帳號:guest(3.133.122.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳佳霖
作者(外文):Wu, Chia-Lin
論文名稱(中文):鏈黴親和素-生物素結合探針於微陣列的應用
論文名稱(外文):Target-Activated Streptavidin-Biotin Control Binding Probes for Microarray
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):林俊成
王宗興
口試委員(外文):Lin, Chun-Cheng
Wang, Tsung-Shing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:105023504
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:138
中文關鍵詞:微陣列生物素鏈黴親和素
外文關鍵詞:MicroarrayBiotinStreptavidin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:295
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微陣列具有低成本、高通量及便利偵測等優點,但其低訊號增益侷限了此方法在諸多分析領域的應用。
在本論文中,我們設計出多種新穎的可控結合生物素探針,其本身並無螢光訊號,螢光來源取決於與鏈黴親和素結合的螢光基團,克服以往螢光探針的限制。我們成功應用此方法於微陣列,檢測多種重要的小分子及蛋白質,並用於檢驗細胞中的目標分析物。
Although microarray detection is associated with many advantages, such as low cost, high throughput and simple detection, their limited signal amplification was limited their further applications in many research field.
In this thesis, we have designed a variety of novel caged biotin probes for target detection in microarray. With the probe, the origin of fluorescence depends on the binding of streptavidin protein, so it is possible to complement the conventional fluorescent chemical probe. The approach could overcome the limitation of the microarray, and the application of this concept to microarray allow rapid and sensitive detection of a variety of small molecule and proteins.
摘要 i
Abstract ii
謝誌 iii
目錄 v
第一章 緒論 1
1-1 研究動機 1
1-2 分析方法介紹 1
1-2.1 酵素結合免疫吸附分析法 (Enzyme-Linked Immunosorbent Assay) 1
1-2.2 墨點法 (blot) 4
1-2.3 側層流分析法 (lateral flow assay) 7
1-2.4 微陣列 (microarray) 8
第二章 文獻回顧 14
2-1 微陣列應用於生物分子的分析 14
2-2 籠閉螢光團 (Caged-fluorophores) 15
2-3 籠閉螢光團在微陣列上的分析 20
2-4 籠閉生物素 (Caged-biotin) 21
第三章 探針設計 24
3-1設計構想 24
第四章 結果與討論 26
4-1 鹼性磷酸酶探針應用於微陣列 26
4-2 於微陣列偵測硝基還原酶 31
4-3 利用微陣列偵測氟離子 35
4-4 探針結合細胞與微陣列的應用 39
第五章 結論 41
第六章 實驗部分 42
6-1 實驗藥品及器材 42
6-2 細胞培養實驗 44
6-2.1 培養基及試劑 44
6-2.2 細胞繼代培養 44
6-2.3 細胞裂解液提取 45
6-3 微陣列測試條件 46
6-4有機合成與光譜資料 48
參考文獻 70
附錄 79
1. Engvall, E.; Perlmann, P., Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8 (9), 871.
2. Gan, S. D.; Patel, K. R., Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. Journal of Investigative Dermatology 2013, 133 (9), 1.
3. Clark, M. F.; Adams, A. N., Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. Journal of General Virology 1977, 34 (3), 475.
4. Zhang, Q.; Wang, L.; Ahn, K. C.; Sun, Q.; Hu, B.; Wang, J.; Liu, F., Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion. Analytica Chimica Acta 2007, 596 (2), 303.
5. Kim, J.; Jeon, M.; Paeng, K.-J.; Paeng, I. R., Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Analytica Chimica Acta 2008, 619 (1), 87.
6. Josep, D.; M., F. H.; J., G. R.; G., K. M.; B., P. J., Detection of the anti‐Hu antibody in the serum of patients with small cell lung cancer—A quantitative western blot analysis. Annals of Neurology 1990, 27 (5), 544.
7. Válóczi, A.; Hornyik, C.; Varga, N.; Burgyán, J.; Kauppinen, S.; Havelda, Z., Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Research 2004, 32 (22), e175.
8. Kimura, M.; Stone, R. C.; Hunt, S. C.; Skurnick, J.; Lu, X.; Cao, X.; Harley, C. B.; Aviv, A., Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nature Protocols 2010, 5, 1596.
9. Southern, E. M., Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 1975, 98 (3), 503.
10. Alwine, J. C.; Kemp, D. J.; Stark, G. R., Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proceedings of the National Academy of Sciences of the United States of America 1977, 74 (12), 5350.
11. Burnette, W. N., “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 1981, 112 (2), 195.
12. Southern, E., Southern blotting. Nature Protocols 2006, 1, 518.
13. Terry, B.; Karol, M.; Tingting, D., Analysis of RNA by Northern and Slot Blot Hybridization. Current Protocols in Molecular Biology 2004, 67 (1), 4.9.1.
14. Kleinman, S., The significance of HIV-1-indeterminate western blot results in blood donor populations. Arch Pathol Lab Med 1990, 114 (3), 298.
15. Oesch, B.; Doherr, M.; Heim, D.; Fischer, K.; Egli, S.; Bolliger, S.; Biffiger, K.; Schaller, O.; Vandevelde, M.; Moser, M., Application of Prionics Western blotting procedure to screen for BSE in cattle regularly slaughtered at Swiss abattoirs. In Prion Diseases: Diagnosis and Pathogenesis, Groschup, M. H.; Kretzschmar, H. A., Eds. Springer Vienna: Vienna, 2000, 189.
16. Koczula, Katarzyna M.; Gallotta, A., Lateral flow assays. Essays in Biochemistry 2016, 60 (1), 111.
17. Gergen, J. P.; Stern, R. H.; Wensink, P. C., Filter replicas and permanent collections of recombinant DNA plasmids. Nucleic Acids Research 1979, 7 (8), 2115.
18. Hong, J. A.; Neel, D. V.; Wassaf, D.; Caballero, F.; Koehler, A. N., Recent discoveries and applications involving small-molecule microarrays. Current Opinion in Chemical Biology 2014, 18, 21.
19. Arenkov, P.; Kukhtin, A.; Gemmell, A.; Voloshchuk, S.; Chupeeva, V.; Mirzabekov, A., Protein Microchips: Use for Immunoassay and Enzymatic Reactions. Analytical Biochemistry 2000, 278 (2), 123.
20. C., M. J.; Heping, Z.; Joshua, K.; Robert, C.; Jocelyn, B.; Brian, B. E.; S., T. B.; B., H. B., Antibody microarray profiling of human prostate cancer sera: Antibody screening and identification of potential biomarkers. PROTEOMICS 2003, 3 (1), 56.
21. Service, R. F., Microchip Arrays Put DNA on the Spot. Science 1998, 282 (5388), 396.
22. Debouck, C.; Goodfellow, P. N., DNA microarrays in drug discovery and development. Nature Genetics 1999, 21, 48.
23. Javed, K.; H., S. L.; L., B. M.; Yidong, C.; M., T. J.; S., M. P., Expression profiling in cancer using cDNA microarrays. ELECTROPHORESIS 1999, 20 (2), 223.
24. Alhamdani, M. S.; Schröder, C.; Hoheisel, J. D., Oncoproteomic profiling with antibody microarrays. Genome Medicine 2009, 1 (7), 68.
25. Johan, I.; Christer, W.; Anders, C.; Peter, E.; Britta, W.; Gunnel, E.; Ulrika, H.; Morten, K.; Carsten, P.; K., B. C. A., Detection of pancreatic cancer using antibody microarray‐based serum protein profiling. PROTEOMICS 2008, 8 (11), 2211.
26. B., H. B., Methods and applications of antibody microarrays in cancer research. PROTEOMICS 2003, 3 (11), 2116.
27. Bradner, J. E.; McPherson, O. M.; Koehler, A. N., A method for the covalent capture and screening of diverse small molecules in a microarray format. Nature Protocols 2006, 1, 2344.
28. Nimse, S.; Song, K.; Sonawane, M.; Sayyed, D.; Kim, T., Immobilization Techniques for Microarray: Challenges and Applications. Sensors 2014, 14 (12), 22208.
29. Wu, P.; Grainger, D. W., Comparison of Hydroxylated Print Additives on Antibody Microarray Performance. Journal of Proteome Research 2006, 5 (11), 2956.
30. Schena, M.; Shalon, D.; Heller, R.; Chai, A.; Brown, P. O.; Davis, R. W., Parallel Human Genome Analysis: Microarray-Based Expression Monitoring of 1000 Genes. Proceedings of the National Academy of Sciences of the United States of America 1996, 93 (20), 10614.
31. Kim, T.-I.; Kim, H.; Choi, Y.; Kim, Y., A fluorescent turn-on probe for the detection of alkaline phosphatase activity in living cells. Chemical Communications 2011, 47 (35), 9825.
32. Feng, S.; Liu, D.; Feng, W.; Feng, G., Allyl Fluorescein Ethers as Promising Fluorescent Probes for Carbon Monoxide Imaging in Living Cells. Analytical Chemistry 2017, 89 (6), 3754.
33. Trost, B. M.; Van Vranken, D. L., Asymmetric Transition Metal-Catalyzed Allylic Alkylations. Chemical Reviews 1996, 96 (1), 395.
34. Imam, R. S.; Neetu, S.; Muskan, G.; Payal, B.; Vandana, B.; D., P. R.; Puja, O.; Gurcharan, K.; Manoj, K., A Highly Selective Fluorescent Probe for Detection of Hydrogen Sulfide in Living Systems: In Vitro and in Vivo Applications. Chemistry – A European Journal 2017, 23 (41), 9872.
35. Hu, J.; Hu, Z.; Cui, Y.; Zhang, X.; Gao, H.-W.; Uvdal, K., A rhodamine-based fluorescent probe for Hg2+ and its application for biological visualization. Sensors and Actuators B: Chemical 2014, 203, 452.
36. Sunnapu, O.; Kotla, N. G.; Maddiboyina, B.; Singaravadivel, S.; Sivaraman, G., A rhodamine based "turn-on" fluorescent probe for Pb(ii) and live cell imaging. RSC Advances 2016, 6 (1), 656.
37. Zhu, Q.; Uttamchandani, M.; Li, D.; Lesaicherre, M. L.; Yao, S. Q., Enzymatic Profiling System in a Small-Molecule Microarray. Organic Letters 2003, 5 (8), 1257.
38. Li, J.; Yao, S. Q., “Singapore Green”: A New Fluorescent Dye for Microarray and Bioimaging Applications. Organic Letters 2009, 11 (2), 405.
39. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T., Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chemistry & Biology 2011, 18 (10), 1261.
40. Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R. S.; Shin, I. S.; Paik, C. H.; Choyke, P. L.; Kobayashi, H., A Target Cell–Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Research 2007, 67 (6), 2791.
41. Sankarprasad, B.; Sukhendu, M.; Eun‐Joong, K.; Hyunseung, L.; L., S. J.; Soo, H. K.; Seung, K. J., An Activatable Theranostic for Targeted Cancer Therapy and Imaging. Angewandte Chemie International Edition 2014, 53 (17), 4469.
42. Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T., Target-activated streptavidin-biotin controlled binding probe. Chemical Science 2018, 9 (3), 770.
43. Syakalima, M.; Takiguchi, M.; Yasuda, J.; Hashimoto, A., The canine alkaline phosphatases: A review of the isoenzymes in serum, analytical methods and their diagnostic application. 1998, 46, 3.
44. Coleman, J. E., Structure and Mechanism of Alkaline Phosphatase. Annual Review of Biophysics and Biomolecular Structure 1992, 21 (1), 441.
45. Fernandez, N. J.; A., K. B., Alkaline phosphatase: beyond the liver. Veterinary Clinical Pathology 2007, 36 (3), 223.
46. Kinue, O.; Katsuya, S.; Yoshitaka, M.; Tsutomu, N., High‐molecular intestinal alkaline phosphatase in chronic liver diseases. Journal of Clinical Laboratory Analysis 2007, 21 (3), 133.
47. Ramaswamy, G.; Rao, V. R.; Krishnamoorthy, L.; Ramesh, G.; Gomathy, R.; Renukadevi, D., Serum levels of bone alkaline phosphatase in breast and prostate cancers with bone metastasis. Indian Journal of Clinical Biochemistry 2000, 15 (2), 110.
48. Liu, Y.; Schanze, K. S., Conjugated Polyelectrolyte-Based Real-Time Fluorescence Assay for Alkaline Phosphatase with Pyrophosphate as Substrate. Analytical Chemistry 2008, 80 (22), 8605.
49. Zhao, W.; Chiuman, W.; Lam, J. C. F.; Brook, M. A.; Li, Y., Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chemical Communications 2007, (36), 3729.
50. Hayat, A.; Andreescu, S., Nanoceria Particles As Catalytic Amplifiers for Alkaline Phosphatase Assays. Analytical Chemistry 2013, 85 (21), 10028.
51. Dong, L.; Miao, Q.; Hai, Z.; Yuan, Y.; Liang, G., Enzymatic Hydrogelation-Induced Fluorescence Turn-Off for Sensing Alkaline Phosphatase in Vitro and in Living Cells. Analytical Chemistry 2015, 87 (13), 6475.
52. Wilson, W. R.; Hay, M. P., Targeting hypoxia in cancer therapy. Nature Reviews Cancer 2011, 11, 393.
53. Cui, L.; Zhong, Y.; Zhu, W.; Xu, Y.; Du, Q.; Wang, X.; Qian, X.; Xiao, Y., A New Prodrug-Derived Ratiometric Fluorescent Probe for Hypoxia: High Selectivity of Nitroreductase and Imaging in Tumor Cell. Organic Letters 2011, 13 (5), 928.
54. Xu, A.; Tang, Y.; Ma, Y.; Xu, G.; Gao, S.; Zhao, Y.; Lin, W., A fast-responsive two-photon fluorescent turn-on probe for nitroreductase and its bioimaging application in living tissues. Sensors and Actuators B: Chemical 2017, 252, 927.
55. Zhai, B.; Hu, W.; Sun, J.; Chi, S.; Lei, Y.; Zhang, F.; Zhong, C.; Liu, Z., A two-photon fluorescent probe for nitroreductase imaging in living cells, tissues and zebrafish under hypoxia conditions. Analyst 2017, 142 (9), 1545.
56. He, Z.; Chou, Y.; Zhou, H.; Zhang, H.; Cheng, T.; Liu, G., A nitroreductase and acidity detecting dual functional ratiometric fluorescent probe for selectively imaging tumor cells. Organic & Biomolecular Chemistry 2018, 16 (17), 3266.
57. Guo, T.; Cui, L.; Shen, J.; Zhu, W.; Xu, Y.; Qian, X., A highly sensitive long-wavelength fluorescence probe for nitroreductase and hypoxia: selective detection and quantification. Chemical Communications 2013, 49 (92), 10820.
58. Yuan, J.; Xu, Y.-Q.; Zhou, N.-N.; Wang, R.; Qian, X.-H.; Xu, Y.-F., A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging. RSC Advances 2014, 4 (99), 56207.
59. Li, Z.; He, X.; Wang, Z.; Yang, R.; Shi, W.; Ma, H., in vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off–on probe. Biosensors and Bioelectronics 2015, 63, 112.
60. Choi, A. L.; Sun, G.; Zhang, Y.; Grandjean, P., Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis. Environmental Health Perspectives 2012, 120 (10), 1362.
61. S., H. H., The 2001 CDC Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States. Journal of Public Health Dentistry 2003, 63 (1), 3-8.
62. Kleerekoper, M., THE ROLE OF FLUORIDE IN THE PREVENTION OF OSTEOPOROSIS. Endocrinology and Metabolism Clinics 1998, 27 (2), 441.
63. Cittanova, M. D. M.-L.; Lelongt, P. B.; Verpont, M.-C.; Geniteau-Legendre, M.; Wahbe, M. D. F.; Prie, M. D. D.; Coriat, M. D. P.; Ronco, M. D. P. M., Fluoride Ion Toxicity in Human Kidney Collecting Duct Cells. Anesthesiology 1996, 84 (2), 428.
64. Singh, P.; Barjatiya, M.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V., Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urological Research 2001, 29 (4), 238.
65. Wei, G.; Yin, J.; Ma, X.; Yu, S.; Wei, D.; Du, Y., A carbohydrate modified fluoride ion sensor and its applications. Analytica Chimica Acta 2011, 703 (2), 219.
66. Baruah, U.; Gogoi, N.; Majumdar, G.; Chowdhury, D., β-Cyclodextrin and calix[4]arene-25,26,27,28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohydrate Polymers 2015, 117, 377.
67. Zhu, B.; Yuan, F.; Li, R.; Li, Y.; Wei, Q.; Ma, Z.; Du, B.; Zhang, X., A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells. Chemical Communications 2011, 47 (25), 7098.
68. Schmid, F.; Fliegert, R.; Westphal, T.; Bauche, A.; Guse, A. H., Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Degradation by Alkaline Phosphatase. The Journal of Biological Chemistry 2012, 287 (39), 32525.
69. Van Belle, H., Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clinical Chemistry 1976, 22 (7), 972.
70. Denis, J.-M.; Forintos, H.; Szelke, H.; Keglevich, G., B(C6F5)3-catalyzed silylation versus reduction of phosphonic and phosphinic esters with hydrosilanes. Tetrahedron Letters 2002, 43 (32), 5569.
71. 1LifeSpan BioSciences, Inc., 2014.
https://www.lsbio.com/elisakits/mouse-alb-serum-albumin-elisa-kit-sandwich-elisa-ls-f10450/10450
72. 1 Laboratoryinfo, ELISA :Principle, Procedure, Types, Applications and Animation, 2015.
https://laboratoryinfo.com/elisa/
73. 1Medical & Biological Laboratories Co., Ltd., The principle and method of ELISA, 2017.
http://ruo.mbl.co.jp/bio/e/support/method/elisa.html
74. Thumz Industries, 24.soto.dna techniques, 2011.
https://www.slideshare.net/thumz/24sotodna-techniques
75. Ilewieszoośmiornicach, Northern blot, 2016.
https://en.wikipedia.org/wiki/Northern_blot
76. Novus Biologicals, Western Blotting, 2012.
https://www.novusbio.com/application/western-blotting
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *