes in the Neurogenesis and the Sensitivity to Fas-mediated Apoptosis but Impairs Regeneration of the Lesioned Hypoglossal Nerve. J. Biol. Chem. 2002, 277, 1633-1636.
24. Ribeiro-Resende, V. T. l.; Gomes, T. A. j.; Lima, S. d.; Nascimento-Lima, M.; Bargas-Rega, M.; Santiago, M. F.; Reis, R. A. d. M.; Mello, F. G. d., Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration. PLoS One 2014, 9, e108919.
25. Jeyakumar, M.; Dwek, R. A.; Butters, T. D.; Platt, F. M., Storage Solution: Treating Lysosomal Disorders of The Brain. Nature Rev. 2005, 6, 713-725.
26. Godschalk, P. C. R.; Kuijf, M. L.; Li, J.; Michael, F. S.; Ang, C. W.; Jacobs, B. C.; Karwaski, M.-F.; Brochu, D.; Moterassed, A.; Endtz, H. P.; Belkum, A. v.; Gilbert, M., Structural Characterization of Campylobacter jejuni Lipooligosaccharide Outer Cores Associated with Guillain-Barré and Miller Fisher Syndromes. Infect. Immun. 2007, 75, 1245-1254.
27. Nachamkin, I.; Jirong Liu, M. L.; Ung, H.; Moran, A. P.; Prendergast, M. M.; Sheikh, K., Campylobacter jejuni from Patients with Guillain-Barré Syndrome Preferentially Expresses a GD1a-Like Epitope. Infect. Immun. 2002, 70, 5299-5303.
28. Wu, G.; Lu, Z.-H.; Kulkarni, N.; Ledeen, R. W., Deficiency of Ganglioside GM1 Correlates With Parkinson’s Disease in Mice and Humans. J. Neurosci. Res. 2012, 90, 1997-2008.
29. Maglione, V.; Marchi, P.; Pardo, A. D.; Lingrell, S.; Horkey, M.; Tidmarsh, E.; Sipione, S., Impaired Ganglioside Metabolism in Huntington's Disease and Neuroprotective Role of GM1. J. Neurosci. 2010, 30, 4072-4080.
30. Ikeda, K.; Yamaguchi, T.; Fukunaga, S.; Hoshino, M.; Matsuzaki, K., Mechanism of Amyloid β-Protein Aggregation Mediated by GM1 Ganglioside Clusters. Biochemistry 2011, 50, 6433-6440.
31. Huang, E. J.; Reichardt, L. F., Neurotrophin Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677-736.
32. Mutoh, T.; Tokuda, A.; Miyadai, T.; Hamaguchi, M.; Fujiki, N., Ganglioside GM1 Binds to the Trk Protein and Regulates Receptor Function. Proc. Natl. Acad. Sci. USA 1995, 92, 5087-5091.
33. Tsuji, S.; Arita, M.; Nagai, Y., GQlb, a Bioactive Ganglioside that Exhibits Novel Nerve Growth Factor (NGF)-Like Activities in the Two Neuroblastoma Cell Lines. J. Biochem. 1983, 94, 303-306.
34. Shin, M. K.; Jung, W. R.; Kim, H. G.; Roh, S. E.; Kwak, C. H.; Kim, C. H.; Kim, S. J.; Kim, K. L., The Ganglioside GQ1b Regulates BDNF Expression via the NMDA Receptor Signaling Pathway. Neuropharmacology 2014, 77, 414-421.
35. Schneider, J. S.; Gollomp, S. M.; Sendek, S.; Colcher, A.; Cambi, F.; Du, W., A Randomized, Controlled, Delayed Start Trial of GM1 Ganglioside in Treated Parkinson's Disease Patients. J. the Neurol. Sci. 2013, 324, 140-148.
36. Geisle, F. H.; Coleman, W. P.; Grieco, G.; Poonian, D., The Sygen Multicenter Acute Spinal Cord Injury Study. SPINE 2001, 26, S87-S98.
37. Hakomori, S.-i., Tumor-Associated Carbohydrate Antigens. Annu. Rev. Immunol. 1984, 2, 103-126.
38. Fuster, M. M.; Esko, J. D., The Sweet and Sour of Cancer: Glycans as Novel Therapeutic Targets. Nat. Rev. Cancer 2005, 5, 526-542.
39. Carubia, J. M.; Yu, R. K.; Macala, L. J.; Kirkwood, J. M.; Varga, J. M., Gangliosides of Normal and Neoplastic Human Melanocytes. Biochem. Biophys. Res. Commun. 1984, 120, 500-504.
40. Nicoll, G.; Avril, T.; Lock, K.; Furukawa, K.; Bovin, N.; Crocker, P. R., Ganglioside GD3 Expression on Target Cells can Modulate NK Cell Cytotoxicity via Siglec-7-Dependent and -Independent Mechanisms. Eur. J. Immunol. 2003, 33, 1642-1648.
41. Biswas, K.; Richmond, A.; Rayman, P.; Biswas, S.; Thornton, M.; Sa, G.; Das, T.; Zhang, R.; Chahlavi, A.; Tannenbaum, C. S.; Novick, A.; Bukowski, R.; Finke, J. H., GM2 Expression in Renal Cell Carcinoma: Potential Role in Tumor-Induced T-Cell Dysfunction. Cancer Res. 2006, 66, 6816-6825.
42. Lammie, G. A.; Cheung, N.-K. V.; Gerald, W.; Rosenblum, M.; Cordon-Cardo, C., Ganglioside GD2 Expression in the Human Nervous System and in Neuroblastomas - An Immunohistochemical Study. Int. J. Oncol. 1993, 3, 909-915.
43. Watanabe, T.; Pukel, C. S.; Takeyama, H.; Lloyd, K. O.; Shiku, H.; Li, L. T. C.; Travassos, L. R.; Oettgen, H. F.; Old, L. J., Human Melanoma Antigen AH is an Autoantigenic Ganglioside Related to GD2. J. Exp. Med. 1982, 156, 1884-1889.
44. Cheresh, D. A.; Rosenberg, J.; Mujoo, K.; Hirschowitz, L.; Reisfeld, R. A., Biosynthesis and Expression of the Disialoganglioside GD2, a Relevant Target Antigen on Small Cell Lung Carcinoma for Monoclonal Antibody-mediated Cytolysis. Cancer Res. 1986, 46, 5112-5118.
45. Mennel, H. D.; Bossllet, K.; Wiegandt, H.; Sedlacek, H. H.; Bauer, B. L.; Rodden, A. F., Expression of GD2-Epitopes in Human Intracranial Tumors and Normal Brain. Exp. Toxicol. Pathol. 1992, 44, 317-324.
46. Battula, V. L.; Shi, Y.; Evans, K. W.; Wang, R.-Y.; Spaeth, E. L.; Jacamo, R. O.; Guerra, R.; Sahin, A. A.; Marini, F. C.; Hortobagyi, G.; Mani, S. A.; Andreeff, M., Ganglioside GD2 Identifies Breast Cancer Stem Cells and Promotes Tumorigenesis. J. Clin. Investig. 2012, 122, 2066-2078.
47. Yu, A. L.; Gilman, A. L.; Ozkaynak, M. F.; London, W. B.; Kreissman, S. G.; Chen, H. X.; Smith, M.; Anderson, B.; Villablanca, J. G.; Matthay, K. K.; Shimada, H.; Grupp, S. A., Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. N. Engl. J. Med. 2010, 363, 1324-1334.
48. Alvarez-Rueda, N.; Desselle, A.; Cochonneau, D.; Chaumette, T.; Clemenceau, B. a.; Leprieur, S. p.; Bougras, G.; Supiot, S. p.; Mussini, J.-M.; Barbet, J.; Saba, J.; Paris, F. o.; Aubry, J.; Birkle, S. p., A Monoclonal Antibody to O-Acetyl-GD2 Ganglioside and Not to GD2 Shows Potent Anti-Tumor Activity without Peripheral Nervous System Cross-Reactivity. PLoS One 2011, 6, e25220.
49. Terme, M.; Dorvillius, M.; Cochonneau, D.; Chaumette, T.; Xiao, W.; Diccianni, M. B.; Barbet, J.; Yu, A. L.; Paris, F.; Sorkin, L. S.; Birklé, S., Chimeric Antibody c.8B6 to O-Acetyl-GD2 Mediates the Same Efficient Anti-Neuroblastoma Effects as Therapeutic ch14.18 Antibody to GD2 without Antibody Induced Allodynia. PLoS One 2014, 9, e87210.
50. Ito, H.; Ishida, H.; Waki, H.; Ando, S.; Kiso, M., Total Synthesis of a Cholinergic Neuron-Specific Ganglioside GT1aα: A High Affinity Ligand for Myelin-Associated Glycoprotein (MAG). Glycoconj. J. 1999, 16, 585-598.
51. Imamura, A.; Ando, H.; Ishida, H.; Kiso, M., Ganglioside GQ1b: Efficient Total Synthesis and the Expansion to Synthetic Derivatives To Elucidate Its Biological Roles. J. Org. Chem. 2009, 74, 3009-3023.
52. Matsuzaki, Y.; Nunomura, S.; Ito, Y.; Sugimoto, M.; Nakahara, Y.; Ogawa, T., Stereocontrolled Synthesis of GD2. Carbohydr. Res. 1993, 242, C1-C6.
53. Priem, B.; Gilbert, M.; Wakarchuk, W. W.; Heyraud, A.; Samain, E., A New Fermentation Process Allows Large-Scale Production of Human Milk Oligosaccharides by Metabolically Engineered Bacteria. Glycobiology 2002, 12, 235-240.
54. Antoine, T.; Priem, B.; Heyraud, A.; Greffe, L.; Gilbert, M.; Wakarchuk, W. W.; Lam, J. S.; Samain, E., Large-Scale In Vivo Synthesis of the Carbohydrate Moieties of Gangliosides GM1 and GM2 by Metabolically Engineered Escherichia coli. ChemBioChem 2003, 4, 406-412.
55. Antoine, T.; Heyraud, A.; Bosso, C.; Samain, E., Highly Efficient Biosynthesis of the Oligosaccharide Moiety of the GD3 Ganglioside by Using Metabolically Engineered Escherichia coli. Angew. Chem. Int. Ed. 2005, 44, 1350-1352.
56. Blixt, O.; Vasiliu, D.; Allin, K.; Jacobsen, N.; Warnock, D.; Razi, N.; Paulson, J. C.; Bernatchez, S. p.; Gilbertb, M.; Wakarchuk, W., Chemoenzymatic Synthesis of 2-Azidoethyl-Ganglio-Oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 2005, 340, 1963-1972.
57. Pukin, A. V.; Florack, D. E. A.; Brochu, D.; Lagen, B. v.; Visser, G. M.; Wennekes, T.; Gilbert, M.; Zuilhof, H., Chemoenzymatic Synthesis of Biotin-Appended Analogues of Gangliosides GM2, GM1, GD1a and GalNAc-GD1a for Solid-Phase Applications and Improved ELISA tests. Org. Biomol. Chem. 2011, 9, 5809-5815.
58. Yu, H.; L, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J. Org. Chem. 2016, 81, 10809-10824.
59. Thon, V.; Li, Y.; Yu, H.; Lau, K.; Chen, X., PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2-3-sialyltransferase. Appl. Microbiol. Biotechnol. 2012, 94, 977-985.
60. Yu, H.; Santra, A.; Li, Y.; McArthur, J. B.; Ghosh, T.; Yang, X.; Wang, P. G.; Chen, X., Streamlined Chemoenzymatic Total Synthesis of Prioritized Ganglioside Cancer Antigens Org. Biomol. Chem. 2018.
61. Crocker, P. R.; Paulson, J. C.; Varki, A., Siglecs and Their Roles in the Immune System. Nature Rev. 2007, 7, 255-266.
62. May, A. P.; Robinson, R. C.; Vinson, M.; Crocker, P. R.; Jones, E. Y., Crystal Structure of the N-terminal Domain of Sialoadhesin in Complex with 3' Sialyllactose at 1.85 Å Resolution. Mol. Cell 1998, 1, 719-728.
63. Crocher, P. R.; Vinson, M.; Kelm, S.; Drickamer, K., Molecular Analysis of Sialoside Binding to Sialoadhesin by NMR and Site-Directed Mutagenesis. Biochem. J. 1999, 341, 355-361.
64. Yamaji, T.; Teranishi, T.; Alphey, M. S.; Crocker, P. R.; Hashimoto, Y., A Small Region of the Natural Killer Cell Receptor, Siglec-7, Is Responsible for Its Preferred Binding to α2,8-Disialyl and Branched α2,6-Sialyl Residues A Comparison With Siglec-9. J. Biol. Chem. 2002, 277, 6324-6332.
65. Alphey, M. S.; Attrill, H.; Crocker, P. R.; Aalten, D. M. F. v., High Resolution Crystal Structures of Siglec-7 Insights into Ligand Specificity in the Siglec Family. J. Biol. Chem. 2003, 278, 3372-3377.
66. Attrill, H.; Imamura, A.; Sharma, R. S.; Kiso, M.; Crocker, P. R.; Aalten, D. M. F. v., Siglec-7 Undergoes a Major Conformational Change When Complexed with the α(2,8)-Disialylganglioside GT1b. J. Biol. Chem. 2006, 281, 32774-32783.
67. Bochne, B. S.; Alvarez, R. A.; Mehta, P.; Bovin, N. V.; Blixt, O.; White, J. R.; Schnaar, R. L., Glycan Array Screening Reveals a Candidate Ligand for Siglec-8. J. Biol. Chem. 2005, 280, 4307-4312.
68. Rillahan, C. D.; Schwartz, E.; McBride, R.; Fokin, V. V.; Paulson, J. C., Click and Pick: Identification of Sialoside Analogues for Siglec-Based Cell Targeting. Angew. Chem. Int. Ed. 2012, 51, 11014-11018.
69. Rillahan, C. D.; Macauley, M. S.; Schwartz, E.; He, Y.; McBride, R.; Arlian, B. M.; Rangarajan, J.; Fokinc, V. V.; Paulson, J. C., Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B cell Lymphomas. Chem. Sci. 2014, 5, 2398-2406.
70. S. Macauley, M.; R. Crocker, P.; C. Paulson, J., Siglec-Mediated Regulation of Immune Cell Function in Disease. Nat. Rev. 2014, 14, 653-666.
71. Bandala-Sanchez, E.; Zhang, Y.; Reinwald, S.; Dromey, J. A.; Lee, B.-H.; Qian, J.; Böhmer, R. M.; Harrison, L. C., T cell Regulation Mediated by Interaction of Soluble CD52 with the Inhibitory Receptor Siglec-10. Nat. Immunol. 2013, 14, 741-748.
72. Avril, T.; Wagner, E. R.; Willison, H. J.; Crocker, P. R., Sialic Acid-Binding Immunoglobulin-Like Lectin 7 Mediates Selective Recognition of Sialylated Glycans Expressed on Campylobacter jejuni Lipooligosaccharides. Infect. Immun. 2006, 74 (4133-4141).
73. Uckun, F. M.; Goodmand, P.; Maa, H.; Dibirdik, I.; Qazi, S., CD22 EXON 12 Deletion as a Pathogenic Mechanism of Human B-Precursor Leukemia. Proc. Natl. Acad. Sci. USA 2010, 107, 16852-16857.
74. Malik, M.; Simpson, J. F.; Parikh, I.; Wilfred, B. R.; Fardo, D. W.; Nelson, P. T.; Estus, S., CD33 Alzheimer's Risk-Altering Polymorphism, CD33 Expression, and Exon 2 Splicing. J. Neurosci. 2013, 33, 13320-13325.
75. Quarles, R. H., Myelin-associated glycoprotein (MAG): past, present and beyond. J. Neurochem. 2007, 100, 1431-1448.
76. Filbin, M. T., Myelin-Associated Inhibitors of Axonal Regeneration in the Adult Mammalian CNS. Nature Rev. 2003, 4, 1-11.
77. Ernst, B.; Magnani, J. L., From Carbohydrate Leads to Glycomimetic. Nature Rev. 2009, 8, 661-611.
78. Vyas, A. A.; Blixt, O.; Paulson, J. C.; Schnaar, R. L., Potent Glycan Inhibitors of Myelin-associated Glycoprotein Enhance Axon Outgrowth in Vitro. J. Biol. Chem. 2005, 280, 16305-16310.
79. Gao, G.; Smiesko, M.; Schwardt, O.; Gäthje, H.; Kelm, S.; Vedania, A.; Ernst, B., Mimetics of the tri- and tetrasaccharide epitope of GQ1ba as myelin-associated glycoprotein (MAG) ligands. Bioorg. Med. Chem. 2007, 15, 7459-7469.
80. Ito, A.; Handa, K.; Withers, D. A.; Satoh, M.; Hakomori, S.-i., Binding Specificity of Siglec7 to Disialogangliosides of Renal Cell Carcinoma: Possible Role of Disialogangliosides in Tumor Progression. FEBS Lett. 2001, 504, 82-86.
81. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y., Ganglioside DSGb5, Preferred Ligand for Siglec-7, Inhibits NK Cell Cytotoxicity Against Renal Cell Carcinoma Cells. Glycobiology 2010, 20, 1373-1379.
82. Jandus, C.; Boligan, K. F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Démoulins, T.; Schneider, C.; Wehrli, M.; Hunger, R. E.; Baerlocher, G. M.; Simon, H.-U.; Romero, P.; Münz, C.; Gunten, S. v., Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Investig. 2014, 124, 1810-1820.
83. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555.
84. Bülter, T.; Elling, L., Enzymatic Synthesis of Nucleotide Sugars. Glycoconj. J. 1999, 16, 147-159.
85. Li, S.-P.; Hsiao, W.-C.; Yu, C.-C.; Chien, W.-T.; Lin, H.-J.; Huang, L.-D.; Lin, C.-H.; Wu, W.-L.; Wu, S.-H.; Lin, C.-C., Characterization of Meiothermus taiwanensis Galactokinase and its Use in the One-Pot Enzymatic Synthesis of Uridine Diphosphate-Galactose and the Chemoenzymatic Synthesis of the Carbohydrate Antigen Stage Specific Embryonic Antigen-3. Adv. Synth. Catal. 2014, 356, 3199-3213.
86. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-Kinase in the Complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444-6449.
87. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chena, W.; Wang, P. G., A Chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun. 2009, 2944-2946.
88. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O’Neil, C.; Wang, P. G., Substrate Specificity of N-Acetylhexosamine Kinase Towards N-Acetylgalactosamine Derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 5433-5435.
89. Coyne, M. J.; Reinap, B.; Lee, M. M.; Comstock, L. E., Human Symbionts Use a Host-Like Pathway for Surface Fucosylation. Science 2005, 307, 1778-1781.
90. Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; Amo, D. S. d.; Garret, S.; III, R. D. S.; Wu, P., Chemoenzymatic Synthesis of GDP-L-Fucose and the Lewis X Glycan Derivatives. Proc. Natl. Acad. Sci. USA 2009, 106, 16096-16101.
91. Litterer, L. A.; Schnurr, J. A.; Plaisance, K. L.; Storey, K. K.; Gronwald, J. W.; Somers, D. A., Characterization and Expression of Arabidopsis UDP-Sugar Pyrophosphorylase. Plant Physiol. Biochem. 2006, 44, 171-180.
92. Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J.; Wang, P. G.; Chen, M., Biosynthesis of Nucleotide Sugars by a Promiscuous UDP-Sugar Pyrophosphorylase from Arabidopsis Thaliana (AtUSP). Bioorg. Med. Chem. Lett. 2013, 23, 3764-3768.
93. Timmons, S. C.; Mosher, R. H.; Knowles, S. A.; Jakeman, D. L., Exploiting Nucleotidylyltransferases To Prepare Sugar Nucleotides. Org. Lett. 2007, 9, 857-860.
94. Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekana, H.; Chen, X., Efficient One-Pot Multienzyme Synthesis of UDP-Sugars Using a Promiscuous UDP-Sugar Pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem. Commun. 2012, 48, 2728-2730.
95. Zou, Y.; Xue, M.; Wang, W.; Cai, L.; Chen, L.; Liu, J.; Wang, P. G.; Shen, J.; Chen, M., One-pot Three-Enzyme Synthesis of UDP-Glc, UDP-Gal, and Their Derivatives. Carbohydr. Res. 2012, 373, 76-81.
96. Mengin-Lecreulx, D.; Heijenoort, J. v., Identification of the glmU Gene Encoding N-Acetylglucosamine-1-Phosphate Uridyltransferase in Escherichia coli. J. Bacteriol. 1993, 175, 6150-6157.
97. Mengin-Lecreulx, D.; Heijenoort, J. v., Copurification of Glucosamine-1-Phosphate Acetyltransferase and N-Acetylglucosamine-1-Phosphate Uridyltransferase Activities of Escherichia coli: Characterization of the glmU Gene Product as a Bifunctional Enzyme Catalyzing Two Subsequent Steps in the Pathway for UDP-N-Acetylglucosamine Synthesis. J. Bacteriol. 1994, 176, 5788-5795.
98. Guan, W.; Cai, L.; Fang, J.; Wu, B.; Wang, P. G., Enzymatic Synthesis of UDP-GlcNAc/UDP-GalNAc Analogs Using N-Acetylglucosamine 1-Phosphate Uridyltransferase (GlmU). Chem. Commun. 2009, 6976-6978.
99. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic Synthesis of CMP-Sialic Acid Derivatives by a One-Pot Two-Enzyme System: Comparison of Substrate Flexibility of Three Microbial CMP-Sialic Acid Synthetases. Bioorg. Med. Chem. 2004, 12, 6427-6435.
100. Knorst, M.; Fessner, W.-D., CMP-Sialate Synthetase from Neisseria meningitidis-Overexpression and Application to the Synthesis of Oligosaccharides Containing Modified Sialic Acids. Adv. Synth. Catal. 2001, 343, 698-710.
101. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384 Identification of The Glycosyltransferase Genes, Enzymatic Synthesis of Model Compounds and Characterization of Nanomole Amounts by 600-MHz 1H and 13C NMR. J. Biol. Chem. 2000, 275, 3896-3906.
102. Gilbert, M.; Karwaski, M.-F.; Bernatchez, S.; Young, N. M.; Taboada, E.; Michniewicz, J.; Cunningham, A.-M.; Wakarchuk, W. W., The Genetic Bases for the Variation in the Lipo-oligosaccharide of the Mucosal Pathogen, Campylobacter jejuni: Biosynthesis of Sialylated Ganglioside Mimics in the Core Oligosaccharide. J. Biol. Chem. 2002, 277, 327-337.
103. Bernatchez, S.; Gilbert, M.; Blanchard, M.-C.; Karwaski, M.-F.; Li, J.; DeFrees, S.; Wakarchuk, W. W., Variants of the β1,3-Galactosyltransferase CgtB from the Bacterium Campylobacter jejuni Have Distinct Acceptor Specificities. Glycobiology 2007, 17, 1333-1343.
104. Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J.-F.; Dougherty, B. A.; Merrick, J. M.; McKenney, K.; Sutton, G.; FitzHugh, W.; Fields, C.; Gocayne, J. D.; Scott, J.; Shirley, R.; Liu, L.-l.; Glodek, A.; Kelley, J. M.; Weidman, J. F.; Phillips, C. A.; Spriggs, T.; Hedblom, E.; Cotton, M. D.; Utterback, T. R.; Hanna, M. C.; Nguyen, D. T.; Saudek, D. M.; Brandon, R. C.; Fine, L. D.; Fritchman, J. L.; Fuhrmann, J. L.; Geoghagen, N. S. M.; Gnehm, C. L.; McDonald, L. A.; Small, K. V.; Fraser, C. M.; Smith, H. O.; Venter, J. C., Whole-Genome Random Sequencing and Assembly of Haemophilus influenzae Rd. Science 1995, 269, 496-512.
105. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Overexpression and Biochemical Characterization of β-1,3-N-Acetylgalactosaminyltransferase LgtD from Haemophilus influenzae Strain Rd. Biochem. Biophys. Res. Commun. 2002, 295, 1-8.
106. Shao, J.; Zhang, J.; Kowal, P.; Wang, P. G., Donor Substrate Regeneration for Efficient Synthesis of Globotetraose and Isoglobotetraose. Appl. Environ. Microbiol. 2002, 68, 5634-5640.
107. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Efficient Synthesis of Globoside and Isogloboside Tetrasaccharides by Using β(1-3)-N-Acetylgalactosaminyltransferase/UDP-N-Acetylglucosamine C4 Epimerase Fusion Protein. Chem. Commun. 2003, 1422-1423.
108. Randriantsoa, M.; Drouillard, S.; Breton, C.; Samain, E., Synthesis of Globopentaose Using a Novel β1,3-Galactosyltransferase Activity of the Haemophilus influenzae β1,3-N-Acetylgalactosaminyltransferase LgtD. FEBS Lett. 2007, 581, 2652-2656.
109. Stein, D. B.; Lin, Y.-N.; Lin, C.-H., Characterization of Helicobacter pylori α1,2-Fucosyltransferase for Enzymatic Synthesis of Tumor-Associated Antigens. Adv. Synth. Catal. 2008, 350, 2313-2321.
110. Engels, L.; Elling, L., WbgL: a Novel Bacterial α1,2-Fucosyltransferase for the Synthesis of 2'-Fucosyllactose. Glycobiology 2014, 24, 170-178.
111. Yu, C.-C.; Withers, S. G., Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv. Synth. Catal. 2015, 357, 1633-1654.
112. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A Multifunctional Pasteurella multocida Sialyltransferase: A Powerful Tool for the Synthesis of Sialoside Libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
113. Yu, H.; Cao, H.; Tiwari, V. K.; Li, Y.; Chen, X., Chemoenzymatic Synthesis of C8-Modified Sialic Acids and Related α2-3- and α2-6-Linked Sialosides. Bioorg. Med. Chem. Lett. 2011, 21, 5037-5040.
114. Khedri, Z.; Xiao, A.; Yu, H.; Landig, C. S.; Li, W.; Diaz, S.; Wasik, B. R.; Parrish, C. R.; Wang, L.-P.; Varki, A.; Chen, X., A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9‑O-Acetyl Sialic Acids. ACS Chem. Biol. 2017, 12, 214-224.
115. Khedri, Z.; Muthana, M. M.; Li, Y.; Muthana, S. M.; Yu, H.; Cao, H.; Chen, X., Probe Sialidase Substrate Specificity Using Chemoenzymatically Synthesized Sialosides Containing C9-Modified Sialic Acid. Chem. Commun. 2012, 48, 3357-3359.
116. Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A. J.; Chen, X., A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating LewisX. ACS Chem. Biol. 2012, 7, 1232-1240.
117. Gilbert, M.; Watson, D. C.; Cunningham, A.-M.; Jennings, M. P.; Young, N. M.; Wakarchuk, W. W., Cloning of the Lipooligosaccharide α-2,3-Sialyltransferase from the Bacterial Pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 1996, 271, 28271-28276.
118. Izumi, M.; Shen, G.-J.; Wacowich-Sgarbi, S.; Nakatani, T.; Plettenburg, O.; Wong, C.-H., Microbial Glycosyltransferases for Carbohydrate Synthesis: α-2,3-Sialyltransferase from Neisseria gonorrheae. J. Am. Chem. Soc. 2001, 123, 10909-10918.
119. Mehta, S.; Gilbert, M.; Wakarchuk, W. W.; Whitfield, D. M., Ready Access to Sialylated Oligosaccharide Donors. Org. Lett. 2000, 2, 751-753.
120. Morley, h. J.; Withers, S. G., Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437.
121. Yu, C.-C.; Hill, T.; Kwan, D. H.; Chen, H.-M.; Lin, C.-C.; Wakarchuk, W.; Withers, S. G., A Plate-Based High-Throughput Activity Assay for Polysialyltransferase from Neisseria meningitidis. Anal. Biochem. 2014, 444, 67-74.
122. Jacques, S.; Rich, J. R.; Ling, C.-C.; Bundle, D. R., Chemoenzymatic Synthesis of GM3 and GM2 Gangliosides Containing a Truncated Ceramide Functionalized for Glycoconjugate Synthesis and Solid Phase Applications. Org. Biomol. Chem. 2006, 4, 142-154.
123. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I., A Novel α-2,6-Sialyltransferase: Transfer of Sialic Acid to Fucosyl and Sialyl Trisaccharides. J. Org. Chem. 1996, 61 (8632-8635).
124. Yamamoto, T.; Nakashizuka, M.; Terada, I., Cloning and Expression of a Marine Bacterial β-Galactoside α-2,6-Sialyltransferase Gene from Photobacterium damsela JT0160. J. Biochem. 1998, 123, 94-100.
125. Cheng, J.; Huang, S.; Yu, H.; Li, Y.; Lau, K.; Chen, X., Trans-Sialidase Activity of Photobacterium damsela α2,6-Sialyltransferase and Its Application in the Synthesis of Sialosides. Glycobiology 2010, 20, 260-268.
126. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly Efficient Chemoenzymatic Synthesis of Naturally Occurring and Non-Natural α-2,6-Linked Sialosides : A P. damsela α-2,6-Sialyltransferase with Extremely Flexible Donor-Substrate Specificity. Angew. Chem. Int. Ed. 2006, 45, 3938-3944.
127. Li, W.; Xiao, A.; Li, Y.; Yu, H.; Chen, X., Chemoenzymatic Synthesis of Neu5Ac9NAc-Containing α2-3- and α2-6-Linked Sialosides and Their Use for Sialidase Substrate Specificity Studies. Carbohydr. Res. 2017, 451, 51-58.
128. Khedri, Z.; Li, Y.; Muthana, S.; Muthana, M. M.; Hsiao, C.-W.; Yu, H.; Chen, X., Chemoenzymatic Synthesis of Sialosides Containing C7-Modified Sialic Acids and Their Application in Sialidase Substrate Specificity Studies. Carbohydr. Res. 2014, 389, 100-111.
129. Nycholat, C. M.; Peng, W.; McBride, R.; Antonopoulos, A.; Vries, R. P. d.; Polonskaya, Z.; Finn, M. G.; Dell, A.; Haslam, S. M.; Paulson, J. C., Synthesis of Biologically Active N- and O‑Linked Glycans with Multisialylated Poly‑N‑acetyllactosamine Extensions Using P. damsela α2‑6 Sialyltransferase. J. Am. Chem. Soc. 2013, 135, 18280-18283.
130. Chien, W.-T.; Liang, C.-F.; Yu, C.-C.; Lin, C.-H.; Li, S.-P.; Primadona, I.; Chen, Y.-J.; Mong, K. K. T.; Lin, C.-C., Sequential One-Pot Enzymatic Synthesis of Oligo-N-Acetyllactosamine and Its Multi-Sialylated Extensions. Chem. Commun. 2014, 50, 5786-5789.
131. Tsukamotoy, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 Produces Two Sialyltransferases, α-/β-Galactoside α2,3-Sialyltransferase and β-Galactoside α2,6-Sialyltransferase. J. Biochem. 2008, 143, 187-197.
132. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient Chemoenzymatic Synthesis of Sialyl Tn-Antigens and Derivatives. Chem. Commun. 2011, 47, 8691-8693.
133. Ding, L.; Zhao, C.; Qu, J.; Li, Y.; Sugiarto, G.; Yu, H.; Wang, J.; Chen, X., A Photobacterium sp. α2-6-sialyltransferase (Psp2,6ST) Mutant with an Increased Expression Level and Improved Activities in Sialylating Tn Antigens. Carbohydr. Res. 2015, 408, 127-133.
134. Cheng, J.; Yu, H.; Lau, K.; Huang, S.; Chokhawala, H. A.; Li, Y.; Tiwari, V. K.; Chen, X., Multifunctionality of Campylobacter jejuni Sialyltransferase CstII: Characterization of GD3/GT3 Oligosaccharide Synthase, GD3 Oligosaccharide Sialidase, and Trans-Sialidase Activities. Glycobiology 2008, 18, 686-697.
135. Yu, H.; Cheng, J.; Ding, L.; Khedri, Z.; Chen, Y.; Chin, S.; Lau, K.; Tiwari, V. K.; Chen, X., Chemoenzymatic Synthesis of GD3 Oligosaccharides and Other Disialyl Glycans Containing Natural and Non-natural Sialic Acids. J. Am. Chem. Soc. 2009, 131, 18467-18477.
136. 簡薇庭. Sequencial Enzymatic Synthesis of Sugar Nucleotides and Its Application on Poly-LacNAc Synthesis. 博士論文, 國立清華大學, 2012.
137. 侯凱齡. Fluorous-Tag Assisted Chemoenzymatic Synthesis of Oligosaccharides. 碩士論文, 國立清華大學, 2013.
138. 郭力禎. Enzymatic Sialylation of Globo-Series Glycans. 碩士論文, 國立清華大學, 2015.
139. 游景晴. Site-Specific CMP-Sialic Acid Synthetase Immobilized Magnetic Nanoparticle and Its Application in Organic Synthesis. 碩士論文, 國立清華大學, 2007.
140. Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H., Effective Sugar Nucleotide Regeneration for the Large-Scale Enzymatic Synthesis of Globo H and SSEA4. J. Am. Chem. Soc. 2013, 135, 14831-14839.
141. 游景晴. Development of Nanoparticle-Based System for Enzyme Immobilization and High Through-Put Enzyme Screening. 博士論文, 國立清華大學, 2012.
142. 郭昱瑩. α-2,3-Sialyltranferase C-terminal Modification & Immobilization. 碩士論文, 國立清華大學, 2008.
143. Meng, X.; Yao, W.; Cheng, J.; Zhang, X.; Jin, L.; Yu, H.; Chen, X.; Wang, F.; Cao, H., Regioselective Chemoenzymatic Synthesis of Ganglioside Disialyl Tetrasaccharide Epitopes. J. Am. Chem. Soc. 2014, 136, 5205-5208.
144. 黃思瑜. Synthesis of Globo H, DSGb5, and Globo-Series Sialosides. 碩士論文, 國立清華大學, 2017.
145. 蕭偉鎮. Chemoenzymatic Synthesis of Oligosaccharides. 博士論文, 國立清華大學, 2014.
146. 吳心如. Enzymatic Synthesis of Oligo-N-acetyllactosamine (oligo-LacNAc) and Their Sialylated Derivatives. 博士論文, 國立清華大學, 2017.
147. Takayama, S.; OLivingston, P.; Wong, C.-H., Synthesis of the Melanoma-Associated Ganglioside 9-O-Acetyl GD3 through Regioselective Enzymatic Acetylation of GD3 Using Subtilisin. Tetrahedron Lett. 1996, 37, 9271-9274.
148. Kuan, T.-C.; Wu, H.-R.; Adak, A. K.; Li, B.-Y.; Liang, C.-F.; Hung, J.-T.; Chiou, S.-P.; Yu, A. L.; Hwu, J. R.; Lin, C.-C., Synthesis of an S-Linked α(2-8) GD3 Antigen and Evaluation of the Immunogenicity of Its Glycoconjugate. Chem. Eur. J. 2017, 23, 6876-6887.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *