帳號:guest(18.224.43.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁珞威
作者(外文):Liang, Luo-Uei
論文名稱(中文):拓樸絕緣體及其表面化學性質-局部的探討
論文名稱(外文):Topological Insulators and Surface Chemistry-a local study
指導教授(中文):霍夫曼
指導教授(外文):Hoffmann, Germar
口試委員(中文):唐述中
羅榮立
簡紋濱
口試委員(外文):Tang, Shu-Jung
Lo, Rong-Li
Jian, Wen-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:105022525
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:61
中文關鍵詞:拓樸絕緣體碲化鉍紫質衍生物掃描穿隧顯微鏡
外文關鍵詞:Topological insulatorsBismuth telluridePorphyrin derivativeScanning Tunneling Microscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:262
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
拓樸絕緣體因其特殊的表面性質,以及跟其他物質交互作用產生的新現
象,近來備受關注。要研究拓樸絕緣體的表面性質,必須要有乾淨的表面。雜
質附著的表面,會影響表面電性的量測。因此會在樣品表面鍍上一層保護膜,
並於樣品送達其他實驗室後,做後續處理。然而,另一個現象隨之出現。隨著
儲存的時間愈長,脫帽(Decapping)後的樣品表面雜質愈來愈多。所以,找出確
保每次實驗都有乾淨表面的方法實屬當務之急。文中會介紹,我們如何在每一
次脫帽後,得到乾淨的表面。
錫烯是跟石墨烯有相同單層結構的同族物質,亦是拓樸絕緣體。因其表面
的拓樸態,即使在室溫下,也可以低耗能地傳輸電子。之前錫烯因為活性高,
所以難以置備。2016年,錫烯成功在碲化鉍(拓樸絕緣體)表面上形成。我們也
嘗試在碲化鉍表面上製備錫烯。文中會介紹錫在碲化鉍表面上成膜的過程及結
果。
紫質及其衍生物紫質衍生物近來在分子領域,受到極大關注。因其彈性、
可調變性及傳輸性質,有發展為新型電子元件的潛力。我們會介紹PAL025在
金(111)表面上加熱前,並隨著幾次的加熱,分子間的耦合,乃至於成鏈的型
態。
Currently, topological insulators (TIs) attract attention because of its specialsurface related electronic property and its combination with superconductors to form novel materials. Therefore, the surface cleanness is highly important. To transport samples to other laboratories without surface degradation, TI samples are capped.
The capping layer is then removed by therma heatment. But even when protected by a capping layer, the surface quality becomes worse as storage time gets longer.
We present an improved method to achieve clean surfaces whenever we decap TI samples.
Stanene is a new kind of material with a honeycomb structure like graphene and is also a TI. The preparation of stanene on is reported in literature which we recovery with surprising result .
Porphyrin and its derivatives receive attention in molecular science eld. Porphyrins are mechanically flexible and its electronics properties can be tuned by ligands and the metallic center. As such, it appears in many biological function and used as dye molecule. Current field of research is focusing on organic molecules into longer covalent system for new type of electronics. Here, we study an anthracene substituted porphyrin for covalent compound.
Acknowledgement i
摘要 ii
Abstract iii
1 Introduction 3
2 Theory 5
2.1 Tunneling Phenomenon . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 The Simplest Case . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Tunneling Current . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Scanning Tunneling Spectroscopy . . . . . . . . . . . . . . . . 7
3 Instrumentations and Repairs 8
3.1 Overview of Experimental Setup . . . . . . . . . . . . . . . . . 8
3.2 Problem with scanner and coarse approach . . . . . . . . . . . . 9
3.3 Repair of Thermal Diodes . . . . . . . . . . . . . . . . . . . 12
3.3.1 Thermal Diode . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Silicon Diode . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 High Frequency Noise . . . . . . . . . . . . . . . . . . . . . 14
3.4.1 Redoing Current Cable and Fixing other Cables . . . . . . . . 14
3.4.2 Deactivating one block of Approach Piezo . . . . . . . . . . 15
3.4.3 Attachment of Metal Plate . . . . . . . . . . . . . . . . . . 17
3.4.4 Induction of 3kHz Noise and Applying of High Voltage . . . . 17
3.4.5 Source of Noise . . . . . . . . . . . . . . . . . . . . . . . 18
4 Article Reviews 19
4.1 Topological Insulator . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Preparation and Transportation . . . . . . . . . . . . . . . . 19
4.1.2 Experimental Review . . . . . . . . . . . . . . . . . . . . . 19
4.2 Stanene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Experimental Review . . . . . . . . . . . . . . . . . . . . . 22
4.3 Porphyrin derivatives . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 Porphyrin Derivatives on Ag(111)、Au(111) . . . . . . . . . . 26
5 Projects 28
5.1 Decapping of Topological Insulator . . . . . . . . . . . . . . . 28
5.1.1 Sequential Annealing . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Annealing in combination with Sputtering . . . . . . . . . . . 33
5.2 Tin on TI . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 The First Experiment . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 The Second Experiment . . . . . . . . . . . . . . . . . . . . 40
5.3 PAL025 on Au(111) . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 Depostition . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Sequential Heating . . . . . . . . . . . . . . . . . . . . . . 44
6 Conclusions 56
Bibliography 57
[1] J. Terso and D. R. Hamann. Theory and application for the scanning
tunneling microscope. Phys. Rev. Lett., 50:1998-2001, Jun 1983.
[2] J. Bardeen. Tunneling from a many-particle point of view. Phys.
Rev. Lett., 6:57-59, Jan 1961.
[3] C. Julian Chen. Introduction to Scanning Tunneling Microscopy.
Oxford Science Publication, 2007.
[4] Lake Shore Cryotronics, Inc. DT-670 Silicon Diodes.
[5] Joel E. Moore. The birth of topological insulators. Nature, 464:194,
March 2010.
[6] Zhaoquan Zeng, Timothy A. Morgan, Dongsheng Fan, Chen Li, Yusuke
Hirono, Xian Hu, Yanfei Zhao, Joon Sue Lee, Jian Wang, Zhiming M.
Wang, Shuiqing Yu, Michael E. Hawkridge, Mourad Benamara, and
Gregory J. Salamo. Molecular beam epitaxial growth of Bi2Te3 and
Sb2Te3 topological insulators on GaAs (111) substrates: a potential
route to fabricate topological insulator p-n junction. AIP Advances,
3(7):072112, July 2013.
[7] S. E. Harrison, S. Li, Y. Huo, B. Zhou, Y. L. Chen, and J. S.
Harris. Two-step growth of high quality Bi2Te3 thin films on Al2O3
(0001) by molecular beam epitaxy. Appl. Phys. Lett., 102(17):171906,
April 2013.
[8] S. L. Morelh~ao T. R. F. Peixoto H. Bentmann F. Reinert C. I.
Fornari, P. H. O. Rappl and E. Abramof. Preservation of pristine
Bi2Te3 thin film topological insulator surface after ex situ
mechanical removal of Te capping layer. APL Materials, 2016.
[9] Jixia Dai, Wenbo Wang, Matthew Brahlek, Nikesh Koirala, Maryam
Salehi, Seongshik Oh, and Weida Wu. Restoring pristine Bi2Se3
surfaces with an effective Se decapping process. Nano Research,
8(4):1222-1228, April 2015.
[10] P. Ngabonziza, R. Heimbuch, N. de Jong, R. A. Klaassen, M. P.
Stehno, M. Snelder, A. Solmaz, S. V. Ramankutty, E. Frantzeskakis,
E. van Heumen, G. Koster, M. S. Golden, H. J. W. Zandvliet, and A.
Brinkman. In situ spectroscopy of intrinsic Bi2Te3 topological
insulator thin fi lms and impact of extrinsic defects. Phys. Rev. B,
92:035405, Jul 2015.
[11] Koen Schouteden, Kirsten Govaerts, Jolien Debehets, Umamahesh
Thupakula, Taishi Chen, Zhe Li, Asteriona Netsou, Fengqi Song, Dirk
Lamoen, Chris Van Haesendonck, Bart Partoens, and Kyungwha Park.
Annealing induced Bi bilayer on Bi2Te3 investigated via quasi-
particle-interference mapping.
ACS Nano, 10(9):8778-8787, September 2016.
[12] Xie-Gang Zhu, Yun Zhang, Wei Feng, Bing-Kai Yuan, Qin Liu, Rui-Zhi Qiu, Dong-Hua Xie, Shi-Yong Tan, Yu Duan, Yun Fang, Wen Zhang, and Xin-
Chun Lai. Electronic structures of topological insulator Bi2Te3 surfaces with non-conventional terminations. New Journal of Physics, 18(9):093015, 2016.
[13] Cheng-Cheng Liu, Hua Jiang, and Yugui Yao. Low-energy effective hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B, 84:195430, Nov 2011.
[14] Yong Xu, Binghai Yan, Hai-Jun Zhang, Jing Wang, Gang Xu, Peizhe Tang, Wenhui Duan, and Shou-Cheng Zhang. Large-gap quantum spin hall insulators in tin fi lms. Phys. Rev. Lett., 111:136804, Sep 2013.
[15] Sumit Saxena, Raghvendra Pratap Chaudhary, and Shobha Shukla. Stanene: Atomically thick free-standing layer of 2d hexagonal tin. Scienti fic reports, 6:31073-31073, August 2016.
[16] Feng-feng Zhu,Wei-jiong Chen, Yong Xu, Chun-lei Gao, Dan-dan Guan, Canhua Liu, Dong Qian, Shou-Cheng Zhang, and Jin-feng Jia. Epitaxial growth of two-dimensional stanene. Nature Materials, 14:1020, August 2015.
[17] Junji Yuhara, Yuya Fujii, Kazuki Nishino, Naoki Isobe, Masashi Nakatake, Lede Xian, Angel Rubio, and Guy Le Lay. Large area planar stanene epitaxially grown on Ag(111). 2D Materials, 5(2):025002, 2018.
[18] Jiayuan Kou, Dou Dou, and Liming Yang. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget, 8(46):81591-81603,August 2017.
[19] Jan A. Mol, Chit Siong Lau, Wilfred J. M. Lewis, Hatef Sadeghi, Cecile Roche, Arjen Cnossen, Jamie H. Warner, Colin J. Lambert, Harry L. Anderson, and G. Andrew D. Briggs. Graphene-porphyrin single-molecule transistors. Nanoscale, 7(31):13181-13185, 2015.
[20] Johannes Mielke, Felix Hanke, Maike V. Peters, Stefan Hecht, Mats Persson, and Leonhard Grill. Adatoms underneath single porphyrin molecules on au(111). J. Am. Chem. Soc., 137(5):1844-1849, February 2015.
[21] Felix Bischo , Yuanqin He, Knud Seufert, Daphne Stassen, Davide Bonifazi, Johannes V. Barth, and Willi Auwarter. Tailoring large pores of porphyrin networks on Ag(111) by metal-organic coordination. Chem. Eur. J., 22(43):15298-15306, October 2016.
[22] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen. Experimental realization of a three-dimensional topological insulator, Bi2Te3;. Science, 325(5937):178, July 2009.
[23] Desheng Kong, Judy J. Cha, Keji Lai, Hailin Peng, James G. Analytis, Stefan Meister, Yulin Chen, Hai-Jun Zhang, Ian R. Fisher, Zhi-Xun Shen, and Yi Cui. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano, 5(6):4698-4703, June 2011.
[24] Wen-Yaung Lee and R. H. Geiss. Degradation of thin tellurium lms. Journal of Applied Physics, 54(3):1351-1357, March 1983.
[25] Jinming Cai, Pascal Rueux, Rached Jaafar, Marco Bieri, Thomas Braun, Stephan Blankenburg, Matthias Muoth, Ari P. Seitsonen, Moussa Saleh, Xinliang Feng, Klaus Muellen, and Roman Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466:470, July 2010.
[26] S. Smalley, M. Lahti, K. Pussi, V. R. Dhanak, and J. A. Smerdon. Dibromobianthryl ordering and polymerization on Ag(100). J. Chem. Phys.,
146(18):184701, May 2017.
[27] Chia Wei Chou. Topological insulator preparation and molecule investigation with scanning tunneling microscopy. Master's thesis, National Tsing Hua University, 2018.
[28] Emanuel Loertscher. Wiring molecules into circuits. Nature Nanotechnology, 8:381, June 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *