|
[1] D. C. Morton, Q. Wu, and G. W. Drake, “Energy levels for the stable isotopes of atomic helium (4He I and 3He I),” Can. J. Phys. 84, 83–105 (2006).
[2] K. Pachucki, “Helium energy levels including m α 6 corrections,” Phys. Rev. A 74,062510 (2006).
[3] G. W. F. Drake and Z. C. Yan, “High-precision spectroscopy as a test of quantum electrodynamics in light atomic systems,” Can. J. Phys. 86, 45–54 (2008).
[4] K. Pachucki and V. A. Yerokhin, “Erratum : Reexamination of the helium fine structure [Phys. Rev. A 79, 062516 (2009)],” Phys. Rev. A 81, 039903 (2010).
[5] H. J. Metcalf and P. Van der Straten, Laser cooling and trapping of neutral atoms (Wiley Online Library, 2007).
[6] C. S. Adams, E. Riis, A. I. Ferguson, and W. R. C. Rowley, “Precision measurement of the 2 3 S → 3 3 P transition in He 4,” Phys. Rev. A 45, R2667 (1992).
[7] F. S. Pavone, F. Marin, P. De Natale, M. Inguscio, and F. Biraben, “First pure frequency measurement of an optical transition in helium: lamb shift of the 2 3 S 1 metastable level,” Phys. Rev. Lett. 73, 42 (1994).
[8] P. Mueller, L. B. Wang, G. W. F. Drake, K. Bailey, Z. T. Lu, and T. P. O’Connor, “Fine structure of the 1 s 3 p P J 3 Level in Atomic He 4: Theory and experiment,” Phys. Rev. Lett. 94, 133001 (2005).
[9] S. F. Yang, “Precision Measurement of Helium Triplet 2S to 3P Transition,” Master Thesis, National Tsing Hua University (2017).
[10] J. N. Eckstein, A. I. Ferguson, and T. W. H¨ansch, “High-resolution two-photon spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40, 847 (1978).
[11] T. Udem, J. Reichert, R. Holzwarth, and T. W. H¨ansch, “Absolute optical frequency measurement of the cesium D 1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568 (1999).
[12] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[13] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[14] J. L. Peng, H. Ahn, R. H. Shu, H. C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2007).
[15] J. L. Peng, T. A. Liu, and R. H. Shu, “Self-referenced Er-fiber laser comb with 300 MHz comb spacing,” in “Frequency Control Symposium, 2009 Joint with the 22nd European Frequency and Time forum. IEEE International,” (IEEE, 2009), pp.344–346.
[16] F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281, 4114–4117 (2008).
[17] M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO-and MgO-doped LiNbo 3 wavelength converters,” Phys. Rev. Lett. 78, 3163–3165 (2001).
[18] T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO 3 waveguides,”Opt. Lett. 18, 346–348 (1993).
[19] S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti: PPLN waveguides with ridge geometry,” Appl. Phys. B 120, 737–749 (2015).
[20] P. W. Smith and R. H¨ansch, “Cross-relaxation effects in the saturation of the 6328-˚a neon-laser line,” Phys. Rev. Lett. 26, 740 (1971).
[21] R. Grimm and J. Mlynek, “Light-pressure-induced line-shape asymmetry of the saturation dip in an atomic gas,” Phys. Rev. Lett. 63, 232 (1989).
[22] F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60, 4164 (1999).
[23] M. Artoni, I. Carusotto, and F. Minardi, “Light-force-induced fluorescence line-center shifts in high-precision optical spectroscopy: Simple model and experiment,” Phys. Rev. A 62, 023402 (2000).
[24] T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 2 3 P J helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005).
[25] T. Zelevinsky, D. Farkas, and G. Gabrielse, “HELIUM 2 3 P FINE STRUCTURE MEASUREMENT IN A DISCHARGE CELL,” in “Laser Spectroscopy,” (World Scientific, 2005), pp. 112–122.
|