帳號:guest(3.133.107.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪聖雄
作者(外文):Hung, Sheng-Hsiung
論文名稱(中文):以第一原理研究新穎二維材料與異質結構
論文名稱(外文):First Principle Studies of Novel Two-dimensional Materials and Heterostructures
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):李定國
白偉武
仲崇厚
郭光宇
劉昌樺
口試委員(外文):Lee, Ting-Kuo
Pai, Woei-Wu
Chung, Chung-Hou
Guo, Guang-Yu
Liu, Chang-Hua
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:105022803
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:113
中文關鍵詞:二維材料異質結構磁性電荷密度波第一原理
外文關鍵詞:2D materialsHeterostructuresmagnetismcharge density waveFirst-principle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於現今電腦的發展,以第一原理方法研究物理是非常普遍的。二維材料已
經成為當今熱門的研究主題。二維的磁性材料更是當今潮流。大多數的二維磁性
材料是絕緣體或金屬。由第一原理計算,我們預測一個新的二維半金屬材料。這
十幾年來,黑磷是一個很重要的二維材料。而它的各種缺陷已經被很多人所研究
唯獨缺少鉑。由於鉑與黑磷具有很高的合成能、黑磷經常是正摻雜,以及鉑具有
高的功函數。因此我們分析了由鉑嵌入黑磷的可能。
具有比較弱的層與層之間作用力的二維材料使得製造異質結構容易。由不同
材料所組成的異質結構可以有很廣泛的應用與新穎的物理性質。例如鄰近效應的
可能。於物理上,我們試著說明由 TaS2的電荷密度波誘導至石墨烯上的現象。於
應用層面,我們用 WSe2與 Fe3GeTe2製造一個可以控制自旋注入的裝置。
本文的安排如下:在第一章我們先介紹一些相關的研究與動機。基本的方法
在第二章節描述。在第三章我們預測了一個新穎的二維材料。於第四章我們討論
了黑磷的缺陷。第五章討論了電荷密度波的鄰近效應。最後,第六章敘述使用二
維磁性材料 Fe3GeTe2電子元件之特性
The ab-initio method to study physics is popular nowadays due to the development of computer. Research on two-dimensional (2D) materials has become a prominent topic. The 2D magnetic materials become a sensation nowadays. Most of 2D magnetic materials are insulators or metals. We predicted the new 2D half-metal material by density functional theory (DFT). Black phosphorus (BP) is an important 2D material in a decade. Different types of defects in BP are studied well except for Pt. Pt has high formation energy on BP. BP appears to be p-doped and Pt has high work function. Thus, we analyzed the defect of BP caused by Pt intercalation.
2D materials which have weak interaction between layers makes it feasible to create heterostructures. The heterostructures made of different materials have a variety of applications and novel physical properties such as proximity effect. On one hand, we show that there is a CDW proximity effect induced by TaS2. On the other hand, we used WSe2 and Fe3GeTe2 to make a device to control spin injection.
This thesis is organized as following: We give the introductions and motivations in chapter 1. We introduce the basic methods in chapter 2. Chapter 3 displays our prediction for new magnetic two-dimensional materials. We discussed the defect of black phosphorene in Chapter 4. In Chapter 5 we discussed the proximity effect of charge density wave. Finally, Chapter 6 provides an electronic device using two-dimensional magnetic material Fe3GeTe2.
Abstract
Chapter 1. Introduction 1
1.1 Two-dimensional Magnetic Materials 1
1.2 Defects of Black Phosphorus 3
1.3 Charge Density Wave of TaS2 and Proximity Effect 6
1.4 Valley Polarization 8
Chapter 2. Theoretical Background 10
2.1 Density Functional Theory 10
2.2 Wannier Function 18
2.3 Twilight and Dawn of two-dimensional magnetic material 24
2.4 Estimate Curie Temperature 26
Chapter 3. New two-dimensional magnetic materials EuOX 30
3.1 Computational Details 30
3.2 Results and discussion 31
Chapter 4. Defects in Black phosphorus 43
4.1Computational Details 43
4.2 Results and discussions 44
Chapter 5. Gyotaku of charge density wave from TaS2 to Graphene 55
5.1 Computational Details 55
5.2 Results and discussions 56
Chapter 6. A theoretic explanation of Electric control of valley polarization 74
6.1 Computational Details 74
6.2 Results & discussions 75
Bibliography 84
Appendix 101
[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science (New York, N.Y.), 306(5696), 666–669. (2004)
[2] Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453. (2005)
[3] Junki Sone et al. Epitaxial growth of silicene on ultra-thin Ag (111) films. New J. Phys. 16 095004 .(2014)
[4] Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., Resta, A., Ealet, B., & Le Lay, G. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical review letters, 108(15), 155501. (2012).
[5] Molle, A., , Grazianetti, C., , Tao, L., , Taneja, D., , Alam, M. H., , & Akinwande, D. Silicene, silicene derivatives, and their device applications. Chemical Society reviews, 47(16), 6370–6387. (2018).
[6] Chung-Huang Lin, Angus Huang, Woei Wu Pai, Wei-Chuan Chen, Ting-Yu Chen, Tay-Rong Chang, Ryu Yukawa, Cheng-Maw Cheng, Chung-Yu Mou, Iwao Matsuda, T.-C. Chiang, H.-T. Jeng, and S.-J. Tang. Single-layer dual germanene phases on Ag (111), Phys. Rev. Mater. 2, 024003 (2018).
[7] J. Zhuang, C. Liu, Z. Zhou, G. Casillas, H. Feng, X. Xu, J. Wang, W. Hao, X. Wang, S. X. Dou, Z. Hu, and Y. Du. Dirac signature in germanene on semiconducting substrate. Adv. Sci. 5, 1800207 (2018).
[8] Yuhara, J., Shimazu, H., Ito, K., Ohta, A., Araidai, M., Kurosawa, M., Nakatake, M., & Le Lay, G. Germanene Epitaxial Growth by Segregation through Ag(111) Thin Films on Ge(111). ACS nano, 12(11), 11632–11637. (2018).
[9] M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New. J. Phys. 16, 095002 (2014).
[10] Li, L., Yu, Y., Ye, G. et al. Black phosphorus field-effect transistors. Nature Nanotech 9, 372–377. (2014)
[11] E. Torun, H. Sahin, S. K. Singh, F. M. Peeters. Stable half-metallic monolayers of FeCl2. Appl. Phys. Lett. 106, 192404 (2015)
[12] Ram Krishna Ghosh, Ashna Jose, Geetu Kumari. Intrinsic spin-dynamical properties of two-dimensional half-metallic FeX2 (X = Cl, Br, I) ferromagnets: Insight from density functional theory calculations. Phys. Rev. B 103, 054409. (2021)
[13] Jing-Yang You, Cong Chen, Zhen Zhang, Xian-Lei Sheng, Shengyuan A. Yang, Gang Su. Two-dimensional Weyl half-semimetal and tunable quantum anomalous Hall effect. Phys. Rev. B 100, 064408. (2019)
[14] Shan-Shan Wang, Zhi-Ming Yu, Ying Liu, Yalong Jiao, Shan Guan, Xian-Lei Sheng, Shengyuan A. Yang. Phys. Rev. Materials 3, 084201 (2019)
[15] Gong, C., Li, L., Li, Z. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269. (2017)
[16] Thomas Olsen. Magnetic anisotropy and exchange interactions of two-dimensional FePS3, NiPS3 and MnPS3 from first principles calculations. J. Phys. D: Appl. Phys. 54 314001. (2021)
[17] Xuhan Zhou, Bartosz Brzostowski, Artur Durajski, Meizhuang Liu, Jin Xiang, Tianran Jiang, Zhiqiang Wang, Shenwei Chen, Peigen Li, Zhihao Zhong, Andrzej Drzewiński, Marcin Jarosik, Radosław Szczęśniak, Tianshu Lai, Donghui Guo, and Dingyong Zhong. The Journal of Physical Chemistry C 124 (17), 9416-9423. (2020)
[18] Song, T., Cai, X., Tu, M. W., Zhang, X., Huang, B., Wilson, N. P., Seyler, K. L., Zhu, L., Taniguchi, T., Watanabe, K., McGuire, M. A., Cobden, D. H., Xiao, D., Yao, W., Xu, X. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science (New York, N.Y.), 360(6394), 1214–1218. (2018).

[19] Zollner, K., Gmitra, M., & Fabian, J. Swapping Exchange and Spin-Orbit Coupling in 2D van der Waals Heterostructures. Physical review letters, 125(19), 196402. (2020)
[20] Naihua Miao, Bin Xu, Linggang Zhu, Jian Zhou, Zhimei Sun. 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. Journal of the American Chemical Society 140 (7), 2417-2420. (2018)
[21] Radisavljevic, B., Radenovic, A., Brivio, J. et al. Single-layer MoS2 transistors. Nature Nanotech 6, 147–150 (2011).
[22] Qiao, J., Kong, X., Hu, ZX. et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5, 4475 (2014).
[23] Qiao, J., Kong, X., Hu, ZX. et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5, 4475. (2014)
[24] Yan Li, Shengxue Yang, and Jingbo Li. Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field. The Journal of Physical Chemistry C 118,41,23970-23976 (2014)
[25] Qun Wei, Xihong Peng. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett., 104, 251915. (2014)
[26] Varrla Eswaraiah, Qingsheng Zeng, Yi Long, Zheng Liu. Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small, 12: 3480-3502. (2016)
[27] Han Liu, Yuchen Du, Yexin Deng, Peide D. Ye. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., ,44, 2732-2743. (2015)
[28] Xuesong Li et al. Synthesis of thin- film black phosphorus on a flexible substrate. 2D Mater. 2 031002. (2015)
[29] N. Izquierdo, J. C. Myers, N. C. A. Seaton, S. K. Pandey, S. A. Campbell. Thin film deposition of surface passivated black phosphorus. ACS Nano, 13, 7091–7099. (2019)
[30] Xu, Y., Shi, X., Zhang, Y. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun 11, 1330 .(2020).
[31] J. V. Riffle, C. Flynn, B. St. Laurent, C. A. Ayotte, C. A. Caputo, S. M. Hollen. Impact of vacancies on electronic properties of black phosphorus probed by STM. Journal of Applied Physics 123, 044301 (2018)
[32] V. V. Kulish, O. I. Malyi, C. Persson, P. Wu, Phys. Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys., 2015,17, 992-1000. (2015)
[33] Yi Ding, Yanli Wang. Structural, Electronic, and Magnetic Properties of Adatom Adsorptions on Black and Blue Phosphorene: A First-Principles Study. The Journal of Physical Chemistry C 2015 119 (19), 10610-10622. (2015)
[34] Tao Hu, Jisang Hong. First-Principles Study of Metal Adatom Adsorption on Black Phosphorene. The Journal of Physical Chemistry C 119 (15), 8199-8207 (2015)
[35] J. Gaberle, A. L. Shluger. Structure and properties of intrinsic and extrinsic defects in black phosphorus. Nanoscale,10, 19536–19546. (2018)
[36] Zhizhan Qiu, Hanyan Fang, Alexandra Carvalho, A. S. Rodin, Yanpeng Liu, Sherman J. R. Tan, Mykola Telychko, Pin Lv, Jie Su, Yewu Wang, A. H. Castro Neto, and Jiong Lu. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus. Nano Letters 17 (11), 6935-6940 (2017)
[37] Brian Kiraly, Nadine Hauptmann, Alexander N. Rudenko, Mikhail I. Katsnelson, Alexander A. Khajetoorians. Probing Single Vacancies in Black Phosphorus at the Atomic Level. Nano Letters 17 (6), 3607-3612. (2017)
[38] Y. Jung, Y. Zhou, J. J. Cha. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front.,3, 452-463 (2016)
[39]Doohee Cho, Yong-Heum Cho, Sang-Wook Cheong, Ki-Seok Kim, and Han Woong Yeom. Interplay of electron-electron and electron-phonon interactions in the low-temperature phase of 1T−TaS2. Phys. Rev. B 92, 085132 (2015)
[40] Sipos, B., Kusmartseva, A., Akrap, A. et al. From Mott state to superconductivity in 1T-TaS2. Nature Mater 7, 960–965 (2008).
[41] K. T. Law, P. A. Lee. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA 114, 6996 (2017).
[42] Ziying Wang, Leiqiang Chu, Linjun Li, Ming Yang, Junyong Wang, Goki Eda, and Kian Ping Loh. Modulating Charge Density Wave Order in a 1T-TaS2/Black Phosphorus Heterostructure. Nano Letters 19 (5), 2840-2849 (2019)
[43] S.-H. Lee, J. S. Goh, and D. Cho. Origin of the Insulating Phase and First-Order Metal-Insulator Transition in 1T−TaS2. Phys. Rev. Lett. 122,
106404. (2019)
[44] de Gennes, P. G. Boundary Effects in Superconductors. Rev. Mod. Phys. 36, 225. (1964)
[45] J. J. Hauser, H. C. Theuerer, N. R. Werthamer. Proximity Effects between Superconducting and Magnetic Films. Phys. Rev. B, 142, 118. (1966)
[46] C. W. J. Beenakker. Random-matrix theory of quantum transport. Rev. Mod. Phys., 69, 731. (1997)
[47] Lambert, C., Raimondi, R. J. Phase-coherent transport in hybrid superconducting nanostructures. Phys. Condens. Matter. 1998, 10, 901. (1998)
[48] Zhong, D., Seyler, K.L., Linpeng, X. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020)
[49] Avsar, A., Tan, J., Taychatanapat, T. et al. Spin–orbit proximity effect in graphene. Nat Commun 5, 4875 (2014).
[50] Xu, X., Yao, W., Xiao, D. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys 10, 343–350 (2014).
[51] Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, Wang Yao. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 108, 196802. (2012)
[52] Mak, K.F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nature Photon 12, 451–460. (2018).
[53] Di Xiao, Wang Yao, and Qian Niu. Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport. Phys. Rev. Lett. 99, 236809. (2007)
[54] Zeng, H. L., Dai, J. F., Yao, W., Xiao, D., Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology 7, 490-493. (2012).
[55] Mak, K., He, K., Shan, J. et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech 7, 494–498 (2012).
[56] Cao, T., Wang, G., Han, W. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3, 887 (2012).
[57] Mak, K. F., McGill, K. L., Park, J., McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489-1492. (2014).
[58] Onga, M., Zhang, Y., Ideue, T. et al. Exciton Hall effect in monolayer MoS2. Nature Mater 16, 1193–1197. (2017).
[59] Kyle L. Seyler, Ding Zhong, Bevin Huang, Xiayu Linpeng, Nathan P. Wilson, Takashi Taniguchi, Kenji Watanabe, Wang Yao, Di Xiao, Michael A. McGuire, Kai-Mei C. Fu, Xiaodong Xu. Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2/CrI3 Heterostructures. Nano Letters 18 (6), 3823-3828. (2018)
[60] Mukherjee, A., Shayan, K., Li, L. et al. Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat Commun 11, 5502 (2020).
[61] Ye, Y., Xiao, J., Wang, H. et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nature Nanotech 11, 598–602 (2016).
[62] Gong, C., Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 706. (2019).
[63] Gibertini, M., Koperski, M., Morpurgo, A.F. et al. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019)
[64] Burch, K.S., Mandrus, D. & Park, JG. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018)
[65] Fei, Z., Huang, B., Malinowski, P. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nature Mater 17, 778–782 (2018).
[66] Tan, C., Lee, J., Jung, SG. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat Commun 9, 1554 (2018).
[67] Deng, Y., Yu, Y., Song, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).
[68] Wang, Z. et al. Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures. Nano Letters 18, 4303-4308 (2018).
[69] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. B 136, 864. (1964).
[70] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140 1133A. (1965).
[71] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Harcourt College Publishers. (1976)
[72] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 84, 1419. (2012)
[73] E. I. Blount. Formalisms of Band Theory. Solid State Phys. 13, 305 (1962)
[74] Nicola Marzari, David Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847. (1997)
[75] M. G. Lopez, David Vanderbilt, T. Thonhauser, Ivo Souza. Wannier-based calculation of the orbital magnetization in crystals. Phys. Rev. B 85, 014435 (2012)
[76] QuanSheng Wu, ShengNan Zhang, Haifeng Song, Matthias Troyer, Alexey Soluyanov. WannierTools: An open-source software package for novel topological materials. Computer Physics Communications 224, 405 (2018)
[77] N. D. Mermin, H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)
[78] Shinobu Hikami, Toshihiko Tsuneto. Phase Transition of Quasi-Two Dimensional Planar System. Progress of Theoretical Physics, Volume 63, Issue 2, February 1980, Pages 387–401
[79] Jae-Ung Lee, Sungmin Lee, Ji Hoon Ryoo, Soonmin Kang, Tae Yun Kim, Pilkwang Kim, Cheol-Hwan Park, Je-Geun Park, Hyeonsik Cheong. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Letters 16 (12), 7433-7438 (2016)
[80] Huang, B., Clark, G., Navarro-Moratalla, E. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
[81] J L Lado, J Fernández-Rossier. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4 035002. (2017)
[82] Shinobu Hikami, Toshihiko Tsuneto. Phase Transition of Quasi-Two- Dimensional Planar System, Progress of Theoretical Physics. Volume 63, Issue 2, February 1980, Pages 387–401
[83] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Physical Review. 120 (1): 91. (1960)
[84] D. Treves, S. Alexander. Observation of antisymmetric exchange interaction in Yttrium Orthoferrite. Journal of Applied Physics. 33,3: 1133–1134. (1962)
[85] P Bruno. Theory of interlayer exchange interactions in magnetic multilayers. J. Phys.: Condens. Matter 11 9403. (1999)
[86] H.A Kramers, L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique. Physica,Volume 1, Issues 1–6,1934,Pages 182-192, (1934)
[87] P. W. Anderson. Antiferromagnetism. Theory of Superexchange Interaction. Phys. Rev. 79, 350 (1950)
[88] M. Methfessel, J. Kubler. Bond analysis of heats of formation: application to some group VIII and IB hydrides. J. Phys. F: Metal Phys. 12, 141 (1982).
[89] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, V. A. Gubanov, J. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. Journal of Magnetism and Magnetic Materials,
Volume 67, Issue 1. (1987).
[90] Xu He, Nicole Helbig, Matthieu J. Verstraete, Eric Bousquet.
TB2J: A python package for computing magnetic interaction parameters.
Computer Physics Communications, Volume 264 107938. (2021)
[91] Dm. M. Korotin, V. V. Mazurenko, V. I. Anisimov, S. V. Streltsov. Calculation of exchange constants of the Heisenberg model in plane-wave-based methods using the Green's function approach. Phys. Rev. B 91, 224405 (2015)
[92] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, P. Bruno. Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys. Rev. B 64, 174402. (2001)
[93] V.P Antropov, B.N Harmon, A.N Smirnov. Aspects of spin dynamics and magnetic interactions. Journal of Magnetism and Magnetic Materials, Volume 200, Issues 1–3, Pages 148-166. (1999)
[94] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, R. W. Chantrell. Atomistic spin model simulations of magnetic nanomaterials. J. Phys.: Condens. Matter 26, 103202. (2014)
[95] Shuqing Zhang, Runzhang Xu, Nannan Luoc, Xiaolong Zou. Two-dimensional magnetic materials: structures, properties and external controls. Nanoscale,13, 1398-1424. (2021)
[96] G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251. (1994).
[97] G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169-11186. (1996).
[98] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)
[99] John P. Perdew, Kieron Burke, Matthias Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865. (1996).
[100] Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Cond. Mat. 21, 395502 (2009)
[101] Evans, R. F. L. VAMPIRE software package version 4.0, York, UK. URL http://vampire.york.ac.uk (2016).
[102] Wang, W., Dai, S., Li, X. et al. Measurement of the cleavage energy of graphite. Nat Commun 6, 7853 (2015)
[103] Wei-Bing Zhang, Qian Qu, Peng Zhu, Chi-Hang Lam. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C,3, 12457-12468 (2015)
[104] Simin Nie, Yan Sun, Fritz B. Prinz, Zhijun Wang, Hongming Weng, Zhong Fang, Xi Dai. Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6. Phys. Rev. Lett. 124, 076403. (2020)
[105] Alex Taekyung Lee, Myung Joon Han, Kyungwha Park. Magnetic proximity effect and spin-orbital texture at the Bi2Se3/EuS interface. Phys. Rev. B 90, 155103. (2014)
[106] T. Akai, S. Endo, Y. Akahama, K. Koto, Y. Marljyama. The crystal structure and oriented transformation of black phosphorus under high pressure. High Pressure Research, 1:2, 115-130. (1989)
[107] A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, A. H. Castro Neto. Oxygen Defects in Phosphorene. Phys. Rev. Lett. 114, 046801 (2015)
[108] Qin, G., Yan, QB., Qin, Z. et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci Rep 4, 6946. (2014)
[109] F. Memarian, A. Fereidoon, M. Darvish Ganji. Graphene Young’s modulus: Molecular mechanics and DFT treatments. Superlattices and Microstructures, Volume 85, 2015, Pages 348-356 (2015)
[110] Pierre Darancet, Andrew J. Millis, Chris A. Marianetti. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 90, 045134. (2014).
[111] Shuang Qiao, Xintong Li, Naizhou Wang, Wei Ruan, Cun Ye, Peng Cai, Zhenqi Hao, Hong Yao, Xianhui Chen, Jian Wu, Yayu Wang, and Zheng Liu. Mottness Collapse in 1T−TaS2−xSex Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals. Phys. Rev. X 7, 041054. (2017)
[112] Arlette S. Ngankeu, Sanjoy K. Mahatha, Kevin Guilloy, Marco Bianchi, Charlotte E. Sanders, Kerstin Hanff, Kai Rossnagel, Jill A. Miwa, Christina Breth Nielsen, Martin Bremholm, Philip Hofmann. Quasi-one-dimensional metallic band dispersion in the commensurate charge density wave of 1T−TaS2. Phys. Rev. B 96, 195147. (2017).
[113] T. Ritschel, H. Berger, J. Geck. Stacking-driven gap formation in layered 1T-TaS2. Phys. Rev. B 98, 195134. (2018).
[114] Butler, C.J., Yoshida, M., Hanaguri, T. et al. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat Commun 11, 2477 (2020).
[115] Chuan Chen, Bahadur Singh, Hsin Lin,Vitor M. Pereira. Reproduction of the Charge Density Wave Phase Diagram in 1T−TiSe2 Exposes its Excitonic Character. Phys. Rev. Lett. 121, 226602. (2018)
[116] Kenan Zhang, Xiaoyu Liu, Haoxiong Zhang, Ke Deng, Mingzhe Yan, Wei Yao, Mingtian Zheng, Eike F. Schwier, Kenya Shimada, Jonathan D. Denlinger, Yang Wu, Wenhui Duan, Shuyun Zhou. Evidence for a Quasi-One-Dimensional Charge Density Wave in CuTe by Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 121, 206402. (2018)
[117] Li, JX., Li, WQ., Hung, SH. et al. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nat. Nanotechnol. 17, 721–728 (2022).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *