|
Bibliography [1] Sheldon L Glashow. Partial-symmetries of weak interactions. Nuclear physics, 22(4):579–588, 1961. [2] Steven Weinberg. Implications of dynamical symmetry breaking: an adden- dum. Physical Review D, 19(4):1277, 1979. [3] Abdus Salam. Elementary particle theory. In Prog. Of the Nobel Symposium, 1968, Stockholm, Sweden, volume 367, 1968. [4] SJ Barish, Y Cho, M Derrick, LG Hyman, J Rest, P Schreiner, R Singer, RP Smith, H Yuta, D Koetke, et al. Observation of single-pion production by a weak neutral current. Physical Review Letters, 33(7):448, 1974. [5] J Blietschau, H Deden, H Faissner, FJ Hasert, W Krenz, D Lanske, J Morfin, M Pohl, K Schultze, H Weerts, et al. Evidence for the leptonic neutral current reaction νμ+ e-→ νμ+ e-. Nuclear Physics B, 114(2):189–198, 1976. [6] Albert Nomdo Diddens, M Jonker, J Panman, F Udo, JV Allaby, U Amaldi, G Barbiellini, A Baroncelli, V Blobel, G Cocconi, et al. A detector for neutral-current interactions of high-energy neutrinod. Nuclear Instruments and Methods, 178(1):27–48, 1980. [7] MA Bouchiat and CC Bouchiat. Weak neutral currents in atomic physics. Physics Letters B, 48(2):111–114, 1974. [8] MA Bouchiat and CC Bouchiat. I. parity violation induced by weak neutral currents in atomic physics. Journal de Physique, 35(12):899–927, 1974. [9] PGH Sandars. Atomic physics vol 4 ed g zu putlitz, ew weber and a win- nacker. Plenum, New York) p, 71:225, 1975. [10] DC Soreide, DE Roberts, EG Lindahl, LL Lewis, GR Apperson, and EN Fortson. Search for parity nonconservation in atomic bismuth. Phys- ical Review Letters, 36(7):352, 1976. [11] LM Barkov and MS Zolotorev. Parity violation in atomic bismuth. Physics Letters B, 85(2-3):308–313, 1979. [12] S Chu, ED Commins, and R Conti. Observation of the 6 2p12- 7 2p12 m1 transition in atomic thallium vapor. Physics Letters A, 60(2):96–100, 1977. [13] Iosif Bentsionovich Khriplovich. Parity nonconservation in atomic phenom- ena. 1991. [14] VV Flambaum and DW Murray. Anapole moment and nucleon weak inter- actions. Physical Review C, 56(3):1641, 1997. [15] JSM Ginges and Victor V Flambaum. Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles. Physics Reports, 397(2):63–154, 2004. [16] Kenji Abe, Koya Abe, T Abe, I Adam, H Akimoto, D Aston, KG Baird, C Baltay, HR Band, TL Barklow, et al. High-precision measurement of the left-right z boson cross-section asymmetry. Physical Review Letters, 84(26):5945, 2000. [17] ALEPH collaboration, CDF collaboration, D0 Collaboration, DELPHI col- laboration, L3 Collaboration, OPAL collaboration, SLD collaboration, LEP Electroweak Working Group, Tevatron Electroweak Working Group, et al. Precision electroweak measurements and constraints on the standard model. arXiv preprint arXiv:0811.4682, 2008. [18] VV Flambaum and IB Khriplovich. P-odd nuclear forces: a source of parity violation in atoms. Sov. Phys.-JETP (Engl. Transl.);(United States), 52(5), 1980. [19] VV Flambaum, IB Khriplovich, and OP Sushkov. Nuclear anapole moments. Physics Letters B, 146(6):367–369, 1984. [20] VV Flambaum and IB Khriplovich. On the enhancement of parity noncon- serving effects in diatomic molecules. Physics Letters A, 110(3):121–125, 1985. [21] VV Flambaum and IB Khriplovich. New bounds on the electric dipole mo- ment of the electron and on t-odd electron-nucleon coupling. Zh. Eksp. Theor. Fiz, 89:1505, 1985. [22] CS Wood, SC Bennett, Donghyun Cho, BP Masterson, JL Roberts, CE Tan- ner, and Carl E Wieman. Measurement of parity nonconservation and an anapole moment in cesium. Science, 275(5307):1759–1763, 1997. [23] VA Dzuba, VV Flambaum, and JSM Ginges. High-precision calculation of parity nonconservation in cesium and test of the standard model. Physical Review D, 66(7):076013, 2002. [24] VA Dzuba and VV Flambaum. Calculation of nuclear-spin-dependent parity nonconservation in s–d transitions of ba+, yb+, and ra+ ions. Physical Review A, 83(5):052513, 2011. [25] BK Sahoo, P Mandal, and M Mukherjee. Parity nonconservation in odd isotopes of single trapped atomic ions. Physical Review A, 83(3):030502, 2011. [26] BK Sahoo and BP Das. Parity nonconservation in ytterbium ion. Physical Review A, 84(1):010502, 2011. [27] NH Edwards, SJ Phipp, PEG Baird, and S Nakayama. Precise measurement of parity nonconserving optical rotation in atomic thallium. Physical review letters, 74(14):2654, 1995. [28] PA Vetter, DM Meekhof, PK Majumder, SK Lamoreaux, and EN Fortson. Precise test of electroweak theory from a new measurement of parity non- conservation in atomic thallium. Physical review letters, 74(14):2658, 1995. [29] VA Dzuba, VV Flambaum, PG Silvestrov, and OP Sushkov. Calculation of parity non-conservation in thallium. Journal of Physics B: Atomic and Molecular Physics (1968-1987), 20(14):3297, 1987. [30] WC Haxton and Carl E Wieman. Atomic parity nonconservation and nu- clear anapole moments. Annual Review of Nuclear and Particle Science, 51(1):261–293, 2001. [31] P. K. Majumder and L. L. Tsai. Measurement of the electric quadrupole amplitude within the 1283-nm 6 p 1/2- 6 p 3/2 transition in atomic thallium. Physical Review A, 60(1):267, 1999. [32] UI Safronova, MS Safronova, and WR Johnson. Excitation energies, hyper- fine constants, e 1, e 2, and m 1 transition rates, and lifetimes of 6 s 2 n l states in tl i and pb ii. Physical Review A, 71(5):052506, 2005. [33] SG Porsev, MS Safronova, and MG Kozlov. Electric dipole moment enhance- ment factor of thallium. Physical Review Letters, 108(17):173001, 2012. [34] Yong-Bo Tang, Ning-Ning Gao, Bing-Qiong Lou, and Ting-Yun Shi. Rela- tivistic coupled-cluster calculations of the polarizabilities of atomic thallium. Physical Review A, 98(6):062511, 2018. [35] Ann-Marie M ̊artensson-Pendrill. Magnetic moment distributions in tl nuclei. Physical review letters, 74(12):2184, 1995. [36] RH Garstang. Transition probabilities of forbidden lines. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 68(1):61, 1964. [37] BRIAN Warner. Transition probabilities in np and n p5configurations. Zeitschrift fur Astrophysik, 69:399, 1968. [38] David V Neuffer and Eugene D Commins. Calculation of parity- nonconserving effects in the 6 p 1 2 2- 7 p 1 2 2 forbidden m 1 transition in thallium. Physical Review A, 16(3):844, 1977. [39] Emile Bi ́emont and Pascal Quinet. Forbidden lines in 6pk (k= 1–5) config- urations. Physica Scripta, 54(1):36, 1996. [40] TD Wolfenden, PEG Baird, and PGH Sandars. Observation of parity- violating optical rotation in atomic thallium. EPL (Europhysics Letters), 15(7):731, 1991. [41] MJD Macpherson, KP Zetie, RB Warrington, DN Stacey, and JP Hoare. Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth. Physical review letters, 67(20):2784, 1991. [42] Dawn M Meekhof, P Vetter, PK Majumder, SK Lamoreaux, and EN Fort- son. High-precision measurement of parity nonconserving optical rotation in atomic lead. Physical review letters, 71(21):3442, 1993. [43] A. D. Cronin. New techniques for measuring atomic parity violation. Uni- versity of Washington, 1999. [44] AD Cronin, RB Warrington, SK Lamoreaux, and EN Fortson. Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation. Physical review letters, 80(17):3719, 1998. [45] VA Dzuba, VV Flambaum, and IB Khriplovich. Enhancement ofp-andt- nonconserving effects in rare-earth atoms. Zeitschrift f ̈ur Physik D Atoms, Molecules and Clusters, 1(3):243–245, 1986. [46] SJ Pollock, E Norval Fortson, and L Wilets. Atomic parity nonconserva- tion: Electroweak parameters and nuclear structure. Physical Review C, 46(6):2587, 1992. [47] MS Safronova, D Budker, D DeMille, Derek F Jackson Kimball, A Dere- vianko, and Charles W Clark. Search for new physics with atoms and molecules. Reviews of Modern Physics, 90(2):025008, 2018. [48] Dionysis Antypas, A Fabricant, Jason Evan Stalnaker, Konstantin Tsigutkin, VV Flambaum, and Dmitry Budker. Isotopic variation of parity violation in atomic ytterbium. Nature Physics, 15(2):120–123, 2019. [49] EN Fortson, Y Pang, and L Wilets. Nuclear-structure effects in atomic parity nonconservation. Physical review letters, 65(23):2857, 1990. [50] B Alex Brown, A Derevianko, and VV Flambaum. Calculations of the neutron skin and its effect in atomic parity violation. Physical Review C, 79(3):035501, 2009. [51] Jean E Sansonetti and William Clyde Martin. Handbook of basic atomic spectroscopic data. Journal of physical and chemical reference data, 34(4):1559–2259, 2005. [52] Robert D Cowan. The theory of atomic structure and spectra. Number 3. Univ of California Press, 1981. [53] William M Haynes, David R Lide, and Thomas J Bruno. CRC handbook of chemistry and physics. CRC press, 2016. [54] Tzu-Ling Chen and Yi-Wei Liu. Noise-immune cavity-enhanced optical het- erodyne molecular spectrometry on n 2 o 1.283 μm transition based on a quantum-dot external-cavity diode laser. Optics Letters, 40(18):4352–4355, 2015. [55] DL Huffaker, G Park, Z1 Zou, OB Shchekin, and DG Deppe. 1.3 μm room-temperature gaas-based quantum-dot laser. Applied physics letters, 73(18):2564–2566, 1998. [56] DL Huffaker and DG Deppe. Electroluminescence efficiency of 1.3 μm wave- length ingaas/gaas quantum dots. Applied physics letters, 73(4):520–522, 1998. [57] Mashiro Asada, Yasuyuki Miyamoto, and Yasuharu Suematsu. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of quantum electronics, 22(9):1915–1921, 1986. [58] Yasuhiko Arakawa, Takahiro Nakamura, and Jinkwan Kwoen. Quantum dot lasers for silicon photonics. In Semiconductors and Semimetals, volume 101, pages 91–138. Elsevier, 2019. [59] TW Hansch and B Couillaud. Laser frequency stabilization by polariza- tion spectroscopy of a reflecting reference cavity. Optics communications, 35(3):441–444, 1980. [60] Paul D Kunz, Thomas P Heavner, and Steven R Jefferts. Polarization- enhanced absorption spectroscopy for laser stabilization. Applied Optics, 52(33):8048–8053, 2013. [61] Marin Pichler and David C Hall. Simple laser frequency locking based on doppler-free magnetically induced dichroism. Optics Communications, 285(1):50–53, 2012. [62] Valdis Bl ̄ums, Jordan Scarabel, Kenji Shimizu, Moji Ghadimi, Steven C Con- nell, Sylvi H ̈andel, Benjamin G Norton, Elizabeth M Bridge, David Kielpin- ski, Mirko Lobino, et al. Laser stabilization to neutral yb in a discharge with polarization-enhanced frequency modulation spectroscopy. Review of Scientific Instruments, 91(12):123002, 2020. [63] A Flusberg, T Mossberg, and SR Hartmann. Optical difference-frequency generation in atomic thallium vapor. Physical Review Letters, 38(2):59, 1977. [64] PA Franken, Alan E Hill, CW el Peters, and Gabriel Weinreich. Generation of optical harmonics. Physical Review Letters, 7(4):118, 1961. [65] R. Withnall. Raman spectroscopy. In Bob D. Guenther and Duncan G. Steel, editors, Encyclopedia of Modern Optics (Second Edition), pages 354– 368. Elsevier, Oxford, second edition edition, 2005. [66] Arlee V Smith. Crystal nonlinear optics: with SNLO examples. AS-Photonics Albuquerque, NM, USA, 2018. [67] Valentin G Dmitriev, Gagik G Gurzadyan, and David N Nikogosyan. Hand- book of nonlinear optical crystals, volume 64. Springer, 2013. [68] Masood Ghotbi and M Ebrahim-Zadeh. Optical second harmonic generation properties of bib 3 o 6. Optics Express, 12(24):6002–6019, 2004. [69] Wolfgang Sellmeier. Iii. ueber die durch die aetherschwingungen erregten mitschwingungen der k ̈orpertheilchen und deren r ̈uckwirkung auf die erstern, besonders zur erkl ̈arung der dispersion und ihrer anomalien. Annalen der Physik, 221(3):399–421, 1872. [70] H Hellwig, J Liebertz, and Linear Bohat`y. Linear optical properties of the monoclinic bismuth borate bib 3 o 6. Journal of Applied Physics, 88(1):240– 244, 2000. [71] Kentaro Miyata, Nobuhiro Umemura, and Kiyoshi Kato. Phase-matched pure χ (3) third-harmonic generation in noncentrosymmetric bib 3 o 6. Op- tics letters, 34(4):500–502, 2009. [72] Pancho Tzankov and Valentin Petrov. Effective second-order nonlinearity in acentric optical crystals with low symmetry. Applied optics, 44(32):6971– 6985, 2005. [73] H Hellwig, J Liebertz, and L Bohat`y. Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate bib3o6 (bibo). Solid State Communications, 109(4):249–251, 1998. [74] Valentin Petrov, Masood Ghotbi, Omid Kokabee, Adolfo Esteban-Martin, Frank Noack, Alexander Gaydardzhiev, Ivaylo Nikolov, Pancho Tzankov, Ivan Buchvarov, Kentaro Miyata, et al. Femtosecond nonlinear frequency conversion based on bib3o6. Laser & Photonics Reviews, 4(1):53–98, 2010. [75] Max Born and Emil Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013. [76] Herwig Kogelnik and Tingye Li. Laser beams and resonators. Applied optics, 5(10):1550–1567, 1966. [77] Tim Freegarde and Claus Zimmermann. On the design of enhancement cavities for second harmonic generation. Optics Communications, 199(5- 6):435–446, 2001. [78] Sree Nirmillo Biswash Tushar, Susanta Dev Nath, Jobaida Akhtar, and Mo- hammad Istiaque Reja. Modelling and analysis of z folded solid state laser cavity with two curved mirrors. International Journal of Microwave and Optical Technology, 13(3):244–253, 2018. [79] Herwig Kogelnik. Imaging of optical modes—resonators with internal lenses. Bell System Technical Journal, 44(3):455–494, 1965. [80] M Brieger, H B ̈usener, A Hese, F v Moers, and A Renn. Enhancement of single frequency sgh in a passive ring resonator. Optics Communications, 38(5-6):423–426, 1981. [81] Manfred Gehrtz, Gary C Bjorklund, and Edward A Whittaker. Quantum- limited laser frequency-modulation spectroscopy. Journal of the Optical So- ciety of America B, 2(9):1510–1526, 1985. [82] Henning Vahlbruch, Dennis Wilken, Moritz Mehmet, and Benno Willke. Laser power stabilization beyond the shot noise limit using squeezed light. Physical review letters, 121(17):173601, 2018. [83] Manfred Gehrtz, Wilfried Lenth, Anthony T Young, and Harold S Johnston. High-frequency-modulation spectroscopy with a lead-salt diode laser. Optics letters, 11(3):132–134, 1986. [84] Gary C Bjorklund. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Optics letters, 5(1):15–17, 1980. [85] Gregory Abbas, Vincent Chan, and Ting Yee. A dual-detector optical het- erodyne receiver for local oscillator noise suppression. Journal of Lightwave Technology, 3(5):1110–1122, 1985. [86] GL Abbas, VWS Chan, and TK Yee. Local-oscillator excess-noise suppres- sion for homodyne and heterodyne detection. Optics letters, 8(8):419–421, 1983. [87] R Stierlin, R B ̈attig, P-D Henchoz, and HP Weber. Excess-noise suppression in a fibre-optic balanced heterodyne detection system. Optical and quantum electronics, 18(6):445–454, 1986. [88] STEPHENB Alexander. Design of wide-band optical heterodyne balanced mixer receivers. Journal of Lightwave technology, 5(4):523–537, 1987. [89] Changqing Cao, Kun Chen, Xiaodong Zeng, Zhejun Feng, Jingshi Shen, Xiaobing Zhang, and Ting Wang. Tri-detector heterodyne receiver for noise suppression. Optik, 145:38–41, 2017. [90] Gary R Janik, Clinton B Carlisle, and Thomas F Gallagher. Two-tone frequency-modulation spectroscopy. J. Opt. Soc. Am. B, 3(8):1070–1074, 1986. [91] R Grosskloss, P Kersten, and W Demtr ̈oder. Sensitive amplitude-and phase- modulated absorption-spectroscopy with a continuously tunable diode laser. Applied Physics B, 58(2):137–142, 1994. [92] Pei-Ling Luo, Jinmeng Hu, Yan Feng, Li-Bang Wang, and Jow-Tsong Shy. Doppler-free intermodulated fluorescence spectroscopy of 4 he 2 3 p–3 1, 3 d transitions at 588 nm with a 1-w compact laser system. Applied Physics B, 120(2):279–284, 2015. [93] J ̈urgen Altmann, Rudolf Baumgart, and Claus Weitkamp. Two-mirror mul- tipass absorption cell. Applied Optics, 20(6):995–999, 1981. [94] Laurence S Rothman, David Jacquemart, Andr ́e Barbe, D Chris Benner, Manfred Birk, LR Brown, MR Carleer, C Chackerian Jr, K Chance, LH et al Coudert, et al. The hitran 2004 molecular spectroscopic database. Journal of quantitative spectroscopy and radiative transfer, 96(2):139–204, 2005. [95] SL Bragg, JW Brault, and WH Smith. Line positions and strengths in the h2 quadrupole spectrum. The Astrophysical Journal, 263:999–1004, 1982. [96] Cyril Lemarchand, Sinda Mejri, Papa Lat Tabara Sow, Meriam Triki, Sean K Tokunaga, Stephan Briaudeau, Christian Chardonnet, Benoˆıt Dar- qui ́e, and Christophe Daussy. A revised uncertainty budget for measuring the boltzmann constant using the doppler broadening technique on ammo- nia. Metrologia, 50(6):623, 2013. [97] Christophe Daussy, Mickael Guinet, Anne Amy-Klein, Khelifa Djerroud, Yves Hermier, Stephan Briaudeau, Ch J Bord ́e, and Christian Chardon- net. Direct determination of the boltzmann constant by an optical method. Physical review letters, 98(25):250801, 2007. [98] Wei-Ling Chen, Tzu-Ling Chen, and Yi-Wei Liu. Sideband amplitude modulation absorption spectroscopy of ch 4 at 1170 nm. Optics Express, 27(15):21264–21272, 2019. [99] N. C. Shie, C. Y. Chang, W. F. Hsieh, Y. W. Liu, and J. T. Shy. Frequency measurement of the 6p 3/2 → 7s 1/2 transition of thallium. Physical Review A, 88(6):062513, 2013. [100] T. L. Chen, I. Fan, H. C. Chen, C. Y. Lin, S. E. Chen, J. T. Shy, and Y. W. Liu. Absolute frequency measurement of the 6p 1/2- 7s 1/2 transition in thallium. Physical Review A, 86(5):052524, 2012. [101] K-J Boller, A Imamo ̆glu, and Stephen E Harris. Observation of electromag- netically induced transparency. Physical Review Letters, 66(20):2593, 1991. [102] Electromagnetically Induced Transparency. Stephen e. Harris in Physics Today, 50(7):36–42, 1997. [103] Stanley H Autler and Charles H Townes. Stark effect in rapidly varying fields. Physical Review, 100(2):703, 1955. [104] Ennio Arimondo. V coherent population trapping in laser spectroscopy. In Progress in optics, volume 35, pages 257–354. Elsevier, 1996. [105] C Wieman and Th W H ̈ansch. Doppler-free laser polarization spectroscopy. Physical Review Letters, 36(20):1170, 1976. [106] Marlan O Scully. Resolving conundrums in lasing without inversion via exact solutions to simple models. Quantum Optics: Journal of the European Optical Society Part B, 6(4):203, 1994. [107] Peter L Knight, MA Lauder, and Bill Jack Dalton. Laser-induced continuum structure. Physics Reports, 190(1):1–61, 1990. [108] Nikolay V Vitanov, Thomas Halfmann, Bruce W Shore, and Klaas Bergmann. Laser-induced population transfer by adiabatic passage tech- niques. Annual review of physical chemistry, 52(1):763–809, 2001. [109] Wolfgang Demtr ̈oder. Laser spectroscopy: basic concepts and instrumenta- tion. Springer Science & Business Media, 2013. [110] Vladilen S Letokhov and Veniamin Pavlovich Chebotayev. Nonlinear laser spectroscopy, volume 4. Springer, 1977. [111] Robert C Hilborn. Einstein coefficients, cross sections, f values, dipole mo- ments, and all that. American Journal of Physics, 50(11):982–986, 1982. [112] A. Joshi and M. Xiao. Electromagnetically induced transparency and its dispersion properties in a four-level inverted-y atomic system. Physics Letters A, 317(5-6):370–377, 2003. [113] S. Khan, V. Bharti, and V. Natarajan. Role of dressed-state interference in electromagnetically induced transparency. Physics Letters A, 380(48):4100– 4104, 2016. [114] Y. Zhu and T. N. Wasserlauf. Sub-doppler linewidth with electromag- netically induced transparency in rubidium atoms. Physical Review A, 54(4):3653, 1996. [115] J. G-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao. Electromagnetically in- duced transparency in ladder-type inhomogeneously broadened media: The- ory and experiment. Physical Review A, 51(1):576, 1995. [116] T. L. Chen and Y. W. Liu. Sub-doppler resolution near-infrared spectroscopy at 1.28 μm with the noise-immune cavity-enhanced optical heterodyne molec- ular spectroscopy method. Optics letters, 42(13):2447–2450, 2017. [117] Jonathan P Marangos. Electromagnetically induced transparency. Journal of modern optics, 45(3):471–503, 1998. [118] Hong Cheng, Han-Mu Wang, Shan-Shan Zhang, Pei-Pei Xin, Jun Luo, and Hong-Ping Liu. Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(9):095401, 2017. [119] Ruwan Senaratne, Shankari V Rajagopal, Zachary A Geiger, Kurt M Fuji- wara, Vyacheslav Lebedev, and David M Weld. Effusive atomic oven nozzle design using an aligned microcapillary array. Review of Scientific Instru- ments, 86(2):023105, 2015. [120] Tzu-Ling Chen, Isaac Fan, Hsuan-Chen Chen, Chang-Yi Lin, Shih-En Chen, Jow-Tsong Shy, and Yi-Wei Liu. Absolute frequency measurement of the 6 p 1/2→ 7 s 1/2 transition in thallium. Physical Review A, 86(5):052524, 2012. [121] Johannes Schindler. Characterization of an erbium atomic beam. na, 2011. [122] Thomas Prescott. Flux and profile measurements of an atomic beam using laser cooled atoms. PhD thesis, University of British Columbia, 2016. [123] Pavel Fileviez P ́erez, Clara Murgui, and Alexis D Plascencia. Baryogen- esis via leptogenesis: Spontaneous b and l violation. Physical Review D, 104(5):055007, 2021. [124] Peter AR Ade, Nabila Aghanim, Charmaine Armitage-Caplan, Mark Ar- naud, M Ashdown, F Atrio-Barandela, J Aumont, C Baccigalupi, Anthony J Banday, RB Barreiro, et al. Planck 2013 results. xvi. cosmological parame- ters. Astronomy & Astrophysics, 571:A16, 2014. [125] Victor Mukhamedovich Abazov, B Abbott, M Abolins, Bannanje Sripath Acharya, M Adams, Todd Adams, Ernest Aguilo, Guennadi D Alexeev, G Alkhazov, A Alton, et al. Evidence for an anomalous like-sign dimuon charge asymmetry. Physical Review D, 82(3):032001, 2010. [126] Alan Kostelecky. The status of cpt. arXiv preprint hep-ph/9810365, 1998. [127] Don Colladay and V Alan Kosteleck`y. Lorentz-violating extension of the standard model. Physical Review D, 58(11):116002, 1998. [128] V Alan Kosteleck`y and Ralf Lehnert. Stability, causality, and lorentz and cpt violation. Physical Review D, 63(6):065008, 2001. [129] Oscar W Greenberg. C p t violation implies violation of lorentz invariance. Physical Review Letters, 89(23):231602, 2002. [130] Makoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormal- izable theory of weak interaction. Progress of theoretical physics, 49(2):652– 657, 1973. [131] TD Lee. A theory of spontaneous t violation. Physical Review D, 8(4):1226, 1973. [132] Chien-Shiung Wu, Ernest Ambler, Raymond W Hayward, Dale D Hoppes, and Ralph Percy Hudson. Experimental test of parity conservation in beta decay. Physical review, 105(4):1413, 1957. [133] James H Christenson, Jeremiah W Cronin, Val L Fitch, and Ren ́e Turlay. Evidence for the 2 π decay of the k 2 0 meson. Physical Review Letters, 13(4):138, 1964. [134] Andrei D Sakharov. Violation of cp-invariance, c-asymmetry, and baryon asymmetry of the universe. In In The Intermissions. . . Collected Works on Research into the Essentials of Theoretical Physics in Russian Federal Nuclear Center, Arzamas-16, pages 84–87. World Scientific, 1998. [135] PGH Sandars. Electric dipole moments of charged particles. Contemporary Physics, 42(2):97–111, 2001. [136] Eugene D Commins. Electric dipole moments of leptons. In Advances in Atomic, Molecular, and Optical Physics, volume 40, pages 1–55. Elsevier, 1999. [137] Yashpal Singh, BK Sahoo, and BP Das. Ab initio determination of the p-and t-violating coupling constants in atomic xe by the relativistic-coupled-cluster method. Physical Review A, 89(3):030502, 2014. [138] Stephen M Barr. T-and p-odd electron-nucleon interactions and the electric dipole moments of large atoms. Physical Review D, 45(11):4148, 1992. [139] Maxim Pospelov and Adam Ritz. Electric dipole moments as probes of new physics. Annals of physics, 318(1):119–169, 2005. [140] BC Regan, Eugene D Commins, Christian J Schmidt, and David DeMille. New limit on the electron electric dipole moment. Physical review letters, 88(7):071805, 2002. [141] Jason M Amini, Charles T Munger Jr, and Harvey Gould. Electron electric- dipole-moment experiment using electric-field quantized slow cesium atoms. Physical Review A, 75(6):063416, 2007. [142] WC Griffith, MD Swallows, TH Loftus, MV Romalis, BR Heckel, and EN Fortson. Improved limit on the permanent electric dipole moment of hg 199. Physical review letters, 102(10):101601, 2009. [143] MA Rosenberry and TE Chupp. Atomic electric dipole moment measure- ment using spin exchange pumped masers of 129 xe and 3 he. Physical review letters, 86(1):22, 2001. [144] GW Bennett, B Bousquet, HN Brown, G Bunce, RM Carey, P Cushman, GT Danby, PT Debevec, M Deile, H Deng, et al. Improved limit on the muon electric dipole moment. Physical Review D, 80(5):052008, 2009. [145] K Inami, K Abe, R Abe, T Abe, I Adachi, H Aihara, M Akatsu, Y Asano, T Aso, V Aulchenko, et al. Search for the electric dipole moment of the τ lepton. Physics Letters B, 551(1-2):16–26, 2003. [146] CA Baker, DD Doyle, P Geltenbort, K Green, MGD Van der Grinten, PG Harris, P Iaydjiev, SN Ivanov, DJR May, JM Pendlebury, et al. Im- proved experimental limit on the electric dipole moment of the neutron. Physical Review Letters, 97(13):131801, 2006. [147] Donghyun Cho, K Sangster, and EA Hinds. Search for time-reversal- symmetry violation in thallium fluoride using a jet source. Physical Review A, 44(5):2783, 1991. [148] JJ Hudson, BE Sauer, MR Tarbutt, and EA Hinds. Measurement of the electron electric dipole moment using ybf molecules. Physical Review Letters, 89(2):023003, 2002. [149] Jonathan J Hudson, Dhiren M Kara, IJ Smallman, Ben E Sauer, Michael R Tarbutt, and Ed A Hinds. Improved measurement of the shape of the elec- tron. Nature, 473(7348):493–496, 2011. [150] Eugene D Commins. Berry’s geometric phase and motional fields. American journal of physics, 59(12):1077–1080, 1991. [151] Arthur Ashkin. Acceleration and trapping of particles by radiation pressure. Physical review letters, 24(4):156, 1970. [152] William D Phillips and Harold Metcalf. Laser deceleration of an atomic beam. Physical Review Letters, 48(9):596, 1982. [153] GAML Alzetta, A Gozzini, L Moi, and G Orriols. An experimental method for the observation of rf transitions and laser beat resonances in oriented na vapour. Il Nuovo Cimento B (1971-1996), 36(1):5–20, 1976. [154] EetGORRIOLS Arimondo and G Orriols. Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping. Nuovo Cimento Lettere, 17:333–338, 1976. [155] Richard Morgan Whitley and CR Stroud Jr. Double optical resonance. Phys- ical Review A, 14(4):1498, 1976. [156] HR Gray, RM Whitley, and CR Stroud. Coherent trapping of atomic popu- lations. Optics letters, 3(6):218–220, 1978. [157] Svenja Knappe, Robert Wynands, John Kitching, Hugh G Robinson, and Leo Hollberg. Characterization of coherent population-trapping resonances as atomic frequency references. JOSA B, 18(11):1545–1553, 2001. [158] Minhua Zhao, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Zhu Ma, Chengyin Han, Bo Lu, and Chaohong Lee. Laser frequency stabilization via bichro- matic doppler-free spectroscopy of an 87 rb d 1 line. Applied Optics, 60(17):5203–5207, 2021. [159] Svenja Knappe, Vishal Shah, Peter DD Schwindt, Leo Hollberg, John Kitch- ing, Li-Anne Liew, and John Moreland. A microfabricated atomic clock. Applied Physics Letters, 85(9):1460–1462, 2004. [160] Rodolphe Boudot, St ́ephane Gu ́erandel, Emeric De Clercq, Noel Dimarcq, and Andr ́e Clairon. Current status of a pulsed cpt cs cell clock. IEEE Transactions on instrumentation and measurement, 58(4):1217–1222, 2008. [161] E Togan, Y Chu, Atac Imamoglu, and MD Lukin. Laser cooling and real- time measurement of the nuclear spin environment of a solid-state qubit. Nature, 478(7370):497–501, 2011. [162] A Aspect, Ennio Arimondo, R e a1 Kaiser, N Vansteenkiste, and C Cohen- Tannoudji. Laser cooling below the one-photon recoil energy by velocity- selective coherent population trapping. Physical Review Letters, 61(7):826, 1988. [163] Isaac Fan, Tzu-Ling Chen, Yu-Sheng Liu, Yu-Hung Lien, Jow-Tsong Shy, and Yi-Wei Liu. Prospects of laser cooling in atomic thallium. Physical Review A, 84(4):042504, 2011. [164] Lene Vestergaard Hau, Stephen E Harris, Zachary Dutton, and Cyrus H Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397(6720):594–598, 1999. [165] Hamid Reza Hamedi, Emmanuel Paspalakis, Giedrius ˇZlabys, Gediminas Juzeli ̄unas, and Julius Ruseckas. Complete energy conversion between light beams carrying orbital angular momentum using coherent population trap- ping for a coherently driven double-λ atom-light-coupling scheme. Physical Review A, 100(2):023811, 2019. [166] Koji Motomura and Masaharu Mitsunaga. High-resolution spectroscopy of hyperfine zeeman components of the sodium d 1 line by coherent population trapping. JOSA B, 19(10):2456–2460, 2002. [167] R Wynands and A Nagel. Precision spectroscopy with coherent dark states. Applied Physics B: Lasers & Optics, 68(1), 1999. [168] Iyyanki V Jyotsna and GS Agarwal. Coherent population trapping at low light levels. Physical Review A, 52(4):3147, 1995. [169] Iyyanki V Jyotsna and GS Agarwal. Dynamics of coherent population trap- ping states in dense systems. Physical Review A, 53(3):1690, 1996. [170] Nathan Belcher, Eugeniy E Mikhailov, and Irina Novikova. Atomic clocks and coherent population trapping: Experiments for undergraduate labora- tories. American Journal of Physics, 77(11):988–998, 2009. [171] KF Reim, J Nunn, VO Lorenz, BJ Sussman, KC Lee, NK Langford, D Jaksch, and IA Walmsley. Towards high-speed optical quantum mem- ories. Nature Photonics, 4(4):218–221, 2010. [172] Nathaniel B Phillips, Alexey V Gorshkov, and Irina Novikova. Optimal light storage in atomic vapor. Physical Review A, 78(2):023801, 2008. [173] J Kou, RG Wan, ZH Kang, L Jiang, L Wang, Y Jiang, and JY Gao. Phase- dependent coherent population trapping and optical switching. Physical Review A, 84(6):063807, 2011. [174] J Vanier. Atomic clocks based on coherent population trapping: a review. Applied Physics B, 81(4):421–442, 2005. [175] Jacques Vanier, Martin W Levine, Daniel Janssen, and Michael J Delaney. On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards. IEEE Transactions on Instrumentation and Measurement, 52(3):822–831, 2003. [176] Michael Petersen, Moustafa Abdel Hafiz, Emeric de Clercq, and Rodolphe Boudot. Microwave phase detection of coherent population trapping reso- nance in a cs vapor cell. JOSA B, 39(3):910–916, 2022. [177] Xiaochi Liu, Eugene Ivanov, Valeriy I Yudin, John Kitching, and Eliza- beth A Donley. Low-drift coherent population trapping clock based on laser- cooled atoms and high-coherence excitation fields. Physical Review Applied, 8(5):054001, 2017. [178] Ray-Yuan Chang, Yi-Chi Lee, Wei-Chia Fang, Ming-Tsung Lee, Zong-Syun He, Bai-Cian Ke, and Chin-Chun Tsai. A narrow window of rabi frequency for competition between electromagnetically induced transparency and ra- man absorption. JOSA B, 27(1):85–91, 2010. [179] Michael Fleischhauer, Atac Imamoglu, and Jonathan P Marangos. Electro- magnetically induced transparency: Optics in coherent media. Reviews of modern physics, 77(2):633, 2005. |