帳號:guest(18.118.30.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉俊亨
作者(外文):Liu, Jun-Heng
論文名稱(中文):二硫化鉬在高定向熱解石墨上的電子結購
論文名稱(外文):Electronic structure of molybdenum disulfide on highly oriented pyrolytic graphite
指導教授(中文):霍夫曼
指導教授(外文):Hoffmann, Germar
口試委員(中文):羅榮立
唐述中
口試委員(外文):Lo, Rong-Li
Tang, Shu-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:105022557
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:62
中文關鍵詞:二維材料表面物理掃描穿隧式顯微鏡二硫化鉬石墨烯電子結購能帶缺陷晶界催化反應催化劑氫演化反應
外文關鍵詞:2D-materialstransition-metal-dichalcogenidesSTMMoS2HOPGelectronic-structurebandgapdefectsgrain-boundarycatalysiscatalysthydrogen-evolution-reactionTMDs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:494
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
二維材料因為其具有獨特的物理特性和應用潛能吸引了大量的研究關注。層
狀的過渡金屬二硫屬化物(Layered transition metal dichalcogenides)是最受歡迎的二維材料,這類材料通常會結合其他二維材料形成凡德瓦異質結構(van
der Waals heterostructure),這些異質結構需要優化才有可能成為各種不同
原件的基石, 我們的實驗專注於二硫化鉬(MoS2)在高定向熱解石墨(Highly
Oriented Pyrolytic Graphite)上的電子結構。我們的研究主要可以分成兩個部份
第一個部份是缺陷(defect)對MoS2電性的影響,我們研究了MoS2的晶界(grain
boundary)對其帶隙(band gap)的影響。我們還研究了不同種類的缺陷像是點缺
陷(point defect), 硫空穴(sulfur vacancies)和點缺陷上帶有吸附物。
第二個部份和MoS2當氫演化反應(Hydrogen evolution reaction)的電催化劑相
關。氫演化反應可以用於製造氫氣,製造的氫氣可以當氫燃料電池的燃料。白
金也可以當氫演化反應的催化劑。但是,白金在實際使用中成本太高。MoS2 有
潛力取代白金的角色,但是問題是催化的效率。為了要增加其催化效率,必須
用電漿處理去製造硫空穴。在測試完MoS2的氫演化反應催化效率以後,我們會
使用掃描穿隧式顯微鏡(Scanning Tunneling Microscopy)研究,我們的實驗目的是要驗證硫空穴的存在。我們有觀測到不同形式的硫空穴。
除了上述的兩個部份,我們還做了很多MoS2定性的測量像是厚度和帶隙的
關係、大範圍地形圖、原子結構、莫列波紋。
2D Materials have attracted lots of interests due to their unique physical properties and potential applications in electronics. Layered transition metal dichalcogenides(TMDs) are one of the most popular 2D materials. TMDs are often combined with other 2D materials to make van der Waals heterostructure. These heterostructures need to be optimized to be possibly used as building blocks for many different devices. Our experiments focus on molybdenum disulfide on highly oriented pyrolytic graphite. Our research on MoS2 on HOPG can mainly be divided into two parts.
One is the defect influence on the electronic properties of MoS2. We've studied the influence of the grain boundary on the band gap of MoS2. We also investigated different kinds of defects such as point defects, sulfur vacancies, point defects with adsorbates.
The other is related to the MoS2 as electrocatalyst of hydrogen evolution reaction (HER). HER can be used to produce elemental hydrogen. The produced hydrogen can serve as fuel for hydrogen oxygen fuel cells. Platinum can be used as a catalyst for HER. However, it is too expensive in practical use. MoS2 has the potential to replace the role of platinum, but the problem is the efficiency of the catalysis. In order to increase the efficiency of catalysis, sulfur vacancies are created by plasma treatment on MoS2. After testing the HER catalysis efficiency, samples are investigated by scaning tunneling microscopy (STM). Our experiment is to identify the existence of sulfur vacancies. As a result, we "observed" many different types of sulfur vacancies.
Besides these two parts, we've also done lots of characterization of MoS2 on HOPG such as the thickness dependence of the band gap, large area topography, atomic structure and morie patterns.
1 Introduction 4
2 Theory 6
2.1 Principle of STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Principle of STS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Quantum confinement . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Instrument 10
3.1 Rotary pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Turbomolecular pump . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Bakeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Ion pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Ion gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Low temperature environment . . . . . . . . . . . . . . . . . . . . . 13
3.7 Thermal diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 STM Repair 14
4.1 STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 X-Y table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Current cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Tip holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Sample holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 23
4.5.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Z-shift controll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 25
4.6.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 New equipments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7.1 Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7.2 Drift correction program . . . . . . . . . . . . . . . . . . . . 26
4.8 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8.1 Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8.2 Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Literature review 31
5.1 Point Defects and Grain Boundaries . . . . . . . . . . . . . . . . . . 31
5.2 Charging effect at grain boundaries of MoS2 . . . . . . . . . . . . . 34
5.3 Temperature Triggered Sulfur Vacancy Evolution in Monolayer MoS2/Graphene
Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Hydrogen evolution reaction . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Electrocatalysts for hydrogen evolution reaction . . . . . . . . . . . 40
6 Experiment 42
6.1 Molybdenum disulfide on highly oriented pyrolytic graphite . . . . . 42
6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.2 Atomic Resolution . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.3 Point defects . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.4 Sulfur Vacancies . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.5 Band gap of different layers of MoS2 on HOPG . . . . . . . 50
6.1.6 Grain boundaries . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Zinc oxide on n-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Appendix 58
A Daily record 59
B Drift correction program source code 64
Reference 73
[1] https://en.wikipedia.org/wiki/Transition metal dichalcogenide monolayers.
[2] Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner. Honeycomb
carbon: A review of graphene. Chemical Reviews, 110(1):132{145, 2010.
PMID: 19610631.
[3] Xiao Li and Hongwei Zhu. Two-dimensional mos2: Properties, preparation,
and applications. Journal of Materiomics, 1(1):33 { 44, 2015.
[4] Rudren Ganatra and Qing Zhang. Few-layer mos2: A promising layered
semiconductor. ACS Nano, 8(5):4074{4099, 2014. PMID: 24660756.
[5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-
layer mos2 transistors. Nature Nanotechnology, 6:147{, January 2011.
[6] Hong Wang, Fucai Liu, Wei Fu, Zheyu Fang, Wu Zhou, and Zheng Liu. Two-
dimensional heterostructures: fabrication, characterization, and application.
Nanoscale, 6:12250{12272, 2014.
[7] Sungjin Wi, Hyunsoo Kim, Mikai Chen, Hongsuk Nam, L. Jay Guo, Edgar
Meyhofer, and Xiaogan Liang. Enhancement of photovoltaic response in mul-
tilayer mos2 induced by plasma doping. ACS Nano, 8(5):5270{5281, 2014.
PMID: 24783942.
[8] Guoqing Li, Du Zhang, Qiao Qiao, Yifei Yu, David Peterson, Abdullah Za-
far, Raj Kumar, Stefano Curtarolo, Frank Hunte, Steve Shannon, Yimei Zhu,
Weitao Yang, and Linyou Cao. All the catalytic active sites of mos2 for hy-
drogen evolution. Journal of the American Chemical Society, 138(51):16632{
16638, 2016. PMID: 27977198.
74
[9] Vinod K. Sangwan, Deep Jariwala, In Soo Kim, Kan-Sheng Chen, Tobin J.
Marks, Lincoln J. Lauhon, and Mark C. Hersam. Gate-tunable memristive
phenomena mediated by grain boundaries in single-layer mos2. Nature Nan-
otechnology, 10:403{, April 2015.
[10] Wenzhuo Wu, Lei Wang, Yilei Li, Fan Zhang, Long Lin, Simiao Niu, Daniel
Chenet, Xian Zhang, Yufeng Hao, Tony F. Heinz, James Hone, and Zhong Lin
Wang. Piezoelectricity of single-atomic-layer mos2 for energy conversion and
piezotronics. Nature, 514:470{, October 2014.
[11] https://en.wikipedia.org/wiki/Scanning tunneling microscope.
[12] https://vacaero.com/information-resources/vacuum-pump-technology-
education-and-training/1040-oil-sealed-rotary-vane-pumps-part-1.html.
[13] http://philiphofmann.net/ultrahighvacuum/ind ionpump.html.
[14] http://philiphofmann.net/ultrahighvacuum/ind iongauge.html.
[15] https://en.wikipedia.org/wiki/thermal diode.
[16] http://large.stanford.edu/courses/2012/ph240/wang-ha1/.
[17] Xiaolong Liu, Itamar Balla, Hadallia Bergeron, and Mark C. Hersam. Point
defects and grain boundaries in rotationally commensurate mos2 on epitaxial
graphene. The Journal of Physical Chemistry C, 120(37):20798{20805, 2016.
[18] Chenhui Yan, Xi Dong, Connie H Li, and Lian Li. Charging e ect at grain
boundaries of mos 2. Nanotechnology, 29(19):195704, 2018.
[19] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao
Chen, Lain-Jong Li, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei
Chen, and Andrew T. S. Wee. Bandgap tunability at single-layer molybde-
num disulphide grain boundaries. Nature Communications, 6:6298{, February
2015.
[20] Liu Mengxi, Shi Jianping, Li Yuanchang, Zhou Xiebo, Ma Donglin, Qi Yue,
Zhang Yanfeng, and Liu Zhongfan. Temperature triggered sulfur vacancy evo-
lution in monolayer mos2/graphene heterostructures. Small, 13(40):1602967.
75
[21] Chih-Pin Lu, Guohong Li, Jinhai Mao, Li-Min Wang, and Eva Y. An-
drei. Bandgap, mid-gap states, and gating e ects in mos2. Nano Letters,
14(8):4628{4633, 2014. PMID: 25004377.
[22] https://en.wikipedia.org/wiki/fuel cell.
[23] Andrzej Lasia. Hydrogen evolution reaction, volume 2. June 2003.
[24] Ali Eftekhari. Electrocatalysts for hydrogen evolution reaction. International
Journal of Hydrogen Energy, 42(16):11053 { 11077, 2017.
[25] Jiao Deng, Haobo Li, Jianping Xiao, Yunchuan Tu, Dehui Deng, Huaixin
Yang, Huanfang Tian, Jianqi Li, Pengju Ren, and Xinhe Bao. Triggering
the electrocatalytic hydrogen evolution activity of the inert two-dimensional
mos2 surface via single-atom metal doping. Energy Environ. Sci., 8:1594{
1601, 2015.
[26] J. k. norskov, t. bligaard, a. logadottir, j. r. kitchin, j. g. chen, s. pandelov
and j. k. norskov, j. electrochem. soc., 2005, 152, j23j26.
[27] Chun-I Lu, Christopher John Butler, Jing-Kai Huang, Cheng-Rong Hsing,
Hung-Hsiang Yang, Yu-Hsun Chu, Chi-Hung Luo, Yung-Che Sun, Shih-Hao
Hsu, Kui-Hong Ou Yang, Ching-Ming Wei, Lain-Jong Li, and Minn-Tsong
Lin. Graphite edge controlled registration of monolayer mos2 crystal orien-
tation. Applied Physics Letters, 106(18):181904, 2015.
[28] Wu Zhou, Xiaolong Zou, Sina Najmaei, Zheng Liu, Yumeng Shi, Jing Kong,
Jun Lou, Pulickel M. Ajayan, Boris I. Yakobson, and Juan-Carlos Idrobo.
Intrinsic structural defects in monolayer molybdenum disul de. Nano Letters,
13(6):2615{2622, 2013. PMID: 23659662.
[29] Xiaolong Zou, Yuanyue Liu, and Boris I. Yakobson. Predicting dislocations
and grain boundaries in two-dimensional metal-disul des from the rst prin-
ciples. Nano Lett., 13(1):253{258, January 2013.
[30] Yu Li Huang, Zijing Ding, Wenjing Zhang, Yung-Huang Chang, Yumeng Shi,
Lain-Jong Li, Zhibo Song, Yu Jie Zheng, Dongzhi Chi, Su Ying Quek, and
76
Andrew T. S. Wee. Gap states at low-angle grain boundaries in monolayer
tungsten diselenide. Nano Letters, 16(6):3682{3688, 2016. PMID: 27140667.
[31] https://github.com/caldarolamartin/read sm4 les/blob/master/read sm4.m.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *