|
1. Wen, L.; Zheng, Y.; Jiang, K.; Zhang, M.; Kondengaden, S. M.; Li, S.; Huang, K.; Li, J.; Song, J.; Wang, P. G., Two-Step Chemoenzymatic Detection of N-Acetylneuraminic Acid-α(2-3)-Galactose Glycans. J. Am. Chem. Soc. 2016, 138, 11473-11476. 2. Peng, W.; Paulson, J. C., CD22 Ligands on a Natural N‑Glycan Scaffold Efficiently Deliver Toxins to B‑Lymphoma Cells. J. Am. Chem. Soc. 2017, 139, 12450-12458. 3. Yang, J.; Fu, X.; Liao, J.; Liu, L.; Thorson, J. S., Structure-Based Engineering of E. coli Galactokinase as a First Step toward In Vivo Glycorandomization. Chem. Biol. 2005, 12, 657-664. 4. Yang, G.; Rich, J. R.; Gilbert, M.; Wakarchuk, W. W.; Feng, Y.; Withers, S. G., Fluorescence Activated Cell Sorting as a General Ultra-High-Throughput Screening Method for Directed Evolution of Glycosyltransferases. J. Am. Chem. Soc. 2010, 132, 10570-10577. 5. Koeller, K. M.; Wong, C.-H., Enzymes for Chemical Synthesis. Nature 2001, 409, 232-240. 6. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the Myths-Biocatalysis in Industrial Synthesis. Science 2003, 299, 1694-1697. 7. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial Biocatalysis Today and Tomorrow. Nature 2001, 409, 258-268. 8. Blix, F. G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acid. Nature 1957, 179, 1088-1088. 9. Varki, A., Loss of N-Glycolylneuraminic Acid in Humans: Mechanisms, Consequences, and Implications for Hominid Evolution. Am. J. Phys. Anthropol. 2001, 116, 54-69. 10. Bardo, M.; Nguyen, D. H.; Diaz, S.; Varki, A., Mechanism of Uptake and Incorporation of the Non-human Sialic Acid N-Glycolylneuraminic Acid into Human Cells. J. Biol. Chem. 2005, 280, 4228-4237. 11. Angata, T.; Varki, A., Chemical Diversity in the Sialic Acids and Related α-Keto Acids: An Evolutionary Perspective. Chem. Rev. 2002, 102, 439-469. 12. Crocker, P. R.; Varki, A., Siglecs in the Immune System. Immunology 2001, 103, 137-145. 13. Fuster, M. M.; Esko, J. D., The Sweet and Sour of Cancer Glycans as Novel Therapeutic Targets. Nature 2005, 5, 526-542. 14. Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H., Essentials of Glycobiology, Third Edition. Cold Spring Harbor, New York: 2017. 15. Yu, R. K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M., Structures, Biosynthesis and Functions of Gangliosides - an Overview. J. Oleo Sci. 2011, 60, 537-544. 16. Lemmon, M. A.; Schlessinger, J., Cell Signaling by Receptor Tyrosine Kinases. Cell 2010, 141, 1117-1134. 17. Julien, S.; Bobowski, M.; Steenackers, A.; Bourhis, X. L.; Delannoy, P., How Do Gangliosides Regulate RTKs Signaling? Cells 2013, 2, 751-767. 18. Miljan, E. A.; Meuillet, E. J.; Mania-Farnell, B.; George, D.; Yamamoto, H.; Simon, H.-G.; Bremer, E. G., Interaction of the Extracellular Domain of the Epidermal Growth Factor Receptor with Gangliosides. J. Biol. Chem. 2002, 277, 10108-10113. 19. Li, R.; Liu, Y.; Ladisch, S., Enhancement of Epidermal Growth Factor Signaling and Activation of Src Kinase by Gangliosides. J. Biol. Chem. 2001, 276, 42782-42792. 20. Schnaar, R. L.; Gerardy-Schahn, R.; Hildebrandt, H., Sialic Acid in the Brain: Gangliosides and Polysialic acid in Nervous System Development, Stability, Disease and Regeneration. Physiol. Rev. 2014, 94, 461-518. 21. Ngamukote, S.; Yanagisawa, M.; Ariga, T.; Ando, S.; Yu, R. K., Developmental Changes of Glycosphingolipids and Expression of Glycogenes in Mouse Brains. J. Neurochem. 2007, 103, 2327-2341. 22. Sugiura, Y.; Furukawa, K.; Tajima, O.; Mii, S.; Honda, T.; Furukawa, K., Sensory Nerve-Dominant Nerve Degeneration and Remodeling in the Mutant Mice Lacking Complex Gangliosides. Neurosci. 2005, 135, 1167-1178. 23. Okada, M.; Itoh, M.-i.; Haraguchi, M.; Okajima, T.; Inoue, M.; Oishi, H.; Matsuda, Y.; Iwamoto, T.; Kawano, T.; Fukumoto, S.; Miyazaki, H.; Furukawa, K.; Aizawa, S.; Furukawa, K., b-series Ganglioside Deficiency Exhibits No Definite Changes in the Neurogenesis and the Sensitivity to Fas-mediated Apoptosis but Impairs Regeneration of the Lesioned Hypoglossal Nerve. J. Biol. Chem. 2002, 277, 1633-1636. 24. Ribeiro-Resende, V. T. l.; Gomes, T. A. j.; Lima, S. d.; Nascimento-Lima, M.; Bargas-Rega, M.; Santiago, M. F.; Reis, R. A. d. M.; Mello, F. G. d., Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration. PLoS One 2014, 9, e108919. 25. Jeyakumar, M.; Dwek, R. A.; Butters, T. D.; Platt, F. M., Storage Solution: Treating Lysosomal Disorders of The Brain. Nature Rev. 2005, 6, 713-725. 26. Godschalk, P. C. R.; Kuijf, M. L.; Li, J.; Michael, F. S.; Ang, C. W.; Jacobs, B. C.; Karwaski, M.-F.; Brochu, D.; Moterassed, A.; Endtz, H. P.; Belkum, A. v.; Gilbert, M., Structural Characterization of Campylobacter jejuni Lipooligosaccharide Outer Cores Associated with Guillain-Barré and Miller Fisher Syndromes. Infect. Immun. 2007, 75, 1245-1254. 27. Nachamkin, I.; Jirong Liu, M. L.; Ung, H.; Moran, A. P.; Prendergast, M. M.; Sheikh, K., Campylobacter jejuni from Patients with Guillain-Barré Syndrome Preferentially Expresses a GD1a-Like Epitope. Infect. Immun. 2002, 70, 5299-5303. 28. Wu, G.; Lu, Z.-H.; Kulkarni, N.; Ledeen, R. W., Deficiency of Ganglioside GM1 Correlates With Parkinson’s Disease in Mice and Humans. J. Neurosci. Res. 2012, 90, 1997-2008. 29. Maglione, V.; Marchi, P.; Pardo, A. D.; Lingrell, S.; Horkey, M.; Tidmarsh, E.; Sipione, S., Impaired Ganglioside Metabolism in Huntington's Disease and Neuroprotective Role of GM1. J. Neurosci. 2010, 30, 4072-4080. 30. Ikeda, K.; Yamaguchi, T.; Fukunaga, S.; Hoshino, M.; Matsuzaki, K., Mechanism of Amyloid β-Protein Aggregation Mediated by GM1 Ganglioside Clusters. Biochemistry 2011, 50, 6433-6440. 31. Huang, E. J.; Reichardt, L. F., Neurotrophin Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677-736. 32. Mutoh, T.; Tokuda, A.; Miyadai, T.; Hamaguchi, M.; Fujiki, N., Ganglioside GM1 Binds to the Trk Protein and Regulates Receptor Function. Proc. Natl. Acad. Sci. USA 1995, 92, 5087-5091. 33. Tsuji, S.; Arita, M.; Nagai, Y., GQlb, a Bioactive Ganglioside that Exhibits Novel Nerve Growth Factor (NGF)-Like Activities in the Two Neuroblastoma Cell Lines. J. Biochem. 1983, 94, 303-306. 34. Shin, M. K.; Jung, W. R.; Kim, H. G.; Roh, S. E.; Kwak, C. H.; Kim, C. H.; Kim, S. J.; Kim, K. L., The Ganglioside GQ1b Regulates BDNF Expression via the NMDA Receptor Signaling Pathway. Neuropharmacology 2014, 77, 414-421. 35. Schneider, J. S.; Gollomp, S. M.; Sendek, S.; Colcher, A.; Cambi, F.; Du, W., A Randomized, Controlled, Delayed Start Trial of GM1 Ganglioside in Treated Parkinson's Disease Patients. J. the Neurol. Sci. 2013, 324, 140-148. 36. Geisle, F. H.; Coleman, W. P.; Grieco, G.; Poonian, D., The Sygen Multicenter Acute Spinal Cord Injury Study. SPINE 2001, 26, S87-S98. 37. Hakomori, S.-i., Tumor-Associated Carbohydrate Antigens. Annu. Rev. Immunol. 1984, 2, 103-126. 38. Fuster, M. M.; Esko, J. D., The Sweet and Sour of Cancer: Glycans as Novel Therapeutic Targets. Nat. Rev. Cancer 2005, 5, 526-542. 39. Carubia, J. M.; Yu, R. K.; Macala, L. J.; Kirkwood, J. M.; Varga, J. M., Gangliosides of Normal and Neoplastic Human Melanocytes. Biochem. Biophys. Res. Commun. 1984, 120, 500-504. 40. Nicoll, G.; Avril, T.; Lock, K.; Furukawa, K.; Bovin, N.; Crocker, P. R., Ganglioside GD3 Expression on Target Cells can Modulate NK Cell Cytotoxicity via Siglec-7-Dependent and -Independent Mechanisms. Eur. J. Immunol. 2003, 33, 1642-1648. 41. Biswas, K.; Richmond, A.; Rayman, P.; Biswas, S.; Thornton, M.; Sa, G.; Das, T.; Zhang, R.; Chahlavi, A.; Tannenbaum, C. S.; Novick, A.; Bukowski, R.; Finke, J. H., GM2 Expression in Renal Cell Carcinoma: Potential Role in Tumor-Induced T-Cell Dysfunction. Cancer Res. 2006, 66, 6816-6825. 42. Lammie, G. A.; Cheung, N.-K. V.; Gerald, W.; Rosenblum, M.; Cordon-Cardo, C., Ganglioside GD2 Expression in the Human Nervous System and in Neuroblastomas - An Immunohistochemical Study. Int. J. Oncol. 1993, 3, 909-915. 43. Watanabe, T.; Pukel, C. S.; Takeyama, H.; Lloyd, K. O.; Shiku, H.; Li, L. T. C.; Travassos, L. R.; Oettgen, H. F.; Old, L. J., Human Melanoma Antigen AH is an Autoantigenic Ganglioside Related to GD2. J. Exp. Med. 1982, 156, 1884-1889. 44. Cheresh, D. A.; Rosenberg, J.; Mujoo, K.; Hirschowitz, L.; Reisfeld, R. A., Biosynthesis and Expression of the Disialoganglioside GD2, a Relevant Target Antigen on Small Cell Lung Carcinoma for Monoclonal Antibody-mediated Cytolysis. Cancer Res. 1986, 46, 5112-5118. 45. Mennel, H. D.; Bossllet, K.; Wiegandt, H.; Sedlacek, H. H.; Bauer, B. L.; Rodden, A. F., Expression of GD2-Epitopes in Human Intracranial Tumors and Normal Brain. Exp. Toxicol. Pathol. 1992, 44, 317-324. 46. Battula, V. L.; Shi, Y.; Evans, K. W.; Wang, R.-Y.; Spaeth, E. L.; Jacamo, R. O.; Guerra, R.; Sahin, A. A.; Marini, F. C.; Hortobagyi, G.; Mani, S. A.; Andreeff, M., Ganglioside GD2 Identifies Breast Cancer Stem Cells and Promotes Tumorigenesis. J. Clin. Investig. 2012, 122, 2066-2078. 47. Yu, A. L.; Gilman, A. L.; Ozkaynak, M. F.; London, W. B.; Kreissman, S. G.; Chen, H. X.; Smith, M.; Anderson, B.; Villablanca, J. G.; Matthay, K. K.; Shimada, H.; Grupp, S. A., Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. N. Engl. J. Med. 2010, 363, 1324-1334. 48. Alvarez-Rueda, N.; Desselle, A.; Cochonneau, D.; Chaumette, T.; Clemenceau, B. a.; Leprieur, S. p.; Bougras, G.; Supiot, S. p.; Mussini, J.-M.; Barbet, J.; Saba, J.; Paris, F. o.; Aubry, J.; Birkle, S. p., A Monoclonal Antibody to O-Acetyl-GD2 Ganglioside and Not to GD2 Shows Potent Anti-Tumor Activity without Peripheral Nervous System Cross-Reactivity. PLoS One 2011, 6, e25220. 49. Terme, M.; Dorvillius, M.; Cochonneau, D.; Chaumette, T.; Xiao, W.; Diccianni, M. B.; Barbet, J.; Yu, A. L.; Paris, F.; Sorkin, L. S.; Birklé, S., Chimeric Antibody c.8B6 to O-Acetyl-GD2 Mediates the Same Efficient Anti-Neuroblastoma Effects as Therapeutic ch14.18 Antibody to GD2 without Antibody Induced Allodynia. PLoS One 2014, 9, e87210. 50. Ito, H.; Ishida, H.; Waki, H.; Ando, S.; Kiso, M., Total Synthesis of a Cholinergic Neuron-Specific Ganglioside GT1aα: A High Affinity Ligand for Myelin-Associated Glycoprotein (MAG). Glycoconj. J. 1999, 16, 585-598. 51. Imamura, A.; Ando, H.; Ishida, H.; Kiso, M., Ganglioside GQ1b: Efficient Total Synthesis and the Expansion to Synthetic Derivatives To Elucidate Its Biological Roles. J. Org. Chem. 2009, 74, 3009-3023. 52. Matsuzaki, Y.; Nunomura, S.; Ito, Y.; Sugimoto, M.; Nakahara, Y.; Ogawa, T., Stereocontrolled Synthesis of GD2. Carbohydr. Res. 1993, 242, C1-C6. 53. Priem, B.; Gilbert, M.; Wakarchuk, W. W.; Heyraud, A.; Samain, E., A New Fermentation Process Allows Large-Scale Production of Human Milk Oligosaccharides by Metabolically Engineered Bacteria. Glycobiology 2002, 12, 235-240. 54. Antoine, T.; Priem, B.; Heyraud, A.; Greffe, L.; Gilbert, M.; Wakarchuk, W. W.; Lam, J. S.; Samain, E., Large-Scale In Vivo Synthesis of the Carbohydrate Moieties of Gangliosides GM1 and GM2 by Metabolically Engineered Escherichia coli. ChemBioChem 2003, 4, 406-412. 55. Antoine, T.; Heyraud, A.; Bosso, C.; Samain, E., Highly Efficient Biosynthesis of the Oligosaccharide Moiety of the GD3 Ganglioside by Using Metabolically Engineered Escherichia coli. Angew. Chem. Int. Ed. 2005, 44, 1350-1352. 56. Blixt, O.; Vasiliu, D.; Allin, K.; Jacobsen, N.; Warnock, D.; Razi, N.; Paulson, J. C.; Bernatchez, S. p.; Gilbertb, M.; Wakarchuk, W., Chemoenzymatic Synthesis of 2-Azidoethyl-Ganglio-Oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 2005, 340, 1963-1972. 57. Pukin, A. V.; Florack, D. E. A.; Brochu, D.; Lagen, B. v.; Visser, G. M.; Wennekes, T.; Gilbert, M.; Zuilhof, H., Chemoenzymatic Synthesis of Biotin-Appended Analogues of Gangliosides GM2, GM1, GD1a and GalNAc-GD1a for Solid-Phase Applications and Improved ELISA tests. Org. Biomol. Chem. 2011, 9, 5809-5815. 58. Yu, H.; L, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J. Org. Chem. 2016, 81, 10809-10824. 59. Thon, V.; Li, Y.; Yu, H.; Lau, K.; Chen, X., PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2-3-sialyltransferase. Appl. Microbiol. Biotechnol. 2012, 94, 977-985. 60. Yu, H.; Santra, A.; Li, Y.; McArthur, J. B.; Ghosh, T.; Yang, X.; Wang, P. G.; Chen, X., Streamlined Chemoenzymatic Total Synthesis of Prioritized Ganglioside Cancer Antigens Org. Biomol. Chem. 2018. 61. Crocker, P. R.; Paulson, J. C.; Varki, A., Siglecs and Their Roles in the Immune System. Nature Rev. 2007, 7, 255-266. 62. May, A. P.; Robinson, R. C.; Vinson, M.; Crocker, P. R.; Jones, E. Y., Crystal Structure of the N-terminal Domain of Sialoadhesin in Complex with 3' Sialyllactose at 1.85 Å Resolution. Mol. Cell 1998, 1, 719-728. 63. Crocher, P. R.; Vinson, M.; Kelm, S.; Drickamer, K., Molecular Analysis of Sialoside Binding to Sialoadhesin by NMR and Site-Directed Mutagenesis. Biochem. J. 1999, 341, 355-361. 64. Yamaji, T.; Teranishi, T.; Alphey, M. S.; Crocker, P. R.; Hashimoto, Y., A Small Region of the Natural Killer Cell Receptor, Siglec-7, Is Responsible for Its Preferred Binding to α2,8-Disialyl and Branched α2,6-Sialyl Residues A Comparison With Siglec-9. J. Biol. Chem. 2002, 277, 6324-6332. 65. Alphey, M. S.; Attrill, H.; Crocker, P. R.; Aalten, D. M. F. v., High Resolution Crystal Structures of Siglec-7 Insights into Ligand Specificity in the Siglec Family. J. Biol. Chem. 2003, 278, 3372-3377. 66. Attrill, H.; Imamura, A.; Sharma, R. S.; Kiso, M.; Crocker, P. R.; Aalten, D. M. F. v., Siglec-7 Undergoes a Major Conformational Change When Complexed with the α(2,8)-Disialylganglioside GT1b. J. Biol. Chem. 2006, 281, 32774-32783. 67. Bochne, B. S.; Alvarez, R. A.; Mehta, P.; Bovin, N. V.; Blixt, O.; White, J. R.; Schnaar, R. L., Glycan Array Screening Reveals a Candidate Ligand for Siglec-8. J. Biol. Chem. 2005, 280, 4307-4312. 68. Rillahan, C. D.; Schwartz, E.; McBride, R.; Fokin, V. V.; Paulson, J. C., Click and Pick: Identification of Sialoside Analogues for Siglec-Based Cell Targeting. Angew. Chem. Int. Ed. 2012, 51, 11014-11018. 69. Rillahan, C. D.; Macauley, M. S.; Schwartz, E.; He, Y.; McBride, R.; Arlian, B. M.; Rangarajan, J.; Fokinc, V. V.; Paulson, J. C., Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B cell Lymphomas. Chem. Sci. 2014, 5, 2398-2406. 70. S. Macauley, M.; R. Crocker, P.; C. Paulson, J., Siglec-Mediated Regulation of Immune Cell Function in Disease. Nat. Rev. 2014, 14, 653-666. 71. Bandala-Sanchez, E.; Zhang, Y.; Reinwald, S.; Dromey, J. A.; Lee, B.-H.; Qian, J.; Böhmer, R. M.; Harrison, L. C., T cell Regulation Mediated by Interaction of Soluble CD52 with the Inhibitory Receptor Siglec-10. Nat. Immunol. 2013, 14, 741-748. 72. Avril, T.; Wagner, E. R.; Willison, H. J.; Crocker, P. R., Sialic Acid-Binding Immunoglobulin-Like Lectin 7 Mediates Selective Recognition of Sialylated Glycans Expressed on Campylobacter jejuni Lipooligosaccharides. Infect. Immun. 2006, 74 (4133-4141). 73. Uckun, F. M.; Goodmand, P.; Maa, H.; Dibirdik, I.; Qazi, S., CD22 EXON 12 Deletion as a Pathogenic Mechanism of Human B-Precursor Leukemia. Proc. Natl. Acad. Sci. USA 2010, 107, 16852-16857. 74. Malik, M.; Simpson, J. F.; Parikh, I.; Wilfred, B. R.; Fardo, D. W.; Nelson, P. T.; Estus, S., CD33 Alzheimer's Risk-Altering Polymorphism, CD33 Expression, and Exon 2 Splicing. J. Neurosci. 2013, 33, 13320-13325. 75. Quarles, R. H., Myelin-associated glycoprotein (MAG): past, present and beyond. J. Neurochem. 2007, 100, 1431-1448. 76. Filbin, M. T., Myelin-Associated Inhibitors of Axonal Regeneration in the Adult Mammalian CNS. Nature Rev. 2003, 4, 1-11. 77. Ernst, B.; Magnani, J. L., From Carbohydrate Leads to Glycomimetic. Nature Rev. 2009, 8, 661-611. 78. Vyas, A. A.; Blixt, O.; Paulson, J. C.; Schnaar, R. L., Potent Glycan Inhibitors of Myelin-associated Glycoprotein Enhance Axon Outgrowth in Vitro. J. Biol. Chem. 2005, 280, 16305-16310. 79. Gao, G.; Smiesko, M.; Schwardt, O.; Gäthje, H.; Kelm, S.; Vedania, A.; Ernst, B., Mimetics of the tri- and tetrasaccharide epitope of GQ1ba as myelin-associated glycoprotein (MAG) ligands. Bioorg. Med. Chem. 2007, 15, 7459-7469. 80. Ito, A.; Handa, K.; Withers, D. A.; Satoh, M.; Hakomori, S.-i., Binding Specificity of Siglec7 to Disialogangliosides of Renal Cell Carcinoma: Possible Role of Disialogangliosides in Tumor Progression. FEBS Lett. 2001, 504, 82-86. 81. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y., Ganglioside DSGb5, Preferred Ligand for Siglec-7, Inhibits NK Cell Cytotoxicity Against Renal Cell Carcinoma Cells. Glycobiology 2010, 20, 1373-1379. 82. Jandus, C.; Boligan, K. F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Démoulins, T.; Schneider, C.; Wehrli, M.; Hunger, R. E.; Baerlocher, G. M.; Simon, H.-U.; Romero, P.; Münz, C.; Gunten, S. v., Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Investig. 2014, 124, 1810-1820. 83. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555. 84. Bülter, T.; Elling, L., Enzymatic Synthesis of Nucleotide Sugars. Glycoconj. J. 1999, 16, 147-159. 85. Li, S.-P.; Hsiao, W.-C.; Yu, C.-C.; Chien, W.-T.; Lin, H.-J.; Huang, L.-D.; Lin, C.-H.; Wu, W.-L.; Wu, S.-H.; Lin, C.-C., Characterization of Meiothermus taiwanensis Galactokinase and its Use in the One-Pot Enzymatic Synthesis of Uridine Diphosphate-Galactose and the Chemoenzymatic Synthesis of the Carbohydrate Antigen Stage Specific Embryonic Antigen-3. Adv. Synth. Catal. 2014, 356, 3199-3213. 86. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-Kinase in the Complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444-6449. 87. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chena, W.; Wang, P. G., A Chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun. 2009, 2944-2946. 88. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O’Neil, C.; Wang, P. G., Substrate Specificity of N-Acetylhexosamine Kinase Towards N-Acetylgalactosamine Derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 5433-5435. 89. Coyne, M. J.; Reinap, B.; Lee, M. M.; Comstock, L. E., Human Symbionts Use a Host-Like Pathway for Surface Fucosylation. Science 2005, 307, 1778-1781. 90. Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; Amo, D. S. d.; Garret, S.; III, R. D. S.; Wu, P., Chemoenzymatic Synthesis of GDP-L-Fucose and the Lewis X Glycan Derivatives. Proc. Natl. Acad. Sci. USA 2009, 106, 16096-16101. 91. Litterer, L. A.; Schnurr, J. A.; Plaisance, K. L.; Storey, K. K.; Gronwald, J. W.; Somers, D. A., Characterization and Expression of Arabidopsis UDP-Sugar Pyrophosphorylase. Plant Physiol. Biochem. 2006, 44, 171-180. 92. Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J.; Wang, P. G.; Chen, M., Biosynthesis of Nucleotide Sugars by a Promiscuous UDP-Sugar Pyrophosphorylase from Arabidopsis Thaliana (AtUSP). Bioorg. Med. Chem. Lett. 2013, 23, 3764-3768. 93. Timmons, S. C.; Mosher, R. H.; Knowles, S. A.; Jakeman, D. L., Exploiting Nucleotidylyltransferases To Prepare Sugar Nucleotides. Org. Lett. 2007, 9, 857-860. 94. Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekana, H.; Chen, X., Efficient One-Pot Multienzyme Synthesis of UDP-Sugars Using a Promiscuous UDP-Sugar Pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem. Commun. 2012, 48, 2728-2730. 95. Zou, Y.; Xue, M.; Wang, W.; Cai, L.; Chen, L.; Liu, J.; Wang, P. G.; Shen, J.; Chen, M., One-pot Three-Enzyme Synthesis of UDP-Glc, UDP-Gal, and Their Derivatives. Carbohydr. Res. 2012, 373, 76-81. 96. Mengin-Lecreulx, D.; Heijenoort, J. v., Identification of the glmU Gene Encoding N-Acetylglucosamine-1-Phosphate Uridyltransferase in Escherichia coli. J. Bacteriol. 1993, 175, 6150-6157. 97. Mengin-Lecreulx, D.; Heijenoort, J. v., Copurification of Glucosamine-1-Phosphate Acetyltransferase and N-Acetylglucosamine-1-Phosphate Uridyltransferase Activities of Escherichia coli: Characterization of the glmU Gene Product as a Bifunctional Enzyme Catalyzing Two Subsequent Steps in the Pathway for UDP-N-Acetylglucosamine Synthesis. J. Bacteriol. 1994, 176, 5788-5795. 98. Guan, W.; Cai, L.; Fang, J.; Wu, B.; Wang, P. G., Enzymatic Synthesis of UDP-GlcNAc/UDP-GalNAc Analogs Using N-Acetylglucosamine 1-Phosphate Uridyltransferase (GlmU). Chem. Commun. 2009, 6976-6978. 99. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic Synthesis of CMP-Sialic Acid Derivatives by a One-Pot Two-Enzyme System: Comparison of Substrate Flexibility of Three Microbial CMP-Sialic Acid Synthetases. Bioorg. Med. Chem. 2004, 12, 6427-6435. 100. Knorst, M.; Fessner, W.-D., CMP-Sialate Synthetase from Neisseria meningitidis-Overexpression and Application to the Synthesis of Oligosaccharides Containing Modified Sialic Acids. Adv. Synth. Catal. 2001, 343, 698-710. 101. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384 Identification of The Glycosyltransferase Genes, Enzymatic Synthesis of Model Compounds and Characterization of Nanomole Amounts by 600-MHz 1H and 13C NMR. J. Biol. Chem. 2000, 275, 3896-3906. 102. Gilbert, M.; Karwaski, M.-F.; Bernatchez, S.; Young, N. M.; Taboada, E.; Michniewicz, J.; Cunningham, A.-M.; Wakarchuk, W. W., The Genetic Bases for the Variation in the Lipo-oligosaccharide of the Mucosal Pathogen, Campylobacter jejuni: Biosynthesis of Sialylated Ganglioside Mimics in the Core Oligosaccharide. J. Biol. Chem. 2002, 277, 327-337. 103. Bernatchez, S.; Gilbert, M.; Blanchard, M.-C.; Karwaski, M.-F.; Li, J.; DeFrees, S.; Wakarchuk, W. W., Variants of the β1,3-Galactosyltransferase CgtB from the Bacterium Campylobacter jejuni Have Distinct Acceptor Specificities. Glycobiology 2007, 17, 1333-1343. 104. Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J.-F.; Dougherty, B. A.; Merrick, J. M.; McKenney, K.; Sutton, G.; FitzHugh, W.; Fields, C.; Gocayne, J. D.; Scott, J.; Shirley, R.; Liu, L.-l.; Glodek, A.; Kelley, J. M.; Weidman, J. F.; Phillips, C. A.; Spriggs, T.; Hedblom, E.; Cotton, M. D.; Utterback, T. R.; Hanna, M. C.; Nguyen, D. T.; Saudek, D. M.; Brandon, R. C.; Fine, L. D.; Fritchman, J. L.; Fuhrmann, J. L.; Geoghagen, N. S. M.; Gnehm, C. L.; McDonald, L. A.; Small, K. V.; Fraser, C. M.; Smith, H. O.; Venter, J. C., Whole-Genome Random Sequencing and Assembly of Haemophilus influenzae Rd. Science 1995, 269, 496-512. 105. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Overexpression and Biochemical Characterization of β-1,3-N-Acetylgalactosaminyltransferase LgtD from Haemophilus influenzae Strain Rd. Biochem. Biophys. Res. Commun. 2002, 295, 1-8. 106. Shao, J.; Zhang, J.; Kowal, P.; Wang, P. G., Donor Substrate Regeneration for Efficient Synthesis of Globotetraose and Isoglobotetraose. Appl. Environ. Microbiol. 2002, 68, 5634-5640. 107. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Efficient Synthesis of Globoside and Isogloboside Tetrasaccharides by Using β(1-3)-N-Acetylgalactosaminyltransferase/UDP-N-Acetylglucosamine C4 Epimerase Fusion Protein. Chem. Commun. 2003, 1422-1423. 108. Randriantsoa, M.; Drouillard, S.; Breton, C.; Samain, E., Synthesis of Globopentaose Using a Novel β1,3-Galactosyltransferase Activity of the Haemophilus influenzae β1,3-N-Acetylgalactosaminyltransferase LgtD. FEBS Lett. 2007, 581, 2652-2656. 109. Stein, D. B.; Lin, Y.-N.; Lin, C.-H., Characterization of Helicobacter pylori α1,2-Fucosyltransferase for Enzymatic Synthesis of Tumor-Associated Antigens. Adv. Synth. Catal. 2008, 350, 2313-2321. 110. Engels, L.; Elling, L., WbgL: a Novel Bacterial α1,2-Fucosyltransferase for the Synthesis of 2'-Fucosyllactose. Glycobiology 2014, 24, 170-178. 111. Yu, C.-C.; Withers, S. G., Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv. Synth. Catal. 2015, 357, 1633-1654. 112. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A Multifunctional Pasteurella multocida Sialyltransferase: A Powerful Tool for the Synthesis of Sialoside Libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619. 113. Yu, H.; Cao, H.; Tiwari, V. K.; Li, Y.; Chen, X., Chemoenzymatic Synthesis of C8-Modified Sialic Acids and Related α2-3- and α2-6-Linked Sialosides. Bioorg. Med. Chem. Lett. 2011, 21, 5037-5040. 114. Khedri, Z.; Xiao, A.; Yu, H.; Landig, C. S.; Li, W.; Diaz, S.; Wasik, B. R.; Parrish, C. R.; Wang, L.-P.; Varki, A.; Chen, X., A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9‑O-Acetyl Sialic Acids. ACS Chem. Biol. 2017, 12, 214-224. 115. Khedri, Z.; Muthana, M. M.; Li, Y.; Muthana, S. M.; Yu, H.; Cao, H.; Chen, X., Probe Sialidase Substrate Specificity Using Chemoenzymatically Synthesized Sialosides Containing C9-Modified Sialic Acid. Chem. Commun. 2012, 48, 3357-3359. 116. Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A. J.; Chen, X., A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating LewisX. ACS Chem. Biol. 2012, 7, 1232-1240. 117. Gilbert, M.; Watson, D. C.; Cunningham, A.-M.; Jennings, M. P.; Young, N. M.; Wakarchuk, W. W., Cloning of the Lipooligosaccharide α-2,3-Sialyltransferase from the Bacterial Pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 1996, 271, 28271-28276. 118. Izumi, M.; Shen, G.-J.; Wacowich-Sgarbi, S.; Nakatani, T.; Plettenburg, O.; Wong, C.-H., Microbial Glycosyltransferases for Carbohydrate Synthesis: α-2,3-Sialyltransferase from Neisseria gonorrheae. J. Am. Chem. Soc. 2001, 123, 10909-10918. 119. Mehta, S.; Gilbert, M.; Wakarchuk, W. W.; Whitfield, D. M., Ready Access to Sialylated Oligosaccharide Donors. Org. Lett. 2000, 2, 751-753. 120. Morley, h. J.; Withers, S. G., Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437. 121. Yu, C.-C.; Hill, T.; Kwan, D. H.; Chen, H.-M.; Lin, C.-C.; Wakarchuk, W.; Withers, S. G., A Plate-Based High-Throughput Activity Assay for Polysialyltransferase from Neisseria meningitidis. Anal. Biochem. 2014, 444, 67-74. 122. Jacques, S.; Rich, J. R.; Ling, C.-C.; Bundle, D. R., Chemoenzymatic Synthesis of GM3 and GM2 Gangliosides Containing a Truncated Ceramide Functionalized for Glycoconjugate Synthesis and Solid Phase Applications. Org. Biomol. Chem. 2006, 4, 142-154. 123. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I., A Novel α-2,6-Sialyltransferase: Transfer of Sialic Acid to Fucosyl and Sialyl Trisaccharides. J. Org. Chem. 1996, 61 (8632-8635). 124. Yamamoto, T.; Nakashizuka, M.; Terada, I., Cloning and Expression of a Marine Bacterial β-Galactoside α-2,6-Sialyltransferase Gene from Photobacterium damsela JT0160. J. Biochem. 1998, 123, 94-100. 125. Cheng, J.; Huang, S.; Yu, H.; Li, Y.; Lau, K.; Chen, X., Trans-Sialidase Activity of Photobacterium damsela α2,6-Sialyltransferase and Its Application in the Synthesis of Sialosides. Glycobiology 2010, 20, 260-268. 126. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly Efficient Chemoenzymatic Synthesis of Naturally Occurring and Non-Natural α-2,6-Linked Sialosides : A P. damsela α-2,6-Sialyltransferase with Extremely Flexible Donor-Substrate Specificity. Angew. Chem. Int. Ed. 2006, 45, 3938-3944. 127. Li, W.; Xiao, A.; Li, Y.; Yu, H.; Chen, X., Chemoenzymatic Synthesis of Neu5Ac9NAc-Containing α2-3- and α2-6-Linked Sialosides and Their Use for Sialidase Substrate Specificity Studies. Carbohydr. Res. 2017, 451, 51-58. 128. Khedri, Z.; Li, Y.; Muthana, S.; Muthana, M. M.; Hsiao, C.-W.; Yu, H.; Chen, X., Chemoenzymatic Synthesis of Sialosides Containing C7-Modified Sialic Acids and Their Application in Sialidase Substrate Specificity Studies. Carbohydr. Res. 2014, 389, 100-111. 129. Nycholat, C. M.; Peng, W.; McBride, R.; Antonopoulos, A.; Vries, R. P. d.; Polonskaya, Z.; Finn, M. G.; Dell, A.; Haslam, S. M.; Paulson, J. C., Synthesis of Biologically Active N- and O‑Linked Glycans with Multisialylated Poly‑N‑acetyllactosamine Extensions Using P. damsela α2‑6 Sialyltransferase. J. Am. Chem. Soc. 2013, 135, 18280-18283. 130. Chien, W.-T.; Liang, C.-F.; Yu, C.-C.; Lin, C.-H.; Li, S.-P.; Primadona, I.; Chen, Y.-J.; Mong, K. K. T.; Lin, C.-C., Sequential One-Pot Enzymatic Synthesis of Oligo-N-Acetyllactosamine and Its Multi-Sialylated Extensions. Chem. Commun. 2014, 50, 5786-5789. 131. Tsukamotoy, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 Produces Two Sialyltransferases, α-/β-Galactoside α2,3-Sialyltransferase and β-Galactoside α2,6-Sialyltransferase. J. Biochem. 2008, 143, 187-197. 132. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient Chemoenzymatic Synthesis of Sialyl Tn-Antigens and Derivatives. Chem. Commun. 2011, 47, 8691-8693. 133. Ding, L.; Zhao, C.; Qu, J.; Li, Y.; Sugiarto, G.; Yu, H.; Wang, J.; Chen, X., A Photobacterium sp. α2-6-sialyltransferase (Psp2,6ST) Mutant with an Increased Expression Level and Improved Activities in Sialylating Tn Antigens. Carbohydr. Res. 2015, 408, 127-133. 134. Cheng, J.; Yu, H.; Lau, K.; Huang, S.; Chokhawala, H. A.; Li, Y.; Tiwari, V. K.; Chen, X., Multifunctionality of Campylobacter jejuni Sialyltransferase CstII: Characterization of GD3/GT3 Oligosaccharide Synthase, GD3 Oligosaccharide Sialidase, and Trans-Sialidase Activities. Glycobiology 2008, 18, 686-697. 135. Yu, H.; Cheng, J.; Ding, L.; Khedri, Z.; Chen, Y.; Chin, S.; Lau, K.; Tiwari, V. K.; Chen, X., Chemoenzymatic Synthesis of GD3 Oligosaccharides and Other Disialyl Glycans Containing Natural and Non-natural Sialic Acids. J. Am. Chem. Soc. 2009, 131, 18467-18477. 136. 簡薇庭. Sequencial Enzymatic Synthesis of Sugar Nucleotides and Its Application on Poly-LacNAc Synthesis. 博士論文, 國立清華大學, 2012. 137. 侯凱齡. Fluorous-Tag Assisted Chemoenzymatic Synthesis of Oligosaccharides. 碩士論文, 國立清華大學, 2013. 138. 郭力禎. Enzymatic Sialylation of Globo-Series Glycans. 碩士論文, 國立清華大學, 2015. 139. 游景晴. Site-Specific CMP-Sialic Acid Synthetase Immobilized Magnetic Nanoparticle and Its Application in Organic Synthesis. 碩士論文, 國立清華大學, 2007. 140. Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H., Effective Sugar Nucleotide Regeneration for the Large-Scale Enzymatic Synthesis of Globo H and SSEA4. J. Am. Chem. Soc. 2013, 135, 14831-14839. 141. 游景晴. Development of Nanoparticle-Based System for Enzyme Immobilization and High Through-Put Enzyme Screening. 博士論文, 國立清華大學, 2012. 142. 郭昱瑩. α-2,3-Sialyltranferase C-terminal Modification & Immobilization. 碩士論文, 國立清華大學, 2008. 143. Meng, X.; Yao, W.; Cheng, J.; Zhang, X.; Jin, L.; Yu, H.; Chen, X.; Wang, F.; Cao, H., Regioselective Chemoenzymatic Synthesis of Ganglioside Disialyl Tetrasaccharide Epitopes. J. Am. Chem. Soc. 2014, 136, 5205-5208. 144. 黃思瑜. Synthesis of Globo H, DSGb5, and Globo-Series Sialosides. 碩士論文, 國立清華大學, 2017. 145. 蕭偉鎮. Chemoenzymatic Synthesis of Oligosaccharides. 博士論文, 國立清華大學, 2014. 146. 吳心如. Enzymatic Synthesis of Oligo-N-acetyllactosamine (oligo-LacNAc) and Their Sialylated Derivatives. 博士論文, 國立清華大學, 2017. 147. Takayama, S.; OLivingston, P.; Wong, C.-H., Synthesis of the Melanoma-Associated Ganglioside 9-O-Acetyl GD3 through Regioselective Enzymatic Acetylation of GD3 Using Subtilisin. Tetrahedron Lett. 1996, 37, 9271-9274. 148. Kuan, T.-C.; Wu, H.-R.; Adak, A. K.; Li, B.-Y.; Liang, C.-F.; Hung, J.-T.; Chiou, S.-P.; Yu, A. L.; Hwu, J. R.; Lin, C.-C., Synthesis of an S-Linked α(2-8) GD3 Antigen and Evaluation of the Immunogenicity of Its Glycoconjugate. Chem. Eur. J. 2017, 23, 6876-6887.
|